1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
//===- AsyncRuntimeRefCountingOpt.cpp - Async Ref Counting --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Optimize Async dialect reference counting operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Async/Passes.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Debug.h"
namespace mlir {
#define GEN_PASS_DEF_ASYNCRUNTIMEREFCOUNTINGOPT
#include "mlir/Dialect/Async/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "async-ref-counting"
using namespace mlir;
using namespace mlir::async;
namespace {
class AsyncRuntimeRefCountingOptPass
: public impl::AsyncRuntimeRefCountingOptBase<
AsyncRuntimeRefCountingOptPass> {
public:
AsyncRuntimeRefCountingOptPass() = default;
void runOnOperation() override;
private:
LogicalResult optimizeReferenceCounting(
Value value, llvm::SmallDenseMap<Operation *, Operation *> &cancellable);
};
} // namespace
LogicalResult AsyncRuntimeRefCountingOptPass::optimizeReferenceCounting(
Value value, llvm::SmallDenseMap<Operation *, Operation *> &cancellable) {
Region *definingRegion = value.getParentRegion();
// Find all users of the `value` inside each block, including operations that
// do not use `value` directly, but have a direct use inside nested region(s).
//
// Example:
//
// ^bb1:
// %token = ...
// scf.if %cond {
// ^bb2:
// async.runtime.await %token : !async.token
// }
//
// %token has a use inside ^bb2 (`async.runtime.await`) and inside ^bb1
// (`scf.if`).
struct BlockUsersInfo {
llvm::SmallVector<RuntimeAddRefOp, 4> addRefs;
llvm::SmallVector<RuntimeDropRefOp, 4> dropRefs;
llvm::SmallVector<Operation *, 4> users;
};
llvm::DenseMap<Block *, BlockUsersInfo> blockUsers;
auto updateBlockUsersInfo = [&](Operation *user) {
BlockUsersInfo &info = blockUsers[user->getBlock()];
info.users.push_back(user);
if (auto addRef = dyn_cast<RuntimeAddRefOp>(user))
info.addRefs.push_back(addRef);
if (auto dropRef = dyn_cast<RuntimeDropRefOp>(user))
info.dropRefs.push_back(dropRef);
};
for (Operation *user : value.getUsers()) {
while (user->getParentRegion() != definingRegion) {
updateBlockUsersInfo(user);
user = user->getParentOp();
assert(user != nullptr && "value user lies outside of the value region");
}
updateBlockUsersInfo(user);
}
// Sort all operations found in the block.
auto preprocessBlockUsersInfo = [](BlockUsersInfo &info) -> BlockUsersInfo & {
auto isBeforeInBlock = [](Operation *a, Operation *b) -> bool {
return a->isBeforeInBlock(b);
};
llvm::sort(info.addRefs, isBeforeInBlock);
llvm::sort(info.dropRefs, isBeforeInBlock);
llvm::sort(info.users, [&](Operation *a, Operation *b) -> bool {
return isBeforeInBlock(a, b);
});
return info;
};
// Find and erase matching pairs of `add_ref` / `drop_ref` operations in the
// blocks that modify the reference count of the `value`.
for (auto &kv : blockUsers) {
BlockUsersInfo &info = preprocessBlockUsersInfo(kv.second);
for (RuntimeAddRefOp addRef : info.addRefs) {
for (RuntimeDropRefOp dropRef : info.dropRefs) {
// `drop_ref` operation after the `add_ref` with matching count.
if (dropRef.getCount() != addRef.getCount() ||
dropRef->isBeforeInBlock(addRef.getOperation()))
continue;
// When reference counted value passed to a function as an argument,
// function takes ownership of +1 reference and it will drop it before
// returning.
//
// Example:
//
// %token = ... : !async.token
//
// async.runtime.add_ref %token {count = 1 : i64} : !async.token
// call @pass_token(%token: !async.token, ...)
//
// async.await %token : !async.token
// async.runtime.drop_ref %token {count = 1 : i64} : !async.token
//
// In this example if we'll cancel a pair of reference counting
// operations we might end up with a deallocated token when we'll
// reach `async.await` operation.
Operation *firstFunctionCallUser = nullptr;
Operation *lastNonFunctionCallUser = nullptr;
for (Operation *user : info.users) {
// `user` operation lies after `addRef` ...
if (user == addRef || user->isBeforeInBlock(addRef))
continue;
// ... and before `dropRef`.
if (user == dropRef || dropRef->isBeforeInBlock(user))
break;
// Find the first function call user of the reference counted value.
Operation *functionCall = dyn_cast<func::CallOp>(user);
if (functionCall &&
(!firstFunctionCallUser ||
functionCall->isBeforeInBlock(firstFunctionCallUser))) {
firstFunctionCallUser = functionCall;
continue;
}
// Find the last regular user of the reference counted value.
if (!functionCall &&
(!lastNonFunctionCallUser ||
lastNonFunctionCallUser->isBeforeInBlock(user))) {
lastNonFunctionCallUser = user;
continue;
}
}
// Non function call user after the function call user of the reference
// counted value.
if (firstFunctionCallUser && lastNonFunctionCallUser &&
firstFunctionCallUser->isBeforeInBlock(lastNonFunctionCallUser))
continue;
// Try to cancel the pair of `add_ref` and `drop_ref` operations.
auto emplaced = cancellable.try_emplace(dropRef.getOperation(),
addRef.getOperation());
if (!emplaced.second) // `drop_ref` was already marked for removal
continue; // go to the next `drop_ref`
if (emplaced.second) // successfully cancelled `add_ref` <-> `drop_ref`
break; // go to the next `add_ref`
}
}
}
return success();
}
void AsyncRuntimeRefCountingOptPass::runOnOperation() {
Operation *op = getOperation();
// Mapping from `dropRef.getOperation()` to `addRef.getOperation()`.
//
// Find all cancellable pairs of operation and erase them in the end to keep
// all iterators valid while we are walking the function operations.
llvm::SmallDenseMap<Operation *, Operation *> cancellable;
// Optimize reference counting for values defined by block arguments.
WalkResult blockWalk = op->walk([&](Block *block) -> WalkResult {
for (BlockArgument arg : block->getArguments())
if (isRefCounted(arg.getType()))
if (failed(optimizeReferenceCounting(arg, cancellable)))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (blockWalk.wasInterrupted())
signalPassFailure();
// Optimize reference counting for values defined by operation results.
WalkResult opWalk = op->walk([&](Operation *op) -> WalkResult {
for (unsigned i = 0; i < op->getNumResults(); ++i)
if (isRefCounted(op->getResultTypes()[i]))
if (failed(optimizeReferenceCounting(op->getResult(i), cancellable)))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (opWalk.wasInterrupted())
signalPassFailure();
LLVM_DEBUG({
llvm::dbgs() << "Found " << cancellable.size()
<< " cancellable reference counting operations\n";
});
// Erase all cancellable `add_ref <-> drop_ref` operation pairs.
for (auto &kv : cancellable) {
kv.first->erase();
kv.second->erase();
}
}
std::unique_ptr<Pass> mlir::createAsyncRuntimeRefCountingOptPass() {
return std::make_unique<AsyncRuntimeRefCountingOptPass>();
}
|