1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
//===- IntRangeOptimizations.cpp - Optimizations based on integer ranges --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlow/IntegerRangeAnalysis.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir::arith {
#define GEN_PASS_DEF_ARITHINTRANGEOPTS
#include "mlir/Dialect/Arith/Transforms/Passes.h.inc"
} // namespace mlir::arith
using namespace mlir;
using namespace mlir::arith;
using namespace mlir::dataflow;
/// Returns true if 2 integer ranges have intersection.
static bool intersects(const ConstantIntRanges &lhs,
const ConstantIntRanges &rhs) {
return !((lhs.smax().slt(rhs.smin()) || lhs.smin().sgt(rhs.smax())) &&
(lhs.umax().ult(rhs.umin()) || lhs.umin().ugt(rhs.umax())));
}
static FailureOr<bool> handleEq(ConstantIntRanges lhs, ConstantIntRanges rhs) {
if (!intersects(std::move(lhs), std::move(rhs)))
return false;
return failure();
}
static FailureOr<bool> handleNe(ConstantIntRanges lhs, ConstantIntRanges rhs) {
if (!intersects(std::move(lhs), std::move(rhs)))
return true;
return failure();
}
static FailureOr<bool> handleSlt(ConstantIntRanges lhs, ConstantIntRanges rhs) {
if (lhs.smax().slt(rhs.smin()))
return true;
if (lhs.smin().sge(rhs.smax()))
return false;
return failure();
}
static FailureOr<bool> handleSle(ConstantIntRanges lhs, ConstantIntRanges rhs) {
if (lhs.smax().sle(rhs.smin()))
return true;
if (lhs.smin().sgt(rhs.smax()))
return false;
return failure();
}
static FailureOr<bool> handleSgt(ConstantIntRanges lhs, ConstantIntRanges rhs) {
return handleSlt(std::move(rhs), std::move(lhs));
}
static FailureOr<bool> handleSge(ConstantIntRanges lhs, ConstantIntRanges rhs) {
return handleSle(std::move(rhs), std::move(lhs));
}
static FailureOr<bool> handleUlt(ConstantIntRanges lhs, ConstantIntRanges rhs) {
if (lhs.umax().ult(rhs.umin()))
return true;
if (lhs.umin().uge(rhs.umax()))
return false;
return failure();
}
static FailureOr<bool> handleUle(ConstantIntRanges lhs, ConstantIntRanges rhs) {
if (lhs.umax().ule(rhs.umin()))
return true;
if (lhs.umin().ugt(rhs.umax()))
return false;
return failure();
}
static FailureOr<bool> handleUgt(ConstantIntRanges lhs, ConstantIntRanges rhs) {
return handleUlt(std::move(rhs), std::move(lhs));
}
static FailureOr<bool> handleUge(ConstantIntRanges lhs, ConstantIntRanges rhs) {
return handleUle(std::move(rhs), std::move(lhs));
}
namespace {
struct ConvertCmpOp : public OpRewritePattern<arith::CmpIOp> {
ConvertCmpOp(MLIRContext *context, DataFlowSolver &s)
: OpRewritePattern<arith::CmpIOp>(context), solver(s) {}
LogicalResult matchAndRewrite(arith::CmpIOp op,
PatternRewriter &rewriter) const override {
auto *lhsResult =
solver.lookupState<dataflow::IntegerValueRangeLattice>(op.getLhs());
if (!lhsResult || lhsResult->getValue().isUninitialized())
return failure();
auto *rhsResult =
solver.lookupState<dataflow::IntegerValueRangeLattice>(op.getRhs());
if (!rhsResult || rhsResult->getValue().isUninitialized())
return failure();
using HandlerFunc =
FailureOr<bool> (*)(ConstantIntRanges, ConstantIntRanges);
std::array<HandlerFunc, arith::getMaxEnumValForCmpIPredicate() + 1>
handlers{};
using Pred = arith::CmpIPredicate;
handlers[static_cast<size_t>(Pred::eq)] = &handleEq;
handlers[static_cast<size_t>(Pred::ne)] = &handleNe;
handlers[static_cast<size_t>(Pred::slt)] = &handleSlt;
handlers[static_cast<size_t>(Pred::sle)] = &handleSle;
handlers[static_cast<size_t>(Pred::sgt)] = &handleSgt;
handlers[static_cast<size_t>(Pred::sge)] = &handleSge;
handlers[static_cast<size_t>(Pred::ult)] = &handleUlt;
handlers[static_cast<size_t>(Pred::ule)] = &handleUle;
handlers[static_cast<size_t>(Pred::ugt)] = &handleUgt;
handlers[static_cast<size_t>(Pred::uge)] = &handleUge;
HandlerFunc handler = handlers[static_cast<size_t>(op.getPredicate())];
if (!handler)
return failure();
ConstantIntRanges lhsValue = lhsResult->getValue().getValue();
ConstantIntRanges rhsValue = rhsResult->getValue().getValue();
FailureOr<bool> result = handler(lhsValue, rhsValue);
if (failed(result))
return failure();
rewriter.replaceOpWithNewOp<arith::ConstantIntOp>(
op, static_cast<int64_t>(*result), /*width*/ 1);
return success();
}
private:
DataFlowSolver &solver;
};
struct IntRangeOptimizationsPass
: public arith::impl::ArithIntRangeOptsBase<IntRangeOptimizationsPass> {
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *ctx = op->getContext();
DataFlowSolver solver;
solver.load<DeadCodeAnalysis>();
solver.load<IntegerRangeAnalysis>();
if (failed(solver.initializeAndRun(op)))
return signalPassFailure();
RewritePatternSet patterns(ctx);
populateIntRangeOptimizationsPatterns(patterns, solver);
if (failed(applyPatternsAndFoldGreedily(op, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
void mlir::arith::populateIntRangeOptimizationsPatterns(
RewritePatternSet &patterns, DataFlowSolver &solver) {
patterns.add<ConvertCmpOp>(patterns.getContext(), solver);
}
std::unique_ptr<Pass> mlir::arith::createIntRangeOptimizationsPass() {
return std::make_unique<IntRangeOptimizationsPass>();
}
|