1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
//===- ReifyValueBounds.cpp --- Reify value bounds with arith ops -------*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Transforms/Transforms.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
using namespace mlir;
using namespace mlir::arith;
/// Build Arith IR for the given affine map and its operands.
static Value buildArithValue(OpBuilder &b, Location loc, AffineMap map,
ValueRange operands) {
assert(map.getNumResults() == 1 && "multiple results not supported yet");
std::function<Value(AffineExpr)> buildExpr = [&](AffineExpr e) -> Value {
switch (e.getKind()) {
case AffineExprKind::Constant:
return b.create<ConstantIndexOp>(loc,
e.cast<AffineConstantExpr>().getValue());
case AffineExprKind::DimId:
return operands[e.cast<AffineDimExpr>().getPosition()];
case AffineExprKind::SymbolId:
return operands[e.cast<AffineSymbolExpr>().getPosition() +
map.getNumDims()];
case AffineExprKind::Add: {
auto binaryExpr = e.cast<AffineBinaryOpExpr>();
return b.create<AddIOp>(loc, buildExpr(binaryExpr.getLHS()),
buildExpr(binaryExpr.getRHS()));
}
case AffineExprKind::Mul: {
auto binaryExpr = e.cast<AffineBinaryOpExpr>();
return b.create<MulIOp>(loc, buildExpr(binaryExpr.getLHS()),
buildExpr(binaryExpr.getRHS()));
}
case AffineExprKind::FloorDiv: {
auto binaryExpr = e.cast<AffineBinaryOpExpr>();
return b.create<DivSIOp>(loc, buildExpr(binaryExpr.getLHS()),
buildExpr(binaryExpr.getRHS()));
}
case AffineExprKind::CeilDiv: {
auto binaryExpr = e.cast<AffineBinaryOpExpr>();
return b.create<CeilDivSIOp>(loc, buildExpr(binaryExpr.getLHS()),
buildExpr(binaryExpr.getRHS()));
}
case AffineExprKind::Mod: {
auto binaryExpr = e.cast<AffineBinaryOpExpr>();
return b.create<RemSIOp>(loc, buildExpr(binaryExpr.getLHS()),
buildExpr(binaryExpr.getRHS()));
}
}
llvm_unreachable("unsupported AffineExpr kind");
};
return buildExpr(map.getResult(0));
}
static FailureOr<OpFoldResult>
reifyValueBound(OpBuilder &b, Location loc, presburger::BoundType type,
Value value, std::optional<int64_t> dim,
ValueBoundsConstraintSet::StopConditionFn stopCondition,
bool closedUB) {
// Compute bound.
AffineMap boundMap;
ValueDimList mapOperands;
if (failed(ValueBoundsConstraintSet::computeBound(
boundMap, mapOperands, type, value, dim, stopCondition, closedUB)))
return failure();
// Materialize tensor.dim/memref.dim ops.
SmallVector<Value> operands;
for (auto valueDim : mapOperands) {
Value value = valueDim.first;
std::optional<int64_t> dim = valueDim.second;
if (!dim.has_value()) {
// This is an index-typed value.
assert(value.getType().isIndex() && "expected index type");
operands.push_back(value);
continue;
}
assert(cast<ShapedType>(value.getType()).isDynamicDim(*dim) &&
"expected dynamic dim");
if (isa<RankedTensorType>(value.getType())) {
// A tensor dimension is used: generate a tensor.dim.
operands.push_back(b.create<tensor::DimOp>(loc, value, *dim));
} else if (isa<MemRefType>(value.getType())) {
// A memref dimension is used: generate a memref.dim.
operands.push_back(b.create<memref::DimOp>(loc, value, *dim));
} else {
llvm_unreachable("cannot generate DimOp for unsupported shaped type");
}
}
// Check for special cases where no arith ops are needed.
if (boundMap.isSingleConstant()) {
// Bound is a constant: return an IntegerAttr.
return static_cast<OpFoldResult>(
b.getIndexAttr(boundMap.getSingleConstantResult()));
}
// No arith ops are needed if the bound is a single SSA value.
if (auto expr = boundMap.getResult(0).dyn_cast<AffineDimExpr>())
return static_cast<OpFoldResult>(operands[expr.getPosition()]);
if (auto expr = boundMap.getResult(0).dyn_cast<AffineSymbolExpr>())
return static_cast<OpFoldResult>(
operands[expr.getPosition() + boundMap.getNumDims()]);
// General case: build Arith ops.
return static_cast<OpFoldResult>(buildArithValue(b, loc, boundMap, operands));
}
FailureOr<OpFoldResult> mlir::arith::reifyShapedValueDimBound(
OpBuilder &b, Location loc, presburger::BoundType type, Value value,
int64_t dim, ValueBoundsConstraintSet::StopConditionFn stopCondition,
bool closedUB) {
auto reifyToOperands = [&](Value v, std::optional<int64_t> d) {
// We are trying to reify a bound for `value` in terms of the owning op's
// operands. Construct a stop condition that evaluates to "true" for any SSA
// value expect for `value`. I.e., the bound will be computed in terms of
// any SSA values expect for `value`. The first such values are operands of
// the owner of `value`.
return v != value;
};
return reifyValueBound(b, loc, type, value, dim,
stopCondition ? stopCondition : reifyToOperands,
closedUB);
}
FailureOr<OpFoldResult> mlir::arith::reifyIndexValueBound(
OpBuilder &b, Location loc, presburger::BoundType type, Value value,
ValueBoundsConstraintSet::StopConditionFn stopCondition, bool closedUB) {
auto reifyToOperands = [&](Value v, std::optional<int64_t> d) {
return v != value;
};
return reifyValueBound(b, loc, type, value, /*dim=*/std::nullopt,
stopCondition ? stopCondition : reifyToOperands,
closedUB);
}
|