1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
//======- BufferViewFlowAnalysis.cpp - Buffer alias analysis -*- C++ -*-======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/BufferViewFlowAnalysis.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
using namespace mlir;
/// Constructs a new alias analysis using the op provided.
BufferViewFlowAnalysis::BufferViewFlowAnalysis(Operation *op) { build(op); }
/// Find all immediate and indirect dependent buffers this value could
/// potentially have. Note that the resulting set will also contain the value
/// provided as it is a dependent alias of itself.
BufferViewFlowAnalysis::ValueSetT
BufferViewFlowAnalysis::resolve(Value rootValue) const {
ValueSetT result;
SmallVector<Value, 8> queue;
queue.push_back(rootValue);
while (!queue.empty()) {
Value currentValue = queue.pop_back_val();
if (result.insert(currentValue).second) {
auto it = dependencies.find(currentValue);
if (it != dependencies.end()) {
for (Value aliasValue : it->second)
queue.push_back(aliasValue);
}
}
}
return result;
}
/// Removes the given values from all alias sets.
void BufferViewFlowAnalysis::remove(const SetVector<Value> &aliasValues) {
for (auto &entry : dependencies)
llvm::set_subtract(entry.second, aliasValues);
}
/// This function constructs a mapping from values to its immediate
/// dependencies. It iterates over all blocks, gets their predecessors,
/// determines the values that will be passed to the corresponding block
/// arguments and inserts them into the underlying map. Furthermore, it wires
/// successor regions and branch-like return operations from nested regions.
void BufferViewFlowAnalysis::build(Operation *op) {
// Registers all dependencies of the given values.
auto registerDependencies = [&](ValueRange values, ValueRange dependencies) {
for (auto [value, dep] : llvm::zip(values, dependencies))
this->dependencies[value].insert(dep);
};
op->walk([&](Operation *op) {
// TODO: We should have an op interface instead of a hard-coded list of
// interfaces/ops.
// Add additional dependencies created by view changes to the alias list.
if (auto viewInterface = dyn_cast<ViewLikeOpInterface>(op)) {
dependencies[viewInterface.getViewSource()].insert(
viewInterface->getResult(0));
return WalkResult::advance();
}
if (auto branchInterface = dyn_cast<BranchOpInterface>(op)) {
// Query all branch interfaces to link block argument dependencies.
Block *parentBlock = branchInterface->getBlock();
for (auto it = parentBlock->succ_begin(), e = parentBlock->succ_end();
it != e; ++it) {
// Query the branch op interface to get the successor operands.
auto successorOperands =
branchInterface.getSuccessorOperands(it.getIndex());
// Build the actual mapping of values to their immediate dependencies.
registerDependencies(successorOperands.getForwardedOperands(),
(*it)->getArguments().drop_front(
successorOperands.getProducedOperandCount()));
}
return WalkResult::advance();
}
if (auto regionInterface = dyn_cast<RegionBranchOpInterface>(op)) {
// Query the RegionBranchOpInterface to find potential successor regions.
// Extract all entry regions and wire all initial entry successor inputs.
SmallVector<RegionSuccessor, 2> entrySuccessors;
regionInterface.getSuccessorRegions(/*index=*/std::nullopt,
entrySuccessors);
for (RegionSuccessor &entrySuccessor : entrySuccessors) {
// Wire the entry region's successor arguments with the initial
// successor inputs.
registerDependencies(
regionInterface.getSuccessorEntryOperands(
entrySuccessor.isParent()
? std::optional<unsigned>()
: entrySuccessor.getSuccessor()->getRegionNumber()),
entrySuccessor.getSuccessorInputs());
}
// Wire flow between regions and from region exits.
for (Region ®ion : regionInterface->getRegions()) {
// Iterate over all successor region entries that are reachable from the
// current region.
SmallVector<RegionSuccessor, 2> successorRegions;
regionInterface.getSuccessorRegions(region.getRegionNumber(),
successorRegions);
for (RegionSuccessor &successorRegion : successorRegions) {
// Determine the current region index (if any).
std::optional<unsigned> regionIndex;
Region *regionSuccessor = successorRegion.getSuccessor();
if (regionSuccessor)
regionIndex = regionSuccessor->getRegionNumber();
// Iterate over all immediate terminator operations and wire the
// successor inputs with the successor operands of each terminator.
for (Block &block : region) {
auto successorOperands = getRegionBranchSuccessorOperands(
block.getTerminator(), regionIndex);
if (successorOperands) {
registerDependencies(*successorOperands,
successorRegion.getSuccessorInputs());
}
}
}
}
return WalkResult::advance();
}
// Unknown op: Assume that all operands alias with all results.
for (Value operand : op->getOperands()) {
if (!isa<BaseMemRefType>(operand.getType()))
continue;
for (Value result : op->getResults()) {
if (!isa<BaseMemRefType>(result.getType()))
continue;
registerDependencies({operand}, {result});
}
}
return WalkResult::advance();
});
}
|