1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include <optional>
using namespace mlir;
using namespace mlir::bufferization;
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
FailureOr<Value>
mlir::bufferization::castOrReallocMemRefValue(OpBuilder &b, Value value,
MemRefType destType) {
auto srcType = llvm::cast<MemRefType>(value.getType());
// Element type, rank and memory space must match.
if (srcType.getElementType() != destType.getElementType())
return failure();
if (srcType.getMemorySpace() != destType.getMemorySpace())
return failure();
if (srcType.getRank() != destType.getRank())
return failure();
// In case the affine maps are different, we may need to use a copy if we go
// from dynamic to static offset or stride (the canonicalization cannot know
// at this point that it is really cast compatible).
auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) {
int64_t sourceOffset, targetOffset;
SmallVector<int64_t, 4> sourceStrides, targetStrides;
if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) ||
failed(getStridesAndOffset(target, targetStrides, targetOffset)))
return false;
auto dynamicToStatic = [](int64_t a, int64_t b) {
return ShapedType::isDynamic(a) && !ShapedType::isDynamic(b);
};
if (dynamicToStatic(sourceOffset, targetOffset))
return false;
for (auto it : zip(sourceStrides, targetStrides))
if (dynamicToStatic(std::get<0>(it), std::get<1>(it)))
return false;
return true;
};
// Note: If `areCastCompatible`, a cast is valid, but may fail at runtime. To
// ensure that we only generate casts that always succeed at runtime, we check
// a fix extra conditions in `isGuaranteedCastCompatible`.
if (memref::CastOp::areCastCompatible(srcType, destType) &&
isGuaranteedCastCompatible(srcType, destType)) {
Value casted = b.create<memref::CastOp>(value.getLoc(), destType, value);
return casted;
}
auto loc = value.getLoc();
SmallVector<Value, 4> dynamicOperands;
for (int i = 0; i < destType.getRank(); ++i) {
if (destType.getShape()[i] != ShapedType::kDynamic)
continue;
Value size = b.create<memref::DimOp>(loc, value, i);
dynamicOperands.push_back(size);
}
// TODO: Use alloc/memcpy callback from BufferizationOptions if called via
// BufferizableOpInterface impl of ToMemrefOp.
Value copy = b.create<memref::AllocOp>(loc, destType, dynamicOperands);
b.create<memref::CopyOp>(loc, value, copy);
return copy;
}
/// Try to fold to_memref(to_tensor(x)). If x's type and the result type of the
/// to_memref op are different, a memref.cast is needed.
LogicalResult
mlir::bufferization::foldToMemrefToTensorPair(RewriterBase &rewriter,
ToMemrefOp toMemref) {
auto memrefToTensor = toMemref.getTensor().getDefiningOp<ToTensorOp>();
if (!memrefToTensor)
return failure();
Type srcType = memrefToTensor.getMemref().getType();
Type destType = toMemref.getType();
// Directly rewrite if the type did not change.
if (srcType == destType) {
rewriter.replaceOp(toMemref, memrefToTensor.getMemref());
return success();
}
auto rankedSrcType = llvm::dyn_cast<MemRefType>(srcType);
auto rankedDestType = llvm::dyn_cast<MemRefType>(destType);
auto unrankedSrcType = llvm::dyn_cast<UnrankedMemRefType>(srcType);
// Ranked memref -> Ranked memref cast.
if (rankedSrcType && rankedDestType) {
FailureOr<Value> replacement = castOrReallocMemRefValue(
rewriter, memrefToTensor.getMemref(), rankedDestType);
if (failed(replacement))
return failure();
rewriter.replaceOp(toMemref, *replacement);
return success();
}
// Unranked memref -> Ranked memref cast: May require a copy.
// TODO: Not implemented at the moment.
if (unrankedSrcType && rankedDestType)
return failure();
// Unranked memref -> unranked memref cast
// Ranked memref -> unranked memref cast: No copy needed.
assert(memref::CastOp::areCastCompatible(srcType, destType) &&
"expected that types are cast compatible");
rewriter.replaceOpWithNewOp<memref::CastOp>(toMemref, destType,
memrefToTensor.getMemref());
return success();
}
void mlir::bufferization::populateDynamicDimSizes(
OpBuilder &b, Location loc, Value shapedValue,
SmallVector<Value> &dynamicDims) {
auto shapedType = llvm::cast<ShapedType>(shapedValue.getType());
for (int64_t i = 0; i < shapedType.getRank(); ++i) {
if (shapedType.isDynamicDim(i)) {
if (llvm::isa<MemRefType>(shapedType)) {
dynamicDims.push_back(b.create<memref::DimOp>(loc, shapedValue, i));
} else {
assert(llvm::isa<RankedTensorType>(shapedType) && "expected tensor");
dynamicDims.push_back(b.create<tensor::DimOp>(loc, shapedValue, i));
}
}
}
}
//===----------------------------------------------------------------------===//
// AllocTensorOp
//===----------------------------------------------------------------------===//
LogicalResult AllocTensorOp::bufferize(RewriterBase &rewriter,
const BufferizationOptions &options) {
OpBuilder::InsertionGuard g(rewriter);
Location loc = getLoc();
// Nothing to do for dead AllocTensorOps.
if (getOperation()->getUses().empty()) {
rewriter.eraseOp(getOperation());
return success();
}
// Get "copy" buffer.
Value copyBuffer;
if (getCopy()) {
FailureOr<Value> maybeCopyBuffer = getBuffer(rewriter, getCopy(), options);
if (failed(maybeCopyBuffer))
return failure();
copyBuffer = *maybeCopyBuffer;
}
// Create memory allocation.
auto allocType = bufferization::getBufferType(getResult(), options);
if (failed(allocType))
return failure();
SmallVector<Value> dynamicDims = getDynamicSizes();
if (getCopy()) {
assert(dynamicDims.empty() && "expected either `copy` or `dynamicDims`");
populateDynamicDimSizes(rewriter, loc, copyBuffer, dynamicDims);
}
FailureOr<Value> alloc = options.createAlloc(
rewriter, loc, llvm::cast<MemRefType>(*allocType), dynamicDims);
if (failed(alloc))
return failure();
// Create memory copy (if any).
if (getCopy()) {
if (failed(options.createMemCpy(rewriter, loc, copyBuffer, *alloc)))
return failure();
}
// Should the buffer be deallocated?
bool dealloc =
shouldDeallocateOpResult(llvm::cast<OpResult>(getResult()), options);
// Replace op.
replaceOpWithBufferizedValues(rewriter, getOperation(), *alloc);
// Create buffer deallocation (if requested).
if (!dealloc)
return success();
rewriter.setInsertionPoint(rewriter.getInsertionBlock()->getTerminator());
if (failed(options.createDealloc(rewriter, loc, *alloc)))
return failure();
return success();
}
bool AllocTensorOp::resultBufferizesToMemoryWrite(OpResult opResult,
const AnalysisState &state) {
// AllocTensorOps do not write unless they have a `copy` value.
return static_cast<bool>(getCopy());
}
bool AllocTensorOp::bufferizesToMemoryRead(OpOperand &opOperand,
const AnalysisState &state) {
assert(opOperand.getOperandNumber() == getNumOperands() - 1 &&
"expected copy operand");
return true;
}
bool AllocTensorOp::bufferizesToMemoryWrite(OpOperand &opOperand,
const AnalysisState &state) {
assert(opOperand.getOperandNumber() == getNumOperands() - 1 &&
"expected copy operand");
return false;
}
AliasingOpResultList
AllocTensorOp::getAliasingOpResults(OpOperand &opOperand,
const AnalysisState &state) {
// This is a new allocation. It does not alias with any other buffer.
return {};
}
FailureOr<BaseMemRefType> AllocTensorOp::getBufferType(
Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) {
assert(value == getResult() && "invalid value");
// Compute memory space of this allocation.
Attribute memorySpace;
if (getMemorySpace().has_value()) {
memorySpace = *getMemorySpace();
} else if (getCopy()) {
auto copyBufferType =
bufferization::getBufferType(getCopy(), options, fixedTypes);
if (failed(copyBufferType))
return failure();
memorySpace = copyBufferType->getMemorySpace();
} else if (options.defaultMemorySpace.has_value()) {
memorySpace = *options.defaultMemorySpace;
} else {
return getOperation()->emitError("could not infer memory space");
}
return getMemRefTypeWithStaticIdentityLayout(getType(), memorySpace);
}
LogicalResult AllocTensorOp::verify() {
if (getCopy() && !getDynamicSizes().empty())
return emitError("dynamic sizes not needed when copying a tensor");
if (!getCopy() && getType().getNumDynamicDims() !=
static_cast<int64_t>(getDynamicSizes().size()))
return emitError("expected ")
<< getType().getNumDynamicDims() << " dynamic sizes";
if (getCopy() && getCopy().getType() != getType())
return emitError("expected that `copy` and return type match");
// For sparse tensor allocation, we require that none of its
// uses escapes the function boundary directly.
if (sparse_tensor::getSparseTensorEncoding(getType())) {
for (auto &use : getOperation()->getUses())
if (isa<func::ReturnOp, func::CallOp, func::CallIndirectOp>(
use.getOwner()))
return emitError("sparse tensor allocation should not escape function");
}
return success();
}
void AllocTensorOp::build(OpBuilder &builder, OperationState &result,
RankedTensorType type, ValueRange dynamicSizes) {
build(builder, result, type, dynamicSizes, /*copy=*/Value(),
/*size_hint=*/Value(),
/*memory_space=*/IntegerAttr());
}
void AllocTensorOp::build(OpBuilder &builder, OperationState &result,
RankedTensorType type, ValueRange dynamicSizes,
Value copy) {
build(builder, result, type, dynamicSizes, copy, /*size_hint=*/Value(),
/*memory_space=*/IntegerAttr());
}
void AllocTensorOp::build(OpBuilder &builder, OperationState &result,
TensorType type, ValueRange dynamicSizes, Value copy,
IntegerAttr memorySpace) {
build(builder, result, type, dynamicSizes, copy, /*size_hint=*/Value(),
memorySpace);
}
namespace {
/// Change the type of the result of a `bufferization.alloc_tensor` by making
/// the result type statically sized along dimension that in the original
/// operation where defined as dynamic, but the size was defined using a
/// `constant` op. For example:
///
/// %c5 = arith.constant 5: index
/// %0 = bufferization.alloc_tensor(%arg0, %c5) : tensor<?x?xf32>
///
/// to
///
/// %0 = bufferization.alloc_tensor(%arg0) : tensor<?x5xf32>
struct ReplaceStaticShapeDims : OpRewritePattern<AllocTensorOp> {
using OpRewritePattern<AllocTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AllocTensorOp op,
PatternRewriter &rewriter) const override {
if (op.getCopy())
return failure();
SmallVector<int64_t> newShape = llvm::to_vector(op.getType().getShape());
SmallVector<Value> newDynamicSizes;
unsigned int dynValCounter = 0;
for (int64_t i = 0; i < op.getType().getRank(); ++i) {
if (!op.isDynamicDim(i))
continue;
Value value = op.getDynamicSizes()[dynValCounter++];
APInt intVal;
if (matchPattern(value, m_ConstantInt(&intVal))) {
newShape[i] = intVal.getSExtValue();
} else {
newDynamicSizes.push_back(value);
}
}
RankedTensorType newType = RankedTensorType::get(
newShape, op.getType().getElementType(), op.getType().getEncoding());
if (newType == op.getType())
return failure();
auto newOp = rewriter.create<AllocTensorOp>(
op.getLoc(), newType, newDynamicSizes, /*copy=*/Value());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp);
return success();
}
};
struct FoldDimOfAllocTensorOp : public OpRewritePattern<tensor::DimOp> {
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
PatternRewriter &rewriter) const override {
std::optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex();
auto allocTensorOp = dimOp.getSource().getDefiningOp<AllocTensorOp>();
if (!allocTensorOp || !maybeConstantIndex)
return failure();
if (!allocTensorOp.getType().isDynamicDim(*maybeConstantIndex))
return failure();
rewriter.replaceOp(
dimOp, allocTensorOp.getDynamicSize(rewriter, *maybeConstantIndex));
return success();
}
};
} // namespace
void AllocTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *ctx) {
results.add<FoldDimOfAllocTensorOp, ReplaceStaticShapeDims>(ctx);
}
LogicalResult AllocTensorOp::reifyResultShapes(
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
auto shapes = llvm::to_vector<4>(
llvm::map_range(llvm::seq<int64_t>(0, getType().getRank()),
[&](int64_t dim) -> OpFoldResult {
if (isDynamicDim(dim))
return getDynamicSize(builder, dim);
return builder.getIndexAttr(getStaticSize(dim));
}));
reifiedReturnShapes.emplace_back(std::move(shapes));
return success();
}
ParseResult AllocTensorOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::UnresolvedOperand> dynamicSizesOperands;
if (parser.parseLParen() || parser.parseOperandList(dynamicSizesOperands) ||
parser.parseRParen())
return failure();
ParseResult copyKeyword = parser.parseOptionalKeyword("copy");
OpAsmParser::UnresolvedOperand copyOperand;
if (copyKeyword.succeeded())
if (parser.parseLParen() || parser.parseOperand(copyOperand) ||
parser.parseRParen())
return failure();
ParseResult sizeHintKeyword = parser.parseOptionalKeyword("size_hint");
OpAsmParser::UnresolvedOperand sizeHintOperand;
if (sizeHintKeyword.succeeded())
if (parser.parseEqual() || parser.parseOperand(sizeHintOperand))
return failure();
if (parser.parseOptionalAttrDict(result.attributes) || parser.parseColon())
return failure();
TensorType type;
if (parser.parseCustomTypeWithFallback(type))
return failure();
result.addTypes(type);
Type indexType = parser.getBuilder().getIndexType();
if (parser.resolveOperands(dynamicSizesOperands, indexType, result.operands))
return failure();
if (copyKeyword.succeeded())
if (parser.resolveOperand(copyOperand, type, result.operands))
return failure();
if (sizeHintKeyword.succeeded())
if (parser.resolveOperand(sizeHintOperand, indexType, result.operands))
return failure();
result.addAttribute(AllocTensorOp::getOperandSegmentSizeAttr(),
parser.getBuilder().getDenseI32ArrayAttr(
{static_cast<int32_t>(dynamicSizesOperands.size()),
static_cast<int32_t>(copyKeyword.succeeded()),
static_cast<int32_t>(sizeHintKeyword.succeeded())}));
return success();
}
void AllocTensorOp::print(OpAsmPrinter &p) {
p << "(" << getDynamicSizes() << ")";
if (getCopy())
p << " copy(" << getCopy() << ")";
if (getSizeHint())
p << " size_hint=" << getSizeHint();
p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{
AllocTensorOp::getOperandSegmentSizeAttr()});
p << " : ";
auto type = getResult().getType();
if (auto validType = llvm::dyn_cast<::mlir::TensorType>(type))
p.printStrippedAttrOrType(validType);
else
p << type;
}
Value AllocTensorOp::getDynamicSize(OpBuilder &b, unsigned idx) {
assert(isDynamicDim(idx) && "expected dynamic dim");
if (getCopy())
return b.create<tensor::DimOp>(getLoc(), getCopy(), idx);
return getOperand(getIndexOfDynamicSize(idx));
}
//===----------------------------------------------------------------------===//
// CopyTensorOp
//===----------------------------------------------------------------------===//
bool CopyTensorOp::bufferizesToMemoryRead(OpOperand &opOperand,
const AnalysisState &state) {
if (&opOperand == &getOperation()->getOpOperand(0) /*source*/)
return true;
return false;
}
bool CopyTensorOp::bufferizesToMemoryWrite(OpOperand &opOperand,
const AnalysisState &state) {
if (&opOperand == &getOperation()->getOpOperand(1) /*dest*/)
return true;
return false;
}
AliasingOpResultList
CopyTensorOp::getAliasingOpResults(OpOperand &opOperand,
const AnalysisState &state) {
if (&opOperand == &getOperation()->getOpOperand(1) /*dest*/)
return {{getOperation()->getResult(0), BufferRelation::Equivalent}};
return {};
}
LogicalResult CopyTensorOp::bufferize(RewriterBase &rewriter,
const BufferizationOptions &options) {
FailureOr<Value> buffer = getBuffer(rewriter, getDest(), options);
if (failed(buffer))
return failure();
rewriter.create<memref::TensorStoreOp>(getLoc(), getSource(), *buffer);
replaceOpWithBufferizedValues(rewriter, getOperation(), *buffer);
return success();
}
LogicalResult CopyTensorOp::reifyResultShapes(
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank()));
reifiedReturnShapes[0] = tensor::getMixedSizes(builder, getLoc(), getDest());
return success();
}
//===----------------------------------------------------------------------===//
// CloneOp
//===----------------------------------------------------------------------===//
void CloneOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Read::get(), getInput(),
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Write::get(), getOutput(),
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Allocate::get(), getOutput(),
SideEffects::DefaultResource::get());
}
OpFoldResult CloneOp::fold(FoldAdaptor adaptor) {
return succeeded(memref::foldMemRefCast(*this)) ? getResult() : Value();
}
namespace {
/// Merge the clone and its source (by converting the clone to a cast) when
/// possible.
struct SimplifyClones : public OpRewritePattern<CloneOp> {
using OpRewritePattern<CloneOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CloneOp cloneOp,
PatternRewriter &rewriter) const override {
if (cloneOp.use_empty()) {
rewriter.eraseOp(cloneOp);
return success();
}
Value source = cloneOp.getInput();
// Aims to find the dealloc op for the canonical source
// which otherwise could prevent removal of unnecessary allocs.
Value canonicalSource = source;
while (auto iface = dyn_cast_or_null<ViewLikeOpInterface>(
canonicalSource.getDefiningOp()))
canonicalSource = iface.getViewSource();
std::optional<Operation *> maybeCloneDeallocOp =
memref::findDealloc(cloneOp.getOutput());
// Skip if either of them has > 1 deallocate operations.
if (!maybeCloneDeallocOp.has_value())
return failure();
std::optional<Operation *> maybeSourceDeallocOp =
memref::findDealloc(canonicalSource);
if (!maybeSourceDeallocOp.has_value())
return failure();
Operation *cloneDeallocOp = *maybeCloneDeallocOp;
Operation *sourceDeallocOp = *maybeSourceDeallocOp;
// If both are deallocated in the same block, their in-block lifetimes
// might not fully overlap, so we cannot decide which one to drop.
if (cloneDeallocOp && sourceDeallocOp &&
cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock())
return failure();
Block *currentBlock = cloneOp->getBlock();
Operation *redundantDealloc = nullptr;
if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) {
redundantDealloc = cloneDeallocOp;
} else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) {
redundantDealloc = sourceDeallocOp;
}
if (!redundantDealloc)
return failure();
// Safety check that there are no other deallocations inbetween
// cloneOp and redundantDealloc, as otherwise we might deallocate an alias
// of source before the uses of the clone. With alias information, we could
// restrict this to only fail of the dealloc's operand is an alias
// of the source.
for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc;
pos = pos->getNextNode()) {
auto effectInterface = dyn_cast<MemoryEffectOpInterface>(pos);
if (!effectInterface)
continue;
if (effectInterface.hasEffect<MemoryEffects::Free>())
return failure();
}
rewriter.replaceOpWithNewOp<memref::CastOp>(cloneOp, cloneOp.getType(),
source);
rewriter.eraseOp(redundantDealloc);
return success();
}
};
} // namespace
void CloneOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyClones>(context);
}
//===----------------------------------------------------------------------===//
// DeallocTensorOp
//===----------------------------------------------------------------------===//
LogicalResult DeallocTensorOp::bufferize(RewriterBase &rewriter,
const BufferizationOptions &options) {
FailureOr<Value> buffer = getBuffer(rewriter, getTensor(), options);
if (failed(buffer))
return failure();
if (failed(options.createDealloc(rewriter, getLoc(), *buffer)))
return failure();
rewriter.eraseOp(getOperation());
return success();
}
//===----------------------------------------------------------------------===//
// ToTensorOp
//===----------------------------------------------------------------------===//
bool ToTensorOp::isWritable(Value value, const AnalysisState &state) {
return getWritable();
}
OpFoldResult ToTensorOp::fold(FoldAdaptor) {
if (auto toMemref = getMemref().getDefiningOp<ToMemrefOp>())
// Approximate alias analysis by conservatively folding only when no there
// is no interleaved operation.
if (toMemref->getBlock() == this->getOperation()->getBlock() &&
toMemref->getNextNode() == this->getOperation())
return toMemref.getTensor();
return {};
}
namespace {
struct DimOfToTensorFolder : public OpRewritePattern<tensor::DimOp> {
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
PatternRewriter &rewriter) const override {
auto memrefToTensorOp = dimOp.getSource().getDefiningOp<ToTensorOp>();
if (!memrefToTensorOp)
return failure();
rewriter.replaceOpWithNewOp<memref::DimOp>(
dimOp, memrefToTensorOp.getMemref(), dimOp.getIndex());
return success();
}
};
} // namespace
void ToTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<DimOfToTensorFolder>(context);
}
//===----------------------------------------------------------------------===//
// ToMemrefOp
//===----------------------------------------------------------------------===//
OpFoldResult ToMemrefOp::fold(FoldAdaptor) {
if (auto memrefToTensor = getTensor().getDefiningOp<ToTensorOp>())
if (memrefToTensor.getMemref().getType() == getType())
return memrefToTensor.getMemref();
return {};
}
namespace {
/// Replace tensor.cast + to_memref by to_memref + memref.cast.
struct ToMemrefOfCast : public OpRewritePattern<ToMemrefOp> {
using OpRewritePattern<ToMemrefOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ToMemrefOp toMemref,
PatternRewriter &rewriter) const final {
auto tensorCastOperand =
toMemref.getOperand().getDefiningOp<tensor::CastOp>();
if (!tensorCastOperand)
return failure();
auto srcTensorType = llvm::dyn_cast<RankedTensorType>(
tensorCastOperand.getOperand().getType());
if (!srcTensorType)
return failure();
auto memrefType = MemRefType::get(srcTensorType.getShape(),
srcTensorType.getElementType());
Value memref = rewriter.create<ToMemrefOp>(toMemref.getLoc(), memrefType,
tensorCastOperand.getOperand());
rewriter.replaceOpWithNewOp<memref::CastOp>(toMemref, toMemref.getType(),
memref);
return success();
}
};
/// Canonicalize bufferization.to_tensor + bufferization.to_memref. Insert a
/// cast if necessary.
struct ToMemrefToTensorFolding : public OpRewritePattern<ToMemrefOp> {
using OpRewritePattern<ToMemrefOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ToMemrefOp toMemref,
PatternRewriter &rewriter) const final {
return foldToMemrefToTensorPair(rewriter, toMemref);
}
};
/// Fold a load on a to_memref operation into an tensor.extract on the
/// corresponding tensor.
struct LoadOfToMemref : public OpRewritePattern<memref::LoadOp> {
using OpRewritePattern<memref::LoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::LoadOp load,
PatternRewriter &rewriter) const override {
auto toMemref = load.getMemref().getDefiningOp<ToMemrefOp>();
if (!toMemref)
return failure();
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(load, toMemref.getTensor(),
load.getIndices());
return success();
}
};
/// Fold dim of a to_memref into the dim of the tensor.
struct DimOfCastOp : public OpRewritePattern<memref::DimOp> {
using OpRewritePattern<memref::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::DimOp dimOp,
PatternRewriter &rewriter) const override {
auto castOp = dimOp.getSource().getDefiningOp<ToMemrefOp>();
if (!castOp)
return failure();
Value newSource = castOp.getOperand();
rewriter.replaceOpWithNewOp<tensor::DimOp>(dimOp, newSource,
dimOp.getIndex());
return success();
}
};
} // namespace
void ToMemrefOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<DimOfCastOp, LoadOfToMemref, ToMemrefOfCast,
ToMemrefToTensorFolding>(context);
}
LogicalResult ToMemrefOp::bufferize(RewriterBase &rewriter,
const BufferizationOptions &options) {
// Fold to_memref(to_tensor(x)) to x. Insert a cast if necessary.
(void)foldToMemrefToTensorPair(rewriter, *this);
// Note: The return value of `bufferize` indicates whether there was an error
// or not. (And not whether the pattern matched or not.)
return success();
}
std::optional<Operation *> CloneOp::buildDealloc(OpBuilder &builder,
Value alloc) {
return builder.create<memref::DeallocOp>(alloc.getLoc(), alloc)
.getOperation();
}
std::optional<Value> CloneOp::buildClone(OpBuilder &builder, Value alloc) {
return builder.create<CloneOp>(alloc.getLoc(), alloc).getResult();
}
//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//
LogicalResult DeallocOp::inferReturnTypes(
MLIRContext *context, std::optional<::mlir::Location> location,
ValueRange operands, DictionaryAttr attributes, OpaqueProperties properties,
RegionRange regions, SmallVectorImpl<Type> &inferredReturnTypes) {
DeallocOpAdaptor adaptor(operands, attributes, properties, regions);
inferredReturnTypes = SmallVector<Type>(adaptor.getConditions().getTypes());
return success();
}
LogicalResult DeallocOp::verify() {
if (getMemrefs().size() != getConditions().size())
return emitOpError(
"must have the same number of conditions as memrefs to deallocate");
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Bufferization/IR/BufferizationOps.cpp.inc"
|