1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
//===- BufferizableOpInterface.cpp - Bufferizable Ops ---=----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "llvm/Support/Debug.h"
//===----------------------------------------------------------------------===//
// BufferizableOpInterface
//===----------------------------------------------------------------------===//
namespace mlir {
namespace bufferization {
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.cpp.inc"
} // namespace bufferization
} // namespace mlir
MLIR_DEFINE_EXPLICIT_TYPE_ID(mlir::bufferization::AnalysisState)
#define DEBUG_TYPE "bufferizable-op-interface"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << (X))
using namespace mlir;
using namespace bufferization;
static bool isRepetitiveRegion(Region *region,
const BufferizationOptions &options) {
Operation *op = region->getParentOp();
if (auto bufferizableOp = options.dynCastBufferizableOp(op))
if (bufferizableOp.isRepetitiveRegion(region->getRegionNumber()))
return true;
return false;
}
Region *AnalysisState::getEnclosingRepetitiveRegion(
Operation *op, const BufferizationOptions &options) {
if (!op->getBlock())
return nullptr;
if (auto iter = enclosingRepetitiveRegionCache.find_as(op);
iter != enclosingRepetitiveRegionCache.end())
return iter->second;
return enclosingRepetitiveRegionCache[op] =
getEnclosingRepetitiveRegion(op->getBlock(), options);
}
Region *AnalysisState::getEnclosingRepetitiveRegion(
Value value, const BufferizationOptions &options) {
if (auto iter = enclosingRepetitiveRegionCache.find_as(value);
iter != enclosingRepetitiveRegionCache.end())
return iter->second;
Region *region = value.getParentRegion();
// Collect all visited regions since we only know the repetitive region we
// want to map it to later on
SmallVector<Region *> visitedRegions;
while (region) {
visitedRegions.push_back(region);
if (isRepetitiveRegion(region, options))
break;
region = region->getParentRegion();
}
enclosingRepetitiveRegionCache[value] = region;
for (Region *r : visitedRegions)
enclosingRepetitiveRegionCache[r] = region;
return region;
}
Region *AnalysisState::getEnclosingRepetitiveRegion(
Block *block, const BufferizationOptions &options) {
if (auto iter = enclosingRepetitiveRegionCache.find_as(block);
iter != enclosingRepetitiveRegionCache.end())
return iter->second;
Region *region = block->getParent();
Operation *op = nullptr;
// Collect all visited regions since we only know the repetitive region we
// want to map it to later on
SmallVector<Region *> visitedRegions;
do {
op = region->getParentOp();
if (isRepetitiveRegion(region, options))
break;
} while ((region = op->getParentRegion()));
enclosingRepetitiveRegionCache[block] = region;
for (Region *r : visitedRegions)
enclosingRepetitiveRegionCache[r] = region;
return region;
}
void AnalysisState::resetCache() { enclosingRepetitiveRegionCache.clear(); }
Region *bufferization::getNextEnclosingRepetitiveRegion(
Region *region, const BufferizationOptions &options) {
assert(isRepetitiveRegion(region, options) && "expected repetitive region");
while ((region = region->getParentRegion())) {
if (isRepetitiveRegion(region, options))
break;
}
return region;
}
Operation *bufferization::getOwnerOfValue(Value value) {
if (auto opResult = llvm::dyn_cast<OpResult>(value))
return opResult.getDefiningOp();
return llvm::cast<BlockArgument>(value).getOwner()->getParentOp();
}
bool bufferization::allocationDoesNotEscape(OpResult opResult) {
#ifndef NDEBUG
auto bufferizableOp = opResult.getDefiningOp<BufferizableOpInterface>();
assert(bufferizableOp && bufferizableOp.bufferizesToAllocation(opResult) &&
"expected op that bufferizes to an allocation");
#endif // NDEBUG
Operation *op = opResult.getDefiningOp();
// If there is no 'escape' attribute, we cannot say for sure.
if (!op->hasAttr(BufferizationDialect::kEscapeAttrName))
return false;
auto attr =
op->getAttrOfType<ArrayAttr>(BufferizationDialect::kEscapeAttrName);
return !llvm::cast<BoolAttr>(attr[opResult.getResultNumber()]).getValue();
}
/// Create an AllocTensorOp for the given shaped value. If `copy` is set, the
/// shaped value is copied. Otherwise, a tensor with undefined contents is
/// allocated.
FailureOr<Value> bufferization::allocateTensorForShapedValue(
OpBuilder &b, Location loc, Value shapedValue, bool escape,
const BufferizationOptions &options, bool copy) {
Value tensor;
if (llvm::isa<RankedTensorType>(shapedValue.getType())) {
tensor = shapedValue;
} else if (llvm::isa<MemRefType>(shapedValue.getType())) {
tensor = b.create<ToTensorOp>(loc, shapedValue);
} else if (llvm::isa<UnrankedTensorType>(shapedValue.getType()) ||
llvm::isa<UnrankedMemRefType>(shapedValue.getType())) {
return getOwnerOfValue(shapedValue)
->emitError("copying of unranked tensors is not implemented");
} else {
llvm_unreachable("expected RankedTensorType or MemRefType");
}
RankedTensorType tensorType = llvm::cast<RankedTensorType>(tensor.getType());
SmallVector<Value> dynamicSizes;
if (!copy) {
// Compute the dynamic part of the shape.
// First try to query the shape via ReifyRankedShapedTypeOpInterface.
bool reifiedShapes = false;
if (llvm::isa<RankedTensorType>(shapedValue.getType()) &&
llvm::isa<OpResult>(shapedValue)) {
ReifiedRankedShapedTypeDims resultDims;
if (succeeded(
reifyResultShapes(b, shapedValue.getDefiningOp(), resultDims))) {
reifiedShapes = true;
auto &shape =
resultDims[llvm::cast<OpResult>(shapedValue).getResultNumber()];
for (const auto &dim : enumerate(tensorType.getShape()))
if (ShapedType::isDynamic(dim.value()))
dynamicSizes.push_back(shape[dim.index()].get<Value>());
}
}
// If the shape could not be reified, create DimOps.
if (!reifiedShapes)
populateDynamicDimSizes(b, loc, tensor, dynamicSizes);
}
// Create AllocTensorOp.
auto allocTensorOp = b.create<AllocTensorOp>(loc, tensorType, dynamicSizes,
copy ? tensor : Value());
allocTensorOp->setAttr(BufferizationDialect::kEscapeAttrName,
b.getBoolArrayAttr({escape}));
// Add 'memory_space' attribute. Not needed if 'copy' operand is specified.
if (copy)
return allocTensorOp.getResult();
FailureOr<BaseMemRefType> copyBufferType = getBufferType(tensor, options);
if (failed(copyBufferType))
return failure();
Attribute memorySpace = copyBufferType->getMemorySpace();
if (!memorySpace)
memorySpace = b.getI64IntegerAttr(0);
allocTensorOp.setMemorySpaceAttr(memorySpace);
return allocTensorOp.getResult();
}
LogicalResult BufferizableOpInterface::resolveTensorOpOperandConflicts(
RewriterBase &rewriter, const AnalysisState &state) {
OpBuilder::InsertionGuard g(rewriter);
Operation *op = getOperation();
SmallVector<OpOperand *> outOfPlaceOpOperands;
DenseSet<OpOperand *> copiedOpOperands;
DenseSet<OpOperand *> escapingOpOperandCopies;
SmallVector<OpResult> outOfPlaceOpResults;
DenseSet<OpResult> copiedOpResults;
DenseSet<OpResult> escapingOpResultCopies;
// Find all out-of-place OpOperands.
for (OpOperand &opOperand : op->getOpOperands()) {
Type operandType = opOperand.get().getType();
if (!llvm::isa<TensorType>(operandType))
continue;
if (state.isInPlace(opOperand))
continue;
if (llvm::isa<UnrankedTensorType>(operandType))
return op->emitError("copying of unranked tensors is not implemented");
AliasingOpResultList aliasingOpResults =
state.getAliasingOpResults(opOperand);
// Is the result yielded from a block? Or are deallocations turned off
// entirely? In either case, mark the allocation as "escaping", so that it
// will not be deallocated.
bool escape = !state.getOptions().createDeallocs ||
llvm::any_of(aliasingOpResults, [&](AliasingOpResult a) {
return state.isTensorYielded(a.opResult);
});
if (aliasingOpResults.getNumAliases() == 1 &&
!state.bufferizesToMemoryWrite(opOperand) &&
state.getAliasingOpOperands(aliasingOpResults.getAliases()[0].opResult)
.getNumAliases() == 1 &&
!llvm::isa<UnrankedTensorType>(
aliasingOpResults.getAliases()[0].opResult.getType())) {
// The op itself does not write but may create exactly one alias. Instead
// of copying the OpOperand, copy the OpResult. The OpResult can sometimes
// be smaller than the OpOperand (e.g., in the case of an extract_slice,
// where the result is usually a smaller part of the source). Do not apply
// this optimization if the OpResult is an unranked tensor (because those
// cannot be copied at the moment).
OpResult opResult = aliasingOpResults.getAliases()[0].opResult;
outOfPlaceOpResults.push_back(opResult);
if (!state.canOmitTensorCopy(opOperand))
copiedOpResults.insert(opResult);
if (escape)
escapingOpResultCopies.insert(opResult);
} else {
// In all other cases, make a copy of the OpOperand.
outOfPlaceOpOperands.push_back(&opOperand);
if (!state.canOmitTensorCopy(opOperand))
copiedOpOperands.insert(&opOperand);
if (escape)
escapingOpOperandCopies.insert(&opOperand);
}
}
// Insert copies of OpOperands.
rewriter.setInsertionPoint(op);
for (OpOperand *opOperand : outOfPlaceOpOperands) {
FailureOr<Value> copy = allocateTensorForShapedValue(
rewriter, op->getLoc(), opOperand->get(),
escapingOpOperandCopies.contains(opOperand), state.getOptions(),
copiedOpOperands.contains(opOperand));
if (failed(copy))
return failure();
rewriter.updateRootInPlace(op, [&]() { opOperand->set(*copy); });
}
// Insert copies of OpResults.
rewriter.setInsertionPointAfter(op);
for (OpResult opResult : outOfPlaceOpResults) {
FailureOr<Value> copy = allocateTensorForShapedValue(
rewriter, op->getLoc(), opResult,
escapingOpResultCopies.contains(opResult), state.getOptions(),
copiedOpResults.count(opResult));
if (failed(copy))
return failure();
SmallVector<OpOperand *> uses = llvm::to_vector(llvm::map_range(
opResult.getUses(), [](OpOperand &use) { return &use; }));
for (OpOperand *use : uses) {
// Do not update the alloc_tensor op that we just created.
if (use->getOwner() == copy->getDefiningOp())
continue;
// tensor.dim ops may have been created to be used as alloc_tensor op
// dynamic extents. Do not update these either.
if (isa<tensor::DimOp>(use->getOwner()))
continue;
rewriter.updateRootInPlace(use->getOwner(), [&]() { use->set(*copy); });
}
}
return success();
}
bool bufferization::shouldDeallocateOpResult(
OpResult opResult, const BufferizationOptions &options) {
Operation *op = opResult.getOwner();
assert(options.dynCastBufferizableOp(op).bufferizesToAllocation(opResult) &&
"expected that op allocates");
AnalysisState analysisState(options);
if (op->hasAttr(BufferizationDialect::kEscapeAttrName)) {
// AllocTensorOp has one result.
ArrayAttr escapeAttr = llvm::cast<ArrayAttr>(
op->getAttr(BufferizationDialect::kEscapeAttrName));
return !llvm::cast<BoolAttr>(escapeAttr[0]).getValue();
}
// No "escape" annotation found.
if (options.createDeallocs) {
// Perform an ad-hoc analysis.
return !analysisState.isTensorYielded(opResult);
}
return false;
}
//===----------------------------------------------------------------------===//
// OpFilter
//===----------------------------------------------------------------------===//
bool OpFilter::isOpAllowed(Operation *op) const {
// All other ops: Allow/disallow according to filter.
bool isAllowed = !hasAllowRule();
for (const Entry &entry : entries) {
bool filterResult = entry.fn(op);
switch (entry.type) {
case Entry::ALLOW:
isAllowed |= filterResult;
break;
case Entry::DENY:
if (filterResult)
// DENY filter matches. This op is no allowed. (Even if other ALLOW
// filters may match.)
return false;
};
}
return isAllowed;
}
//===----------------------------------------------------------------------===//
// BufferizationOptions
//===----------------------------------------------------------------------===//
namespace {
/// Default function arg type converter: Use a fully dynamic layout map.
BaseMemRefType
defaultFunctionArgTypeConverter(TensorType type, Attribute memorySpace,
func::FuncOp funcOp,
const BufferizationOptions &options) {
return getMemRefTypeWithFullyDynamicLayout(type, memorySpace);
}
/// Default unknown type converter: Use a fully dynamic layout map.
BaseMemRefType
defaultUnknownTypeConverter(Value value, Attribute memorySpace,
const BufferizationOptions &options) {
return getMemRefTypeWithFullyDynamicLayout(
llvm::cast<TensorType>(value.getType()), memorySpace);
}
} // namespace
// Default constructor for BufferizationOptions.
BufferizationOptions::BufferizationOptions()
: functionArgTypeConverterFn(defaultFunctionArgTypeConverter),
unknownTypeConverterFn(defaultUnknownTypeConverter) {}
bool BufferizationOptions::isOpAllowed(Operation *op) const {
// Special case: If function boundary bufferization is deactivated, do not
// allow ops that belong to the `func` dialect.
bool isFuncBoundaryOp = isa_and_nonnull<func::FuncDialect>(op->getDialect());
if (!bufferizeFunctionBoundaries && isFuncBoundaryOp)
return false;
return opFilter.isOpAllowed(op);
}
BufferizableOpInterface
BufferizationOptions::dynCastBufferizableOp(Operation *op) const {
auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op);
if (!bufferizableOp)
return nullptr;
if (!isOpAllowed(op))
return nullptr;
return bufferizableOp;
}
BufferizableOpInterface
BufferizationOptions::dynCastBufferizableOp(Value value) const {
return dynCastBufferizableOp(getOwnerOfValue(value));
}
void BufferizationOptions::setFunctionBoundaryTypeConversion(
LayoutMapOption layoutMapOption) {
functionArgTypeConverterFn = [=](TensorType tensorType, Attribute memorySpace,
func::FuncOp funcOp,
const BufferizationOptions &options) {
if (layoutMapOption == LayoutMapOption::IdentityLayoutMap)
return bufferization::getMemRefTypeWithStaticIdentityLayout(tensorType,
memorySpace);
return bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType,
memorySpace);
};
inferFunctionResultLayout =
layoutMapOption == LayoutMapOption::InferLayoutMap;
}
//===----------------------------------------------------------------------===//
// Helper functions for BufferizableOpInterface
//===----------------------------------------------------------------------===//
static void setInsertionPointAfter(OpBuilder &b, Value value) {
if (auto bbArg = llvm::dyn_cast<BlockArgument>(value)) {
b.setInsertionPointToStart(bbArg.getOwner());
} else {
b.setInsertionPointAfter(value.getDefiningOp());
}
}
/// Determine which OpOperand* will alias with `opResult` if the op is
/// bufferized in place. Return all tensor OpOperand* if the op is not
/// bufferizable.
AliasingOpOperandList
AnalysisState::getAliasingOpOperands(OpResult opResult) const {
if (Operation *op = opResult.getDefiningOp())
if (auto bufferizableOp = getOptions().dynCastBufferizableOp(op))
return bufferizableOp.getAliasingOpOperands(opResult, *this);
// The op is not bufferizable.
return detail::unknownGetAliasingOpOperands(opResult);
}
/// Determine which OpResult will alias with `opOperand` if the op is bufferized
/// in place. Return all tensor OpResults if the op is not bufferizable.
AliasingOpResultList
AnalysisState::getAliasingOpResults(OpOperand &opOperand) const {
if (auto bufferizableOp =
getOptions().dynCastBufferizableOp(opOperand.getOwner()))
return bufferizableOp.getAliasingOpResults(opOperand, *this);
// The op is not bufferizable.
return detail::unknownGetAliasingOpResults(opOperand);
}
/// Return true if `opOperand` bufferizes to a memory read. Return `true` if the
/// op is not bufferizable.
bool AnalysisState::bufferizesToMemoryRead(OpOperand &opOperand) const {
if (auto bufferizableOp =
getOptions().dynCastBufferizableOp(opOperand.getOwner()))
return bufferizableOp.bufferizesToMemoryRead(opOperand, *this);
// Unknown op that returns a tensor. The inplace analysis does not support it.
// Conservatively return true.
return true;
}
/// Return true if `opOperand` bufferizes to a memory write. Return
/// `true` if the op is not bufferizable.
bool AnalysisState::bufferizesToMemoryWrite(OpOperand &opOperand) const {
if (auto bufferizableOp =
getOptions().dynCastBufferizableOp(opOperand.getOwner()))
return bufferizableOp.bufferizesToMemoryWrite(opOperand, *this);
// Unknown op that returns a tensor. The inplace analysis does not support it.
// Conservatively return true.
return true;
}
/// Return true if `opOperand` does neither read nor write but bufferizes to an
/// alias. Return false if the op is not bufferizable.
bool AnalysisState::bufferizesToAliasOnly(OpOperand &opOperand) const {
if (auto bufferizableOp =
getOptions().dynCastBufferizableOp(opOperand.getOwner()))
return bufferizableOp.bufferizesToAliasOnly(opOperand, *this);
// Unknown op that returns a tensor. The inplace analysis does not support it.
// Conservatively return false.
return false;
}
bool AnalysisState::bufferizesToMemoryWrite(Value value) const {
auto opResult = llvm::dyn_cast<OpResult>(value);
if (!opResult)
return true;
auto bufferizableOp = getOptions().dynCastBufferizableOp(value);
if (!bufferizableOp)
return true;
return bufferizableOp.resultBufferizesToMemoryWrite(opResult, *this);
}
/// Return true if the given value is read by an op that bufferizes to a memory
/// read. Also takes into account ops that create an alias but do not read by
/// themselves (e.g., ExtractSliceOp).
bool AnalysisState::isValueRead(Value value) const {
assert(llvm::isa<TensorType>(value.getType()) && "expected TensorType");
SmallVector<OpOperand *> workingSet;
for (OpOperand &use : value.getUses())
workingSet.push_back(&use);
while (!workingSet.empty()) {
OpOperand *uMaybeReading = workingSet.pop_back_val();
// Skip over all ops that neither read nor write (but create an alias).
if (bufferizesToAliasOnly(*uMaybeReading))
for (AliasingOpResult alias : getAliasingOpResults(*uMaybeReading))
for (OpOperand &use : alias.opResult.getUses())
workingSet.push_back(&use);
if (bufferizesToMemoryRead(*uMaybeReading))
return true;
}
return false;
}
// Starting from `value`, follow the use-def chain in reverse, always selecting
// the aliasing OpOperands. Find and return Values for which `condition`
// evaluates to true. OpOperands of such matching Values are not traversed any
// further.
llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain(
Value value, llvm::function_ref<bool(Value)> condition,
TraversalConfig config) const {
llvm::SetVector<Value> result, workingSet;
workingSet.insert(value);
while (!workingSet.empty()) {
Value value = workingSet.pop_back_val();
if (condition(value)) {
result.insert(value);
continue;
}
if (llvm::isa<BlockArgument>(value)) {
if (config.alwaysIncludeLeaves)
result.insert(value);
continue;
}
OpResult opResult = llvm::cast<OpResult>(value);
BufferizableOpInterface bufferizableOp =
options.dynCastBufferizableOp(opResult.getDefiningOp());
if (!config.followUnknownOps && !bufferizableOp) {
// Stop iterating if `followUnknownOps` is unset and the op is either
// not bufferizable or excluded in the OpFilter.
if (config.alwaysIncludeLeaves)
result.insert(value);
continue;
}
AliasingOpOperandList aliases = getAliasingOpOperands(opResult);
if (aliases.getNumAliases() == 0) {
// The traversal ends naturally if there are no more OpOperands that
// could be followed.
if (config.alwaysIncludeLeaves)
result.insert(value);
continue;
}
for (AliasingOpOperand a : aliases) {
if (config.followEquivalentOnly &&
a.relation != BufferRelation::Equivalent) {
// Stop iterating if `followEquivalentOnly` is set but the alias is not
// equivalent.
if (config.alwaysIncludeLeaves)
result.insert(value);
continue;
}
if (config.followInPlaceOnly && !isInPlace(*a.opOperand)) {
// Stop iterating if `followInPlaceOnly` is set but the alias is
// out-of-place.
if (config.alwaysIncludeLeaves)
result.insert(value);
continue;
}
workingSet.insert(a.opOperand->get());
}
}
return result;
}
// Find the values that define the contents of the given value.
llvm::SetVector<Value> AnalysisState::findDefinitions(Value value) const {
TraversalConfig config;
config.alwaysIncludeLeaves = false;
return findValueInReverseUseDefChain(
value, [&](Value v) { return this->bufferizesToMemoryWrite(v); }, config);
}
AnalysisState::AnalysisState(const BufferizationOptions &options)
: AnalysisState(options, TypeID::get<AnalysisState>()) {}
AnalysisState::AnalysisState(const BufferizationOptions &options, TypeID type)
: options(options), type(type) {
for (const BufferizationOptions::AnalysisStateInitFn &fn :
options.stateInitializers)
fn(*this);
}
bool AnalysisState::canOmitTensorCopy(OpOperand &opOperand) const {
// Do not copy if the tensor has undefined contents.
if (hasUndefinedContents(&opOperand))
return true;
// Do not copy if the buffer of the tensor is entirely overwritten (with
// values that do not depend on the old tensor).
if (bufferizesToMemoryWrite(opOperand) && !bufferizesToMemoryRead(opOperand))
return true;
// Do not copy if the tensor is never read.
AliasingOpResultList aliases = getAliasingOpResults(opOperand);
if (!bufferizesToMemoryRead(opOperand) &&
llvm::none_of(
aliases, [&](AliasingOpResult a) { return isValueRead(a.opResult); }))
return true;
// Default: Cannot omit the copy.
return false;
}
bool AnalysisState::isInPlace(OpOperand &opOperand) const {
// ToMemrefOps are always in-place.
if (isa<ToMemrefOp>(opOperand.getOwner()))
return true;
// In the absence of analysis information, OpOperands that bufferize to a
// memory write are out-of-place, i.e., an alloc and copy is inserted.
return !bufferizesToMemoryWrite(opOperand);
}
bool AnalysisState::areEquivalentBufferizedValues(Value v1, Value v2) const {
// In the absence of analysis information, we do not know if the values are
// equivalent. The conservative answer is "false".
return false;
}
bool AnalysisState::areAliasingBufferizedValues(Value v1, Value v2) const {
// In the absence of analysis information, we do not know if the values may be
// aliasing. The conservative answer is "true".
return true;
}
bool AnalysisState::hasUndefinedContents(OpOperand *opOperand) const {
// In the absence of analysis information, the conservative answer is "false".
return false;
}
bool AnalysisState::isTensorYielded(Value tensor) const {
// In the absence of analysis information, the conservative answer is "true".
if (!tensor.getDefiningOp<AllocTensorOp>())
return true;
// For AllocTensorOp results, we can do better: They do not alias with any
// preceding value, so we can follow SSA use-def chains and do a simple
// analysis.
SmallVector<OpOperand *> worklist;
for (OpOperand &use : tensor.getUses())
worklist.push_back(&use);
while (!worklist.empty()) {
OpOperand *operand = worklist.pop_back_val();
Operation *op = operand->getOwner();
// If the op is not bufferizable, we can safely assume that the value is not
// yielded. (When bufferizing that op, it must handle such cases.)
if (!options.dynCastBufferizableOp(op))
continue;
// We cannot analyze through ToMemrefOps, so we have to conservatively
// assume that the value is yielded.
if (isa<ToMemrefOp>(op))
return true;
// Check if the op is returning/yielding.
if (isRegionReturnLike(op))
return true;
// Add all aliasing OpResults to the worklist.
// Note: In the absence of detailed analysis information (e.g., there may be
// no function call analysis information), this `getAliasingOpResult` is
// conservative and may report additional OpResults as potentially aliasing.
for (AliasingOpResult alias : getAliasingOpResults(*operand))
for (OpOperand &use : alias.opResult.getUses())
worklist.push_back(&use);
}
// No ReturnLike op found: The value is not yielded.
return false;
}
// bufferization.to_memref is not allowed to change the rank.
static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) {
#ifndef NDEBUG
auto rankedTensorType = llvm::dyn_cast<RankedTensorType>(tensor.getType());
assert((!rankedTensorType || llvm::cast<MemRefType>(memrefType).getRank() ==
rankedTensorType.getRank()) &&
"to_memref would be invalid: mismatching ranks");
#endif
}
FailureOr<Value> bufferization::getBuffer(RewriterBase &rewriter, Value value,
const BufferizationOptions &options) {
#ifndef NDEBUG
auto tensorType = llvm::dyn_cast<TensorType>(value.getType());
assert(tensorType && "unexpected non-tensor type");
#endif // NDEBUG
// Replace "%t = to_tensor %m" with %m.
if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>())
return toTensorOp.getMemref();
// Insert to_memref op.
OpBuilder::InsertionGuard g(rewriter);
setInsertionPointAfter(rewriter, value);
FailureOr<BaseMemRefType> memrefType = getBufferType(value, options);
if (failed(memrefType))
return failure();
ensureToMemrefOpIsValid(value, *memrefType);
return rewriter
.create<bufferization::ToMemrefOp>(value.getLoc(), *memrefType, value)
.getResult();
}
/// Return the buffer type for a given Value (tensor) after bufferization.
FailureOr<BaseMemRefType>
bufferization::getBufferType(Value value, const BufferizationOptions &options) {
DenseMap<Value, BaseMemRefType> fixedTypes;
return getBufferType(value, options, fixedTypes);
}
/// Return the buffer type for a given Value (tensor) after bufferization.
FailureOr<BaseMemRefType> bufferization::getBufferType(
Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) {
assert(llvm::isa<TensorType>(value.getType()) &&
"unexpected non-tensor type");
// If the `value` is in `fixedTypes`, return the mapped type.
const auto &it = fixedTypes.find(value);
if (it != fixedTypes.end())
return it->second;
// Try querying BufferizableOpInterface.
Operation *op = getOwnerOfValue(value);
auto bufferizableOp = options.dynCastBufferizableOp(op);
if (bufferizableOp)
return bufferizableOp.getBufferType(value, options, fixedTypes);
// Op is not bufferizable.
if (!options.defaultMemorySpace.has_value())
return op->emitError("could not infer memory space");
return getMemRefType(value, options, /*layout=*/{},
*options.defaultMemorySpace);
}
void bufferization::replaceOpWithBufferizedValues(RewriterBase &rewriter,
Operation *op,
ValueRange values) {
assert(values.size() == op->getNumResults() &&
"expected one value per OpResult");
OpBuilder::InsertionGuard g(rewriter);
// Replace all OpResults with the given values.
SmallVector<Value> replacements;
for (OpResult opResult : op->getOpResults()) {
Value replacement = values[opResult.getResultNumber()];
if (llvm::isa<TensorType>(opResult.getType())) {
// The OpResult is a tensor. Such values are replaced with memrefs during
// bufferization.
assert((llvm::isa<MemRefType>(replacement.getType()) ||
llvm::isa<UnrankedMemRefType>(replacement.getType())) &&
"tensor op result should be replaced with a memref value");
// The existing uses of the OpResult still expect a tensor. Insert a
// ToTensorOp. Throughout bufferization, this ToTensorOp will gradually
// loose all of its users and eventually DCE away.
rewriter.setInsertionPointAfter(op);
replacement = rewriter.create<bufferization::ToTensorOp>(
replacement.getLoc(), replacement);
}
replacements.push_back(replacement);
}
rewriter.replaceOp(op, replacements);
}
//===----------------------------------------------------------------------===//
// Bufferization-specific scoped alloc/dealloc insertion support.
//===----------------------------------------------------------------------===//
/// Create a memref allocation with the given type and dynamic extents.
FailureOr<Value> BufferizationOptions::createAlloc(OpBuilder &b, Location loc,
MemRefType type,
ValueRange dynShape) const {
if (allocationFn)
return (*allocationFn)(b, loc, type, dynShape, bufferAlignment);
// Default bufferallocation via AllocOp.
if (bufferAlignment != 0)
return b
.create<memref::AllocOp>(loc, type, dynShape,
b.getI64IntegerAttr(bufferAlignment))
.getResult();
return b.create<memref::AllocOp>(loc, type, dynShape).getResult();
}
/// Creates a memref deallocation. The given memref buffer must have been
/// allocated using `createAlloc`.
LogicalResult BufferizationOptions::createDealloc(OpBuilder &b, Location loc,
Value allocatedBuffer) const {
if (deallocationFn)
return (*deallocationFn)(b, loc, allocatedBuffer);
// Default buffer deallocation via DeallocOp.
b.create<memref::DeallocOp>(loc, allocatedBuffer);
return success();
}
/// Create a memory copy between two memref buffers.
LogicalResult BufferizationOptions::createMemCpy(OpBuilder &b, Location loc,
Value from, Value to) const {
if (memCpyFn)
return (*memCpyFn)(b, loc, from, to);
b.create<memref::CopyOp>(loc, from, to);
return success();
}
//===----------------------------------------------------------------------===//
// Bufferization-specific IRMapping support with debugging.
//===----------------------------------------------------------------------===//
bool bufferization::isFunctionArgument(Value value) {
auto bbArg = llvm::dyn_cast<BlockArgument>(value);
if (!bbArg)
return false;
return isa<func::FuncOp>(bbArg.getOwner()->getParentOp());
}
BaseMemRefType bufferization::getMemRefType(Value value,
const BufferizationOptions &options,
MemRefLayoutAttrInterface layout,
Attribute memorySpace) {
auto tensorType = llvm::cast<TensorType>(value.getType());
// Case 1: Unranked memref type.
if (auto unrankedTensorType =
llvm::dyn_cast<UnrankedTensorType>(tensorType)) {
assert(!layout && "UnrankedTensorType cannot have a layout map");
return UnrankedMemRefType::get(unrankedTensorType.getElementType(),
memorySpace);
}
// Case 2: Ranked memref type with specified layout.
auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType);
if (layout) {
return MemRefType::get(rankedTensorType.getShape(),
rankedTensorType.getElementType(), layout,
memorySpace);
}
return options.unknownTypeConverterFn(value, memorySpace, options);
}
BaseMemRefType
bufferization::getMemRefTypeWithFullyDynamicLayout(TensorType tensorType,
Attribute memorySpace) {
// Case 1: Unranked memref type.
if (auto unrankedTensorType =
llvm::dyn_cast<UnrankedTensorType>(tensorType)) {
return UnrankedMemRefType::get(unrankedTensorType.getElementType(),
memorySpace);
}
// Case 2: Ranked memref type.
auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType);
int64_t dynamicOffset = ShapedType::kDynamic;
SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(),
ShapedType::kDynamic);
auto stridedLayout = StridedLayoutAttr::get(tensorType.getContext(),
dynamicOffset, dynamicStrides);
return MemRefType::get(rankedTensorType.getShape(),
rankedTensorType.getElementType(), stridedLayout,
memorySpace);
}
/// Return a MemRef type with a static identity layout (i.e., no layout map). If
/// the given tensor type is unranked, return an unranked MemRef type.
BaseMemRefType
bufferization::getMemRefTypeWithStaticIdentityLayout(TensorType tensorType,
Attribute memorySpace) {
// Case 1: Unranked memref type.
if (auto unrankedTensorType =
llvm::dyn_cast<UnrankedTensorType>(tensorType)) {
return UnrankedMemRefType::get(unrankedTensorType.getElementType(),
memorySpace);
}
// Case 2: Ranked memref type.
auto rankedTensorType = llvm::cast<RankedTensorType>(tensorType);
MemRefLayoutAttrInterface layout = {};
return MemRefType::get(rankedTensorType.getShape(),
rankedTensorType.getElementType(), layout,
memorySpace);
}
//===----------------------------------------------------------------------===//
// Default implementations of interface methods
//===----------------------------------------------------------------------===//
bool bufferization::detail::defaultResultBufferizesToMemoryWrite(
OpResult opResult, const AnalysisState &state) {
auto bufferizableOp = cast<BufferizableOpInterface>(opResult.getDefiningOp());
AliasingOpOperandList opOperands =
bufferizableOp.getAliasingOpOperands(opResult, state);
// Case 1: OpResults that have no aliasing OpOperand usually bufferize to
// memory writes.
if (opOperands.getAliases().empty())
return true;
// Case 2: If an aliasing OpOperand bufferizes to a memory write, the OpResult
// may bufferize to a memory write.
if (llvm::any_of(opOperands, [&](AliasingOpOperand alias) {
return state.bufferizesToMemoryWrite(*alias.opOperand);
}))
return true;
// Case 3: Check if a nested aliasing OpOperand value bufferizes to a memory
// write. (Or: The reverse SSA use-def chain ends inside the reigon.) In that
// case, the OpResult bufferizes to a memory write. E.g.:
//
// %0 = "some_writing_op" : tensor<?xf32>
// %r = scf.if ... -> tensor<?xf32> {
// scf.yield %0 : tensor<?xf32>
// } else {
// %1 = "another_writing_op"(%0) : tensor<?xf32>
// scf.yield %1 : tensor<?xf32>
// }
// "some_reading_op"(%r)
//
// %r bufferizes to a memory write because an aliasing OpOperand value (%1)
// bufferizes to a memory write and the defining op is inside the scf.if.
//
// Note: This treatment of surrouding ops is useful for ops that have a
// region but no OpOperand such as scf.if or scf.execute_region. It simplifies
// the analysis considerably.
//
// "another_writing_op" in the above example should be able to bufferize
// inplace in the absence of another read of %0. However, if the scf.if op
// would not be considered a "write", the analysis would detect the
// following conflict:
//
// * read = some_reading_op
// * lastWrite = %0 (Note: The last write of %r would be a set: {%0, %1}.)
// * conflictingWrite = %1
//
auto isMemoryWriteInsideOp = [&](Value v) {
Operation *op = getOwnerOfValue(v);
if (!opResult.getDefiningOp()->isAncestor(op))
return false;
return state.bufferizesToMemoryWrite(v);
};
TraversalConfig config;
config.alwaysIncludeLeaves = false;
for (AliasingOpOperand alias : opOperands) {
if (!state
.findValueInReverseUseDefChain(alias.opOperand->get(),
isMemoryWriteInsideOp, config)
.empty())
return true;
}
return false;
}
// Compute the AliasingOpOperandList for a given OpResult based on
// getAliasingOpResults.
AliasingOpOperandList bufferization::detail::defaultGetAliasingOpOperands(
OpResult opResult, const AnalysisState &state) {
Operation *op = opResult.getDefiningOp();
SmallVector<AliasingOpOperand> result;
for (OpOperand &opOperand : op->getOpOperands()) {
if (!llvm::isa<TensorType>(opOperand.get().getType()))
continue;
AliasingOpResultList aliasingOpResults =
state.getAliasingOpResults(opOperand);
for (const auto &it : aliasingOpResults)
if (it.opResult == opResult)
result.emplace_back(&opOperand, it.relation, it.isDefinite);
}
return AliasingOpOperandList(std::move(result));
}
FailureOr<BaseMemRefType> bufferization::detail::defaultGetBufferType(
Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) {
assert(llvm::isa<TensorType>(value.getType()) && "expected tensor type");
// No further analysis is possible for a block argument.
if (llvm::isa<BlockArgument>(value))
return bufferization::getMemRefType(value, options);
// Value is an OpResult.
Operation *op = getOwnerOfValue(value);
auto opResult = llvm::cast<OpResult>(value);
AnalysisState state(options);
AliasingOpOperandList aliases = state.getAliasingOpOperands(opResult);
if (aliases.getNumAliases() > 0 &&
aliases.getAliases()[0].relation == BufferRelation::Equivalent) {
// If the OpResult has an equivalent OpOperand, both OpResult and
// OpOperand bufferize to the exact same buffer type.
Value equivalentOperand = aliases.getAliases().front().opOperand->get();
return getBufferType(equivalentOperand, options, fixedTypes);
}
// If we do not know the memory space and there is no default memory space,
// report a failure.
if (!options.defaultMemorySpace.has_value())
return op->emitError("could not infer memory space");
return getMemRefType(value, options, /*layout=*/{},
*options.defaultMemorySpace);
}
bool bufferization::detail::defaultIsRepetitiveRegion(
BufferizableOpInterface bufferizableOp, unsigned index) {
assert(index < bufferizableOp->getNumRegions() && "invalid region index");
auto regionInterface =
dyn_cast<RegionBranchOpInterface>(bufferizableOp.getOperation());
if (!regionInterface)
return false;
return regionInterface.isRepetitiveRegion(index);
}
AliasingOpOperandList
bufferization::detail::unknownGetAliasingOpOperands(OpResult opResult) {
// Conservatively assume that everything may be aliasing.
AliasingOpOperandList r;
for (OpOperand &operand : opResult.getDefiningOp()->getOpOperands())
if (llvm::isa<TensorType>(operand.get().getType()))
r.addAlias({&operand, BufferRelation::Unknown, /*isDefinite=*/false});
return r;
}
AliasingOpResultList
bufferization::detail::unknownGetAliasingOpResults(OpOperand &opOperand) {
// Conservatively assume that everything may be aliasing.
AliasingOpResultList r;
for (OpResult result : opOperand.getOwner()->getOpResults())
if (llvm::isa<TensorType>(result.getType()))
r.addAlias({result, BufferRelation::Unknown, /*isDefinite=*/false});
return r;
}
|