1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
//===- Bufferize.cpp - Bufferization utilities ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include <optional>
namespace mlir {
namespace bufferization {
#define GEN_PASS_DEF_FINALIZINGBUFFERIZE
#define GEN_PASS_DEF_BUFFERIZATIONBUFFERIZE
#define GEN_PASS_DEF_ONESHOTBUFFERIZE
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
} // namespace bufferization
} // namespace mlir
#define DEBUG_TYPE "bufferize"
using namespace mlir;
using namespace mlir::bufferization;
//===----------------------------------------------------------------------===//
// BufferizeTypeConverter
//===----------------------------------------------------------------------===//
static Value materializeToTensor(OpBuilder &builder, TensorType type,
ValueRange inputs, Location loc) {
assert(inputs.size() == 1);
assert(isa<BaseMemRefType>(inputs[0].getType()));
return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]);
}
/// Registers conversions into BufferizeTypeConverter
BufferizeTypeConverter::BufferizeTypeConverter() {
// Keep all types unchanged.
addConversion([](Type type) { return type; });
// Convert RankedTensorType to MemRefType.
addConversion([](RankedTensorType type) -> Type {
return MemRefType::get(type.getShape(), type.getElementType());
});
// Convert UnrankedTensorType to UnrankedMemRefType.
addConversion([](UnrankedTensorType type) -> Type {
return UnrankedMemRefType::get(type.getElementType(), 0);
});
addArgumentMaterialization(materializeToTensor);
addSourceMaterialization(materializeToTensor);
addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type,
ValueRange inputs, Location loc) -> Value {
assert(inputs.size() == 1 && "expected exactly one input");
if (auto inputType = dyn_cast<MemRefType>(inputs[0].getType())) {
// MemRef to MemRef cast.
assert(inputType != type && "expected different types");
// Unranked to ranked and ranked to unranked casts must be explicit.
auto rankedDestType = dyn_cast<MemRefType>(type);
if (!rankedDestType)
return nullptr;
FailureOr<Value> replacement =
castOrReallocMemRefValue(builder, inputs[0], rankedDestType);
if (failed(replacement))
return nullptr;
return *replacement;
}
if (isa<TensorType>(inputs[0].getType())) {
// Tensor to MemRef cast.
return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]);
}
llvm_unreachable("only tensor/memref input types supported");
});
}
void mlir::bufferization::populateBufferizeMaterializationLegality(
ConversionTarget &target) {
target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>();
}
namespace {
// In a finalizing bufferize conversion, we know that all tensors have been
// converted to memrefs, thus, this op becomes an identity.
class BufferizeToTensorOp
: public OpConversionPattern<bufferization::ToTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOp(op, adaptor.getMemref());
return success();
}
};
} // namespace
namespace {
// In a finalizing bufferize conversion, we know that all tensors have been
// converted to memrefs, thus, this op becomes an identity.
class BufferizeToMemrefOp
: public OpConversionPattern<bufferization::ToMemrefOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOp(op, adaptor.getTensor());
return success();
}
};
} // namespace
void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns(
BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter,
patterns.getContext());
}
namespace {
struct FinalizingBufferizePass
: public bufferization::impl::FinalizingBufferizeBase<
FinalizingBufferizePass> {
using FinalizingBufferizeBase<
FinalizingBufferizePass>::FinalizingBufferizeBase;
void runOnOperation() override {
auto func = getOperation();
auto *context = &getContext();
BufferizeTypeConverter typeConverter;
RewritePatternSet patterns(context);
ConversionTarget target(*context);
populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns);
// If all result types are legal, and all block arguments are legal (ensured
// by func conversion above), then all types in the program are legal.
//
// We also check that the operand types are legal to avoid creating invalid
// IR. For example, this prevents
// populateEliminateBufferizeMaterializationsPatterns from updating the
// types of the operands to a return op without updating the enclosing
// function.
target.markUnknownOpDynamicallyLegal(
[&](Operation *op) { return typeConverter.isLegal(op); });
if (failed(applyFullConversion(func, target, std::move(patterns))))
signalPassFailure();
}
};
static LayoutMapOption parseLayoutMapOption(const std::string &s) {
if (s == "fully-dynamic-layout-map")
return LayoutMapOption::FullyDynamicLayoutMap;
if (s == "identity-layout-map")
return LayoutMapOption::IdentityLayoutMap;
if (s == "infer-layout-map")
return LayoutMapOption::InferLayoutMap;
llvm_unreachable("invalid layout map option");
}
static OneShotBufferizationOptions::AnalysisHeuristic
parseHeuristicOption(const std::string &s) {
if (s == "bottom-up")
return OneShotBufferizationOptions::AnalysisHeuristic::BottomUp;
if (s == "top-down")
return OneShotBufferizationOptions::AnalysisHeuristic::TopDown;
llvm_unreachable("invalid analysisheuristic option");
}
struct OneShotBufferizePass
: public bufferization::impl::OneShotBufferizeBase<OneShotBufferizePass> {
OneShotBufferizePass() = default;
explicit OneShotBufferizePass(const OneShotBufferizationOptions &options)
: options(options) {}
void getDependentDialects(DialectRegistry ®istry) const override {
registry
.insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
registerAllocationOpInterfaceExternalModels(registry);
}
void runOnOperation() override {
OneShotBufferizationOptions opt;
if (!options) {
// Make new bufferization options if none were provided when creating the
// pass.
opt.allowReturnAllocs = allowReturnAllocs;
opt.allowUnknownOps = allowUnknownOps;
opt.analysisFuzzerSeed = analysisFuzzerSeed;
opt.analysisHeuristic = parseHeuristicOption(analysisHeuristic);
opt.copyBeforeWrite = copyBeforeWrite;
opt.createDeallocs = createDeallocs;
opt.dumpAliasSets = dumpAliasSets;
opt.setFunctionBoundaryTypeConversion(
parseLayoutMapOption(functionBoundaryTypeConversion));
if (mustInferMemorySpace)
opt.defaultMemorySpace = std::nullopt;
opt.printConflicts = printConflicts;
opt.testAnalysisOnly = testAnalysisOnly;
opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries;
opt.noAnalysisFuncFilter = noAnalysisFuncFilter;
// Configure type converter.
LayoutMapOption unknownTypeConversionOption =
parseLayoutMapOption(unknownTypeConversion);
opt.unknownTypeConverterFn = [=](Value value, Attribute memorySpace,
const BufferizationOptions &options) {
auto tensorType = cast<TensorType>(value.getType());
if (unknownTypeConversionOption == LayoutMapOption::IdentityLayoutMap)
return bufferization::getMemRefTypeWithStaticIdentityLayout(
tensorType, memorySpace);
assert(unknownTypeConversionOption ==
LayoutMapOption::FullyDynamicLayoutMap &&
"invalid layout map option");
return bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType,
memorySpace);
};
// Configure op filter.
OpFilter::Entry::FilterFn filterFn = [&](Operation *op) {
// Filter may be specified via options.
if (this->dialectFilter.hasValue())
return llvm::is_contained(this->dialectFilter,
op->getDialect()->getNamespace());
// No filter specified: All other ops are allowed.
return true;
};
opt.opFilter.allowOperation(filterFn);
} else {
opt = *options;
}
BufferizationStatistics statistics;
ModuleOp moduleOp = getOperation();
if (opt.bufferizeFunctionBoundaries) {
if (failed(runOneShotModuleBufferize(moduleOp, opt, &statistics))) {
signalPassFailure();
return;
}
} else {
assert(opt.noAnalysisFuncFilter.empty() &&
"invalid combination of bufferization flags");
if (failed(runOneShotBufferize(moduleOp, opt, &statistics))) {
signalPassFailure();
return;
}
}
// Set pass statistics.
this->numBufferAlloc = statistics.numBufferAlloc;
this->numBufferDealloc = statistics.numBufferDealloc;
this->numTensorInPlace = statistics.numTensorInPlace;
this->numTensorOutOfPlace = statistics.numTensorOutOfPlace;
}
private:
std::optional<OneShotBufferizationOptions> options;
};
} // namespace
namespace {
struct BufferizationBufferizePass
: public bufferization::impl::BufferizationBufferizeBase<
BufferizationBufferizePass> {
void runOnOperation() override {
BufferizationOptions options = getPartialBufferizationOptions();
options.opFilter.allowDialect<BufferizationDialect>();
if (failed(bufferizeOp(getOperation(), options)))
signalPassFailure();
}
void getDependentDialects(DialectRegistry ®istry) const override {
registry
.insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
}
};
} // namespace
std::unique_ptr<Pass> mlir::bufferization::createBufferizationBufferizePass() {
return std::make_unique<BufferizationBufferizePass>();
}
std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() {
return std::make_unique<OneShotBufferizePass>();
}
std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass(
const OneShotBufferizationOptions &options) {
return std::make_unique<OneShotBufferizePass>(options);
}
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::bufferization::createFinalizingBufferizePass() {
return std::make_unique<FinalizingBufferizePass>();
}
//===----------------------------------------------------------------------===//
// BufferizableOpInterface-based Bufferization
//===----------------------------------------------------------------------===//
static bool isaTensor(Type t) { return isa<TensorType>(t); }
/// Return true if the given op has a tensor result or a tensor operand.
static bool hasTensorSemantics(Operation *op) {
if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor);
bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor);
return hasTensorArg || hasTensorResult;
}
bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
return hasTensorResult || hasTensorOperand;
}
namespace {
/// A rewriter that keeps track of extra information during bufferization.
class BufferizationRewriter : public IRRewriter, public RewriterBase::Listener {
public:
BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps,
DenseSet<Operation *> &toMemrefOps,
SmallVector<Operation *> &worklist,
const BufferizationOptions &options,
const OpFilter *opFilter,
BufferizationStatistics *statistics)
: IRRewriter(ctx), erasedOps(erasedOps), toMemrefOps(toMemrefOps),
worklist(worklist), analysisState(options), opFilter(opFilter),
statistics(statistics) {
setListener(this);
}
protected:
void notifyOperationRemoved(Operation *op) override {
// TODO: Walk can be removed when D144193 has landed.
op->walk([&](Operation *op) {
erasedOps.insert(op);
// Erase if present.
toMemrefOps.erase(op);
});
}
void notifyOperationInserted(Operation *op) override {
erasedOps.erase(op);
// Gather statistics about allocs and deallocs.
if (statistics) {
if (auto sideEffectingOp = dyn_cast<MemoryEffectOpInterface>(op)) {
statistics->numBufferAlloc += static_cast<int64_t>(
sideEffectingOp.hasEffect<MemoryEffects::Allocate>());
statistics->numBufferDealloc += static_cast<int64_t>(
sideEffectingOp.hasEffect<MemoryEffects::Free>());
}
}
// Keep track of to_memref ops.
if (isa<ToMemrefOp>(op)) {
toMemrefOps.insert(op);
return;
}
// Skip to_tensor ops.
if (isa<ToTensorOp>(op))
return;
// Skip non-tensor ops.
if (!hasTensorSemantics(op))
return;
// Skip ops that are not allowed to be bufferized.
auto const &options = analysisState.getOptions();
if (!options.isOpAllowed(op) || (opFilter && !opFilter->isOpAllowed(op)))
return;
// Add op to worklist.
worklist.push_back(op);
}
private:
/// A set of all erased ops.
DenseSet<Operation *> &erasedOps;
/// A set of all to_memref ops.
DenseSet<Operation *> &toMemrefOps;
/// The worklist of ops to be bufferized.
SmallVector<Operation *> &worklist;
/// The analysis state. Used for debug assertions and access to the
/// bufferization options.
const AnalysisState analysisState;
/// An extra op filter for bufferization.
const OpFilter *opFilter;
/// Bufferization statistics for debugging.
BufferizationStatistics *statistics;
};
} // namespace
LogicalResult bufferization::bufferizeOp(Operation *op,
const BufferizationOptions &options,
bool copyBeforeWrite,
const OpFilter *opFilter,
BufferizationStatistics *statistics) {
if (copyBeforeWrite) {
AnalysisState state(options);
if (failed(insertTensorCopies(op, state)))
return failure();
}
// Keep track of to_memref ops.
DenseSet<Operation *> toMemrefOps;
op->walk([&](ToMemrefOp toMemrefOp) { toMemrefOps.insert(toMemrefOp); });
// Gather all bufferizable ops in top-to-bottom order.
//
// We should ideally know the exact memref type of all operands when
// bufferizing an op. (This is the case when bufferizing top-to-bottom.)
// Otherwise, we have to use a memref type with a fully dynamic layout map to
// avoid copies. We are currently missing patterns for layout maps to
// canonicalize away (or canonicalize to more precise layouts).
//
// FuncOps must be bufferized before their bodies, so add them to the worklist
// first.
SmallVector<Operation *> worklist;
op->walk([&](func::FuncOp funcOp) {
if (hasTensorSemantics(funcOp))
worklist.push_back(funcOp);
});
op->walk<WalkOrder::PostOrder>([&](Operation *op) {
if (hasTensorSemantics(op) && !isa<func::FuncOp>(op))
worklist.push_back(op);
});
// Keep track of all erased ops.
DenseSet<Operation *> erasedOps;
// Bufferize all ops.
BufferizationRewriter rewriter(op->getContext(), erasedOps, toMemrefOps,
worklist, options, opFilter, statistics);
for (unsigned i = 0; i < worklist.size(); ++i) {
Operation *nextOp = worklist[i];
// Skip ops that were erased.
if (erasedOps.contains(nextOp))
continue;
// Skip ops that are not bufferizable or not allowed.
auto bufferizableOp = options.dynCastBufferizableOp(nextOp);
if (!bufferizableOp)
continue;
if (opFilter && !opFilter->isOpAllowed(nextOp))
continue;
// Skip ops that no longer have tensor semantics.
if (!hasTensorSemantics(nextOp))
continue;
// Bufferize the op.
LLVM_DEBUG(llvm::dbgs()
<< "//===-------------------------------------------===//\n"
<< "IR after bufferizing: " << nextOp->getName() << "\n");
rewriter.setInsertionPoint(nextOp);
if (failed(bufferizableOp.bufferize(rewriter, options))) {
LLVM_DEBUG(llvm::dbgs()
<< "failed to bufferize\n"
<< "//===-------------------------------------------===//\n");
return nextOp->emitError("failed to bufferize op");
}
LLVM_DEBUG(llvm::dbgs()
<< *op
<< "\n//===-------------------------------------------===//\n");
}
// Fold all to_memref(to_tensor(x)) pairs.
for (Operation *op : toMemrefOps) {
rewriter.setInsertionPoint(op);
(void)bufferization::foldToMemrefToTensorPair(rewriter,
cast<ToMemrefOp>(op));
}
// Remove all dead to_tensor ops.
op->walk<WalkOrder::PostOrder>([&](ToTensorOp toTensorOp) {
if (toTensorOp->getUses().empty()) {
rewriter.eraseOp(toTensorOp);
return WalkResult::skip();
}
return WalkResult::advance();
});
/// Check the result of bufferization. Return an error if an op was not
/// bufferized, unless partial bufferization is allowed.
if (options.allowUnknownOps)
return success();
for (Operation *op : worklist) {
// Skip ops that are entirely gone.
if (erasedOps.contains(op))
continue;
// Ops that no longer have tensor semantics (because they were updated
// in-place) are allowed.
if (!hasTensorSemantics(op))
continue;
// Continue ops that are not allowed.
if (!options.isOpAllowed(op))
continue;
if (opFilter && !opFilter->isOpAllowed(op))
continue;
// Ops without any uses and no side effects will fold away.
if (op->getUses().empty() && isMemoryEffectFree(op))
continue;
// ToTensorOps/ToMemrefOps are allowed in the output.
if (isa<ToTensorOp, ToMemrefOp>(op))
continue;
return op->emitError("op was not bufferized");
}
return success();
}
BufferizationOptions bufferization::getPartialBufferizationOptions() {
BufferizationOptions options;
options.allowUnknownOps = true;
options.createDeallocs = false;
options.enforceAliasingInvariants = false;
options.unknownTypeConverterFn = [](Value value, Attribute memorySpace,
const BufferizationOptions &options) {
return getMemRefTypeWithStaticIdentityLayout(
cast<TensorType>(value.getType()), memorySpace);
};
options.opFilter.allowDialect<BufferizationDialect>();
return options;
}
|