1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
//===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements scf.parallel to scf.for + async.execute conversion pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Async/Passes.h"
#include "PassDetail.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/Async/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include <utility>
namespace mlir {
#define GEN_PASS_DEF_ASYNCPARALLELFOR
#include "mlir/Dialect/Async/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::async;
#define DEBUG_TYPE "async-parallel-for"
namespace {
// Rewrite scf.parallel operation into multiple concurrent async.execute
// operations over non overlapping subranges of the original loop.
//
// Example:
//
// scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
// "do_some_compute"(%i, %j): () -> ()
// }
//
// Converted to:
//
// // Parallel compute function that executes the parallel body region for
// // a subset of the parallel iteration space defined by the one-dimensional
// // compute block index.
// func parallel_compute_function(%block_index : index, %block_size : index,
// <parallel operation properties>, ...) {
// // Compute multi-dimensional loop bounds for %block_index.
// %block_lbi, %block_lbj = ...
// %block_ubi, %block_ubj = ...
//
// // Clone parallel operation body into the scf.for loop nest.
// scf.for %i = %blockLbi to %blockUbi {
// scf.for %j = block_lbj to %block_ubj {
// "do_some_compute"(%i, %j): () -> ()
// }
// }
// }
//
// And a dispatch function depending on the `asyncDispatch` option.
//
// When async dispatch is on: (pseudocode)
//
// %block_size = ... compute parallel compute block size
// %block_count = ... compute the number of compute blocks
//
// func @async_dispatch(%block_start : index, %block_end : index, ...) {
// // Keep splitting block range until we reached a range of size 1.
// while (%block_end - %block_start > 1) {
// %mid_index = block_start + (block_end - block_start) / 2;
// async.execute { call @async_dispatch(%mid_index, %block_end); }
// %block_end = %mid_index
// }
//
// // Call parallel compute function for a single block.
// call @parallel_compute_fn(%block_start, %block_size, ...);
// }
//
// // Launch async dispatch for [0, block_count) range.
// call @async_dispatch(%c0, %block_count);
//
// When async dispatch is off:
//
// %block_size = ... compute parallel compute block size
// %block_count = ... compute the number of compute blocks
//
// scf.for %block_index = %c0 to %block_count {
// call @parallel_compute_fn(%block_index, %block_size, ...)
// }
//
struct AsyncParallelForPass
: public impl::AsyncParallelForBase<AsyncParallelForPass> {
AsyncParallelForPass() = default;
AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
int32_t minTaskSize) {
this->asyncDispatch = asyncDispatch;
this->numWorkerThreads = numWorkerThreads;
this->minTaskSize = minTaskSize;
}
void runOnOperation() override;
};
struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
public:
AsyncParallelForRewrite(
MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
AsyncMinTaskSizeComputationFunction computeMinTaskSize)
: OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
numWorkerThreads(numWorkerThreads),
computeMinTaskSize(std::move(computeMinTaskSize)) {}
LogicalResult matchAndRewrite(scf::ParallelOp op,
PatternRewriter &rewriter) const override;
private:
bool asyncDispatch;
int32_t numWorkerThreads;
AsyncMinTaskSizeComputationFunction computeMinTaskSize;
};
struct ParallelComputeFunctionType {
FunctionType type;
SmallVector<Value> captures;
};
// Helper struct to parse parallel compute function argument list.
struct ParallelComputeFunctionArgs {
BlockArgument blockIndex();
BlockArgument blockSize();
ArrayRef<BlockArgument> tripCounts();
ArrayRef<BlockArgument> lowerBounds();
ArrayRef<BlockArgument> upperBounds();
ArrayRef<BlockArgument> steps();
ArrayRef<BlockArgument> captures();
unsigned numLoops;
ArrayRef<BlockArgument> args;
};
struct ParallelComputeFunctionBounds {
SmallVector<IntegerAttr> tripCounts;
SmallVector<IntegerAttr> lowerBounds;
SmallVector<IntegerAttr> upperBounds;
SmallVector<IntegerAttr> steps;
};
struct ParallelComputeFunction {
unsigned numLoops;
func::FuncOp func;
llvm::SmallVector<Value> captures;
};
} // namespace
BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
return args.drop_front(2).take_front(numLoops);
}
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
}
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
}
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
}
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
return args.drop_front(2 + 4 * numLoops);
}
template <typename ValueRange>
static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
SmallVector<IntegerAttr> attrs(values.size());
for (unsigned i = 0; i < values.size(); ++i)
matchPattern(values[i], m_Constant(&attrs[i]));
return attrs;
}
// Converts one-dimensional iteration index in the [0, tripCount) interval
// into multidimensional iteration coordinate.
static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
ArrayRef<Value> tripCounts) {
SmallVector<Value> coords(tripCounts.size());
assert(!tripCounts.empty() && "tripCounts must be not empty");
for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
index = b.create<arith::DivSIOp>(index, tripCounts[i]);
}
return coords;
}
// Returns a function type and implicit captures for a parallel compute
// function. We'll need a list of implicit captures to setup block and value
// mapping when we'll clone the body of the parallel operation.
static ParallelComputeFunctionType
getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
// Values implicitly captured by the parallel operation.
llvm::SetVector<Value> captures;
getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
SmallVector<Type> inputs;
inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
Type indexTy = rewriter.getIndexType();
// One-dimensional iteration space defined by the block index and size.
inputs.push_back(indexTy); // blockIndex
inputs.push_back(indexTy); // blockSize
// Multi-dimensional parallel iteration space defined by the loop trip counts.
for (unsigned i = 0; i < op.getNumLoops(); ++i)
inputs.push_back(indexTy); // loop tripCount
// Parallel operation lower bound, upper bound and step. Lower bound, upper
// bound and step passed as contiguous arguments:
// call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
for (unsigned i = 0; i < op.getNumLoops(); ++i) {
inputs.push_back(indexTy); // lower bound
inputs.push_back(indexTy); // upper bound
inputs.push_back(indexTy); // step
}
// Types of the implicit captures.
for (Value capture : captures)
inputs.push_back(capture.getType());
// Convert captures to vector for later convenience.
SmallVector<Value> capturesVector(captures.begin(), captures.end());
return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
}
// Create a parallel compute fuction from the parallel operation.
static ParallelComputeFunction createParallelComputeFunction(
scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
OpBuilder::InsertionGuard guard(rewriter);
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
ModuleOp module = op->getParentOfType<ModuleOp>();
ParallelComputeFunctionType computeFuncType =
getParallelComputeFunctionType(op, rewriter);
FunctionType type = computeFuncType.type;
func::FuncOp func = func::FuncOp::create(
op.getLoc(),
numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops"
: "parallel_compute_fn",
type);
func.setPrivate();
// Insert function into the module symbol table and assign it unique name.
SymbolTable symbolTable(module);
symbolTable.insert(func);
rewriter.getListener()->notifyOperationInserted(func);
// Create function entry block.
Block *block =
b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
SmallVector<Location>(type.getNumInputs(), op.getLoc()));
b.setInsertionPointToEnd(block);
ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
// Block iteration position defined by the block index and size.
BlockArgument blockIndex = args.blockIndex();
BlockArgument blockSize = args.blockSize();
// Constants used below.
Value c0 = b.create<arith::ConstantIndexOp>(0);
Value c1 = b.create<arith::ConstantIndexOp>(1);
// Materialize known constants as constant operation in the function body.
auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
return llvm::to_vector(
llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
if (IntegerAttr attr = std::get<1>(tuple))
return b.create<arith::ConstantOp>(attr);
return std::get<0>(tuple);
}));
};
// Multi-dimensional parallel iteration space defined by the loop trip counts.
auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
// Parallel operation lower bound and step.
auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
auto steps = values(args.steps(), bounds.steps);
// Remaining arguments are implicit captures of the parallel operation.
ArrayRef<BlockArgument> captures = args.captures();
// Compute a product of trip counts to get the size of the flattened
// one-dimensional iteration space.
Value tripCount = tripCounts[0];
for (unsigned i = 1; i < tripCounts.size(); ++i)
tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
// Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
// blockFirstIndex = blockIndex * blockSize
Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
// The last one-dimensional index in the block defined by the `blockIndex`:
// blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
// Convert one-dimensional indices to multi-dimensional coordinates.
auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
// Compute loops upper bounds derived from the block last coordinates:
// blockEndCoord[i] = blockLastCoord[i] + 1
//
// Block first and last coordinates can be the same along the outer compute
// dimension when inner compute dimension contains multiple blocks.
SmallVector<Value> blockEndCoord(op.getNumLoops());
for (size_t i = 0; i < blockLastCoord.size(); ++i)
blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
// Construct a loop nest out of scf.for operations that will iterate over
// all coordinates in [blockFirstCoord, blockLastCoord] range.
using LoopBodyBuilder =
std::function<void(OpBuilder &, Location, Value, ValueRange)>;
using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
// Parallel region induction variables computed from the multi-dimensional
// iteration coordinate using parallel operation bounds and step:
//
// computeBlockInductionVars[loopIdx] =
// lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
// We need to know if we are in the first or last iteration of the
// multi-dimensional loop for each loop in the nest, so we can decide what
// loop bounds should we use for the nested loops: bounds defined by compute
// block interval, or bounds defined by the parallel operation.
//
// Example: 2d parallel operation
// i j
// loop sizes: [50, 50]
// first coord: [25, 25]
// last coord: [30, 30]
//
// If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
// is between 25 and 30 it should start at 0. The upper bound for `j` should
// be 50, except when `i` is equal to 30, then it should also be 30.
//
// Value at ith position specifies if all loops in [0, i) range of the loop
// nest are in the first/last iteration.
SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
SmallVector<Value> isBlockLastCoord(op.getNumLoops());
// Builds inner loop nest inside async.execute operation that does all the
// work concurrently.
LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
ValueRange args) {
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Compute induction variable for `loopIdx`.
computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>(
lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx]));
// Check if we are inside first or last iteration of the loop.
isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>(
arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>(
arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
// Check if the previous loop is in its first or last iteration.
if (loopIdx > 0) {
isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>(
isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>(
isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
}
// Keep building loop nest.
if (loopIdx < op.getNumLoops() - 1) {
if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
// For block aligned loops we always iterate starting from 0 up to
// the loop trip counts.
b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
workLoopBuilder(loopIdx + 1));
} else {
// Select nested loop lower/upper bounds depending on our position in
// the multi-dimensional iteration space.
auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx],
blockFirstCoord[loopIdx + 1], c0);
auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx],
blockEndCoord[loopIdx + 1],
tripCounts[loopIdx + 1]);
b.create<scf::ForOp>(lb, ub, c1, ValueRange(),
workLoopBuilder(loopIdx + 1));
}
b.create<scf::YieldOp>(loc);
return;
}
// Copy the body of the parallel op into the inner-most loop.
IRMapping mapping;
mapping.map(op.getInductionVars(), computeBlockInductionVars);
mapping.map(computeFuncType.captures, captures);
for (auto &bodyOp : op.getLoopBody().getOps())
b.clone(bodyOp, mapping);
};
};
b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
workLoopBuilder(0));
b.create<func::ReturnOp>(ValueRange());
return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
}
// Creates recursive async dispatch function for the given parallel compute
// function. Dispatch function keeps splitting block range into halves until it
// reaches a single block, and then excecutes it inline.
//
// Function pseudocode (mix of C++ and MLIR):
//
// func @async_dispatch(%block_start : index, %block_end : index, ...) {
//
// // Keep splitting block range until we reached a range of size 1.
// while (%block_end - %block_start > 1) {
// %mid_index = block_start + (block_end - block_start) / 2;
// async.execute { call @async_dispatch(%mid_index, %block_end); }
// %block_end = %mid_index
// }
//
// // Call parallel compute function for a single block.
// call @parallel_compute_fn(%block_start, %block_size, ...);
// }
//
static func::FuncOp
createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
PatternRewriter &rewriter) {
OpBuilder::InsertionGuard guard(rewriter);
Location loc = computeFunc.func.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
ArrayRef<Type> computeFuncInputTypes =
computeFunc.func.getFunctionType().getInputs();
// Compared to the parallel compute function async dispatch function takes
// additional !async.group argument. Also instead of a single `blockIndex` it
// takes `blockStart` and `blockEnd` arguments to define the range of
// dispatched blocks.
SmallVector<Type> inputTypes;
inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type);
func.setPrivate();
// Insert function into the module symbol table and assign it unique name.
SymbolTable symbolTable(module);
symbolTable.insert(func);
rewriter.getListener()->notifyOperationInserted(func);
// Create function entry block.
Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
SmallVector<Location>(type.getNumInputs(), loc));
b.setInsertionPointToEnd(block);
Type indexTy = b.getIndexType();
Value c1 = b.create<arith::ConstantIndexOp>(1);
Value c2 = b.create<arith::ConstantIndexOp>(2);
// Get the async group that will track async dispatch completion.
Value group = block->getArgument(0);
// Get the block iteration range: [blockStart, blockEnd)
Value blockStart = block->getArgument(1);
Value blockEnd = block->getArgument(2);
// Create a work splitting while loop for the [blockStart, blockEnd) range.
SmallVector<Type> types = {indexTy, indexTy};
SmallVector<Value> operands = {blockStart, blockEnd};
SmallVector<Location> locations = {loc, loc};
// Create a recursive dispatch loop.
scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
// Setup dispatch loop condition block: decide if we need to go into the
// `after` block and launch one more async dispatch.
{
b.setInsertionPointToEnd(before);
Value start = before->getArgument(0);
Value end = before->getArgument(1);
Value distance = b.create<arith::SubIOp>(end, start);
Value dispatch =
b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
b.create<scf::ConditionOp>(dispatch, before->getArguments());
}
// Setup the async dispatch loop body: recursively call dispatch function
// for the seconds half of the original range and go to the next iteration.
{
b.setInsertionPointToEnd(after);
Value start = after->getArgument(0);
Value end = after->getArgument(1);
Value distance = b.create<arith::SubIOp>(end, start);
Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
// Call parallel compute function inside the async.execute region.
auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
Location executeLoc, ValueRange executeArgs) {
// Update the original `blockStart` and `blockEnd` with new range.
SmallVector<Value> operands{block->getArguments().begin(),
block->getArguments().end()};
operands[1] = midIndex;
operands[2] = end;
executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(),
func.getCallableResults(), operands);
executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
};
// Create async.execute operation to dispatch half of the block range.
auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
executeBodyBuilder);
b.create<AddToGroupOp>(indexTy, execute.getToken(), group);
b.create<scf::YieldOp>(ValueRange({start, midIndex}));
}
// After dispatching async operations to process the tail of the block range
// call the parallel compute function for the first block of the range.
b.setInsertionPointAfter(whileOp);
// Drop async dispatch specific arguments: async group, block start and end.
auto forwardedInputs = block->getArguments().drop_front(3);
SmallVector<Value> computeFuncOperands = {blockStart};
computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
b.create<func::CallOp>(computeFunc.func.getSymName(),
computeFunc.func.getCallableResults(),
computeFuncOperands);
b.create<func::ReturnOp>(ValueRange());
return func;
}
// Launch async dispatch of the parallel compute function.
static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
ParallelComputeFunction ¶llelComputeFunction,
scf::ParallelOp op, Value blockSize,
Value blockCount,
const SmallVector<Value> &tripCounts) {
MLIRContext *ctx = op->getContext();
// Add one more level of indirection to dispatch parallel compute functions
// using async operations and recursive work splitting.
func::FuncOp asyncDispatchFunction =
createAsyncDispatchFunction(parallelComputeFunction, rewriter);
Value c0 = b.create<arith::ConstantIndexOp>(0);
Value c1 = b.create<arith::ConstantIndexOp>(1);
// Appends operands shared by async dispatch and parallel compute functions to
// the given operands vector.
auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
operands.append(tripCounts);
operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
operands.append(op.getStep().begin(), op.getStep().end());
operands.append(parallelComputeFunction.captures);
};
// Check if the block size is one, in this case we can skip the async dispatch
// completely. If this will be known statically, then canonicalization will
// erase async group operations.
Value isSingleBlock =
b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Call parallel compute function for the single block.
SmallVector<Value> operands = {c0, blockSize};
appendBlockComputeOperands(operands);
b.create<func::CallOp>(parallelComputeFunction.func.getSymName(),
parallelComputeFunction.func.getCallableResults(),
operands);
b.create<scf::YieldOp>();
};
auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Create an async.group to wait on all async tokens from the concurrent
// execution of multiple parallel compute function. First block will be
// executed synchronously in the caller thread.
Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
// Launch async dispatch function for [0, blockCount) range.
SmallVector<Value> operands = {group, c0, blockCount, blockSize};
appendBlockComputeOperands(operands);
b.create<func::CallOp>(asyncDispatchFunction.getSymName(),
asyncDispatchFunction.getCallableResults(),
operands);
// Wait for the completion of all parallel compute operations.
b.create<AwaitAllOp>(group);
b.create<scf::YieldOp>();
};
// Dispatch either single block compute function, or launch async dispatch.
b.create<scf::IfOp>(isSingleBlock, syncDispatch, asyncDispatch);
}
// Dispatch parallel compute functions by submitting all async compute tasks
// from a simple for loop in the caller thread.
static void
doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
ParallelComputeFunction ¶llelComputeFunction,
scf::ParallelOp op, Value blockSize, Value blockCount,
const SmallVector<Value> &tripCounts) {
MLIRContext *ctx = op->getContext();
func::FuncOp compute = parallelComputeFunction.func;
Value c0 = b.create<arith::ConstantIndexOp>(0);
Value c1 = b.create<arith::ConstantIndexOp>(1);
// Create an async.group to wait on all async tokens from the concurrent
// execution of multiple parallel compute function. First block will be
// executed synchronously in the caller thread.
Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
// Call parallel compute function for all blocks.
using LoopBodyBuilder =
std::function<void(OpBuilder &, Location, Value, ValueRange)>;
// Returns parallel compute function operands to process the given block.
auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
computeFuncOperands.append(tripCounts);
computeFuncOperands.append(op.getLowerBound().begin(),
op.getLowerBound().end());
computeFuncOperands.append(op.getUpperBound().begin(),
op.getUpperBound().end());
computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
computeFuncOperands.append(parallelComputeFunction.captures);
return computeFuncOperands;
};
// Induction variable is the index of the block: [0, blockCount).
LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
Value iv, ValueRange args) {
ImplicitLocOpBuilder b(loc, loopBuilder);
// Call parallel compute function inside the async.execute region.
auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
Location executeLoc, ValueRange executeArgs) {
executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(),
compute.getCallableResults(),
computeFuncOperands(iv));
executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
};
// Create async.execute operation to launch parallel computate function.
auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
executeBodyBuilder);
b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group);
b.create<scf::YieldOp>();
};
// Iterate over all compute blocks and launch parallel compute operations.
b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
// Call parallel compute function for the first block in the caller thread.
b.create<func::CallOp>(compute.getSymName(), compute.getCallableResults(),
computeFuncOperands(c0));
// Wait for the completion of all async compute operations.
b.create<AwaitAllOp>(group);
}
LogicalResult
AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
PatternRewriter &rewriter) const {
// We do not currently support rewrite for parallel op with reductions.
if (op.getNumReductions() != 0)
return failure();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Computing minTaskSize emits IR and can be implemented as executing a cost
// model on the body of the scf.parallel. Thus it needs to be computed before
// the body of the scf.parallel has been manipulated.
Value minTaskSize = computeMinTaskSize(b, op);
// Make sure that all constants will be inside the parallel operation body to
// reduce the number of parallel compute function arguments.
cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
// Compute trip count for each loop induction variable:
// tripCount = ceil_div(upperBound - lowerBound, step);
SmallVector<Value> tripCounts(op.getNumLoops());
for (size_t i = 0; i < op.getNumLoops(); ++i) {
auto lb = op.getLowerBound()[i];
auto ub = op.getUpperBound()[i];
auto step = op.getStep()[i];
auto range = b.createOrFold<arith::SubIOp>(ub, lb);
tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
}
// Compute a product of trip counts to get the 1-dimensional iteration space
// for the scf.parallel operation.
Value tripCount = tripCounts[0];
for (size_t i = 1; i < tripCounts.size(); ++i)
tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
// Short circuit no-op parallel loops (zero iterations) that can arise from
// the memrefs with dynamic dimension(s) equal to zero.
Value c0 = b.create<arith::ConstantIndexOp>(0);
Value isZeroIterations =
b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
// Do absolutely nothing if the trip count is zero.
auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
nestedBuilder.create<scf::YieldOp>(loc);
};
// Compute the parallel block size and dispatch concurrent tasks computing
// results for each block.
auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Collect statically known constants defining the loop nest in the parallel
// compute function. LLVM can't always push constants across the non-trivial
// async dispatch call graph, by providing these values explicitly we can
// choose to build more efficient loop nest, and rely on a better constant
// folding, loop unrolling and vectorization.
ParallelComputeFunctionBounds staticBounds = {
integerConstants(tripCounts),
integerConstants(op.getLowerBound()),
integerConstants(op.getUpperBound()),
integerConstants(op.getStep()),
};
// Find how many inner iteration dimensions are statically known, and their
// product is smaller than the `512`. We align the parallel compute block
// size by the product of statically known dimensions, so that we can
// guarantee that the inner loops executes from 0 to the loop trip counts
// and we can elide dynamic loop boundaries, and give LLVM an opportunity to
// unroll the loops. The constant `512` is arbitrary, it should depend on
// how many iterations LLVM will typically decide to unroll.
static constexpr int64_t maxUnrollableIterations = 512;
// The number of inner loops with statically known number of iterations less
// than the `maxUnrollableIterations` value.
int numUnrollableLoops = 0;
auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
SmallVector<int64_t> numIterations(op.getNumLoops());
numIterations.back() = getInt(staticBounds.tripCounts.back());
for (int i = op.getNumLoops() - 2; i >= 0; --i) {
int64_t tripCount = getInt(staticBounds.tripCounts[i]);
int64_t innerIterations = numIterations[i + 1];
numIterations[i] = tripCount * innerIterations;
// Update the number of inner loops that we can potentially unroll.
if (innerIterations > 0 && innerIterations <= maxUnrollableIterations)
numUnrollableLoops++;
}
Value numWorkerThreadsVal;
if (numWorkerThreads >= 0)
numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads);
else
numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>();
// With large number of threads the value of creating many compute blocks
// is reduced because the problem typically becomes memory bound. For this
// reason we scale the number of workers using an equivalent to the
// following logic:
// float overshardingFactor = numWorkerThreads <= 4 ? 8.0
// : numWorkerThreads <= 8 ? 4.0
// : numWorkerThreads <= 16 ? 2.0
// : numWorkerThreads <= 32 ? 1.0
// : numWorkerThreads <= 64 ? 0.8
// : 0.6;
// Pairs of non-inclusive lower end of the bracket and factor that the
// number of workers needs to be scaled with if it falls in that bucket.
const SmallVector<std::pair<int, float>> overshardingBrackets = {
{4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}};
const float initialOvershardingFactor = 8.0f;
Value scalingFactor = b.create<arith::ConstantFloatOp>(
llvm::APFloat(initialOvershardingFactor), b.getF32Type());
for (const std::pair<int, float> &p : overshardingBrackets) {
Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first);
Value inBracket = b.create<arith::CmpIOp>(
arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin);
Value bracketScalingFactor = b.create<arith::ConstantFloatOp>(
llvm::APFloat(p.second), b.getF32Type());
scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor,
scalingFactor);
}
Value numWorkersIndex =
b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal);
Value numWorkersFloat =
b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex);
Value scaledNumWorkers =
b.create<arith::MulFOp>(scalingFactor, numWorkersFloat);
Value scaledNumInt =
b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers);
Value scaledWorkers =
b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt);
Value maxComputeBlocks = b.create<arith::MaxSIOp>(
b.create<arith::ConstantIndexOp>(1), scaledWorkers);
// Compute parallel block size from the parallel problem size:
// blockSize = min(tripCount,
// max(ceil_div(tripCount, maxComputeBlocks),
// minTaskSize))
Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
// Dispatch parallel compute function using async recursive work splitting,
// or by submitting compute task sequentially from a caller thread.
auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
// Create a parallel compute function that takes a block id and computes
// the parallel operation body for a subset of iteration space.
// Compute the number of parallel compute blocks.
Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
// Dispatch parallel compute function without hints to unroll inner loops.
auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) {
ParallelComputeFunction compute =
createParallelComputeFunction(op, staticBounds, 0, rewriter);
ImplicitLocOpBuilder b(loc, nestedBuilder);
doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts);
b.create<scf::YieldOp>();
};
// Dispatch parallel compute function with hints for unrolling inner loops.
auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) {
ParallelComputeFunction compute = createParallelComputeFunction(
op, staticBounds, numUnrollableLoops, rewriter);
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Align the block size to be a multiple of the statically known
// number of iterations in the inner loops.
Value numIters = b.create<arith::ConstantIndexOp>(
numIterations[op.getNumLoops() - numUnrollableLoops]);
Value alignedBlockSize = b.create<arith::MulIOp>(
b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount,
tripCounts);
b.create<scf::YieldOp>();
};
// Dispatch to block aligned compute function only if the computed block
// size is larger than the number of iterations in the unrollable inner
// loops, because otherwise it can reduce the available parallelism.
if (numUnrollableLoops > 0) {
Value numIters = b.create<arith::ConstantIndexOp>(
numIterations[op.getNumLoops() - numUnrollableLoops]);
Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>(
arith::CmpIPredicate::sge, blockSize, numIters);
b.create<scf::IfOp>(useBlockAlignedComputeFn, dispatchBlockAligned,
dispatchDefault);
b.create<scf::YieldOp>();
} else {
dispatchDefault(b, loc);
}
};
// Replace the `scf.parallel` operation with the parallel compute function.
b.create<scf::IfOp>(isZeroIterations, noOp, dispatch);
// Parallel operation was replaced with a block iteration loop.
rewriter.eraseOp(op);
return success();
}
void AsyncParallelForPass::runOnOperation() {
MLIRContext *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateAsyncParallelForPatterns(
patterns, asyncDispatch, numWorkerThreads,
[&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
return builder.create<arith::ConstantIndexOp>(minTaskSize);
});
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
return std::make_unique<AsyncParallelForPass>();
}
std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
int32_t numWorkerThreads,
int32_t minTaskSize) {
return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
minTaskSize);
}
void mlir::async::populateAsyncParallelForPatterns(
RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
MLIRContext *ctx = patterns.getContext();
patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
computeMinTaskSize);
}
|