1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
#include <optional>
namespace mlir {
namespace bufferization {
namespace func_ext {
void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) {
analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress;
auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping());
auto createdAliasingResults =
aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping());
auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet());
auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet());
(void)createdEquiv;
(void)createdAliasingResults;
(void)createdRead;
(void)createdWritten;
#ifndef NDEBUG
assert(createdEquiv.second && "equivalence info exists already");
assert(createdAliasingResults.second && "aliasing info exists already");
assert(createdRead.second && "bbarg access info exists already");
assert(createdWritten.second && "bbarg access info exists already");
#endif // NDEBUG
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static func::ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
func::ReturnOp returnOp;
for (Block &b : funcOp.getBody()) {
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
/// Return the index-th bufferized function argument type. This assumes that the
/// specified argument is a tensor. If the tensor is ranked, a layout map may be
/// specified by the user (as per `options.functionArgTypeConverterFn`).
static BaseMemRefType
getBufferizedFunctionArgType(FuncOp funcOp, int64_t index,
const BufferizationOptions &options) {
auto tensorType =
dyn_cast<TensorType>(funcOp.getFunctionType().getInput(index));
assert(tensorType && "expected TensorType");
BaseMemRefType memrefType = options.functionArgTypeConverterFn(
tensorType, *options.defaultMemorySpace, funcOp, options);
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
index, BufferizationDialect::kBufferLayoutAttrName);
if (!layoutAttr)
return memrefType;
auto rankedMemrefType = dyn_cast<MemRefType>(memrefType);
assert(rankedMemrefType && "buffer layout not supported on unranked tensors");
return MemRefType::get(
rankedMemrefType.getShape(), rankedMemrefType.getElementType(),
layoutAttr.getValue(), rankedMemrefType.getMemorySpace());
}
/// Return the FuncOp called by `callOp`.
static FuncOp getCalledFunction(CallOpInterface callOp) {
SymbolRefAttr sym = llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee());
if (!sym)
return nullptr;
return dyn_cast_or_null<FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Get FuncAnalysisState.
static const FuncAnalysisState &
getFuncAnalysisState(const AnalysisState &state) {
assert(isa<OneShotAnalysisState>(state) && "expected OneShotAnalysisState");
auto *result = static_cast<const OneShotAnalysisState &>(state)
.getExtension<FuncAnalysisState>();
assert(result && "FuncAnalysisState does not exist");
return *result;
}
/// Return the state (phase) of analysis of the FuncOp.
static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
FuncOp funcOp) {
if (!isa<OneShotAnalysisState>(state))
return FuncOpAnalysisState::NotAnalyzed;
auto *funcState = static_cast<const OneShotAnalysisState &>(state)
.getExtension<FuncAnalysisState>();
if (!funcState)
return FuncOpAnalysisState::NotAnalyzed;
const auto &analyzedFuncOps = funcState->analyzedFuncOps;
auto it = analyzedFuncOps.find(funcOp);
if (it == analyzedFuncOps.end())
return FuncOpAnalysisState::NotAnalyzed;
return it->second;
}
/// Return the index of the bbArg in the given FuncOp that is equivalent to the
/// specified return value (if any).
static std::optional<int64_t>
getEquivalentFuncArgIdx(FuncOp funcOp, const FuncAnalysisState &state,
int64_t returnValIdx) {
auto funcOpIt = state.equivalentFuncArgs.find(funcOp);
if (funcOpIt == state.equivalentFuncArgs.end())
// No equivalence info stores for funcOp.
return std::nullopt;
auto retValIt = funcOpIt->getSecond().find(returnValIdx);
if (retValIt == funcOpIt->getSecond().end())
// Return value has no equivalent bbArg.
return std::nullopt;
return retValIt->getSecond();
}
struct CallOpInterface
: public BufferizableOpInterface::ExternalModel<CallOpInterface,
func::CallOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
func::CallOp callOp = cast<func::CallOp>(op);
FuncOp funcOp = getCalledFunction(callOp);
assert(funcOp && "expected CallOp to a FuncOp");
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
// FuncOp not analyzed yet. Assume that OpOperand is read.
return true;
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
return funcState.readBbArgs.lookup(funcOp).contains(
opOperand.getOperandNumber());
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
func::CallOp callOp = cast<func::CallOp>(op);
FuncOp funcOp = getCalledFunction(callOp);
assert(funcOp && "expected CallOp to a FuncOp");
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
// FuncOp not analyzed yet. Assume that OpOperand is written.
return true;
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
return funcState.writtenBbArgs.lookup(funcOp).contains(
opOperand.getOperandNumber());
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
func::CallOp callOp = cast<func::CallOp>(op);
FuncOp funcOp = getCalledFunction(callOp);
assert(funcOp && "expected CallOp to a FuncOp");
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
// FuncOp not analyzed yet. Any OpResult may be aliasing.
return detail::unknownGetAliasingOpResults(opOperand);
// Get aliasing results from state.
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
auto aliasingReturnVals =
funcState.aliasingReturnVals.lookup(funcOp).lookup(
opOperand.getOperandNumber());
// Check if the aliasing OpResult is equivalent to the OpOperand.
std::optional<int64_t> equivalent = {};
if (aliasingReturnVals.size() == 1) {
equivalent = getEquivalentFuncArgIdx(funcOp, funcState,
aliasingReturnVals.front());
assert((!equivalent.has_value() ||
*equivalent == opOperand.getOperandNumber()) &&
"inconsistent analysis state");
}
AliasingOpResultList result;
for (int64_t resultIdx : aliasingReturnVals)
result.addAlias({callOp->getOpResult(resultIdx),
equivalent.has_value() ? BufferRelation::Equivalent
: BufferRelation::Unknown,
/*isDefinite=*/equivalent.has_value()});
return result;
}
/// All function arguments are writable. It is the responsibility of the
/// CallOp to insert buffer copies where necessary.
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
func::CallOp callOp = cast<func::CallOp>(op);
unsigned numResults = callOp.getNumResults();
unsigned numOperands = callOp->getNumOperands();
FuncOp funcOp = getCalledFunction(callOp);
assert(funcOp && "expected CallOp to a FuncOp");
FunctionType funcType = funcOp.getFunctionType();
// Result types of the bufferized CallOp.
SmallVector<Type> resultTypes;
// Replacement values for the existing CallOp. These are usually the results
// of the bufferized CallOp, unless a tensor result folds onto an operand.
SmallVector<Value> replacementValues(numResults, Value());
// For non-tensor results: A mapping from return val indices of the old
// CallOp to return val indices of the bufferized CallOp.
SmallVector<std::optional<unsigned>> retValMapping(numResults,
std::nullopt);
// Operands of the bufferized CallOp.
SmallVector<Value> newOperands(numOperands, Value());
// 1. Compute the result types of the new CallOp.
for (const auto &it : llvm::enumerate(callOp.getResultTypes())) {
unsigned returnValIdx = it.index();
Type returnType = it.value();
if (!isa<TensorType>(returnType)) {
// Non-tensor values are returned.
retValMapping[returnValIdx] = resultTypes.size();
resultTypes.push_back(returnType);
continue;
}
// Returning a memref.
retValMapping[returnValIdx] = resultTypes.size();
resultTypes.push_back(funcType.getResult(resultTypes.size()));
}
// 2. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
for (OpOperand &opOperand : callOp->getOpOperands()) {
unsigned idx = opOperand.getOperandNumber();
Value tensorOperand = opOperand.get();
// Non-tensor operands are just copied.
if (!isa<TensorType>(tensorOperand.getType())) {
newOperands[idx] = tensorOperand;
continue;
}
// Retrieve buffers for tensor operands.
Value buffer = newOperands[idx];
if (!buffer) {
FailureOr<Value> maybeBuffer =
getBuffer(rewriter, opOperand.get(), options);
if (failed(maybeBuffer))
return failure();
buffer = *maybeBuffer;
}
// Caller / callee type mismatch is handled with a CastOp.
auto memRefType = funcType.getInput(idx);
// Since we don't yet have a clear layout story, to_memref may
// conservatively turn tensors into more dynamic memref than necessary.
// If the memref type of the callee fails, introduce an extra memref.cast
// that will either canonicalize away or fail compilation until we can do
// something better.
if (buffer.getType() != memRefType) {
assert(
memref::CastOp::areCastCompatible(buffer.getType(), memRefType) &&
"CallOp::bufferize: cast incompatible");
Value castBuffer = rewriter.create<memref::CastOp>(callOp.getLoc(),
memRefType, buffer);
buffer = castBuffer;
}
newOperands[idx] = buffer;
}
// 3. Create the new CallOp.
Operation *newCallOp = rewriter.create<func::CallOp>(
callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands);
newCallOp->setAttrs(callOp->getAttrs());
// Get replacement values.
for (unsigned i = 0; i < replacementValues.size(); ++i) {
if (replacementValues[i])
continue;
replacementValues[i] = newCallOp->getResult(*retValMapping[i]);
}
// 4. Replace the old op with the new op.
replaceOpWithBufferizedValues(rewriter, callOp, replacementValues);
return success();
}
};
struct ReturnOpInterface
: public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
func::ReturnOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
#ifndef NDEBUG
auto returnOp = cast<func::ReturnOp>(op);
assert(isa<FuncOp>(returnOp->getParentOp()) &&
"only support FuncOp parent for ReturnOp");
#endif // NDEBUG
// ReturnOps are bufferized as part of FuncOps.
return success();
}
};
struct FuncOpInterface
: public BufferizableOpInterface::ExternalModel<FuncOpInterface, FuncOp> {
/// Rewrite function bbArgs and return values into buffer form. This function
/// bufferizes the function signature and the ReturnOp. When the entire
/// function body has been bufferized, function return types can be switched
/// to more concise memref types as part of `foldMemRefCasts`.
///
/// All function bbArgs are writable unless they are explicitly marked as
/// read-only. Callers must insert copies when needed.
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto funcOp = cast<FuncOp>(op);
FunctionType funcType = funcOp.getFunctionType();
// Construct the bufferized function type.
SmallVector<Type> argTypes;
for (const auto &it : llvm::enumerate(funcType.getInputs())) {
Type argType = it.value();
if (auto tensorType = dyn_cast<TensorType>(argType)) {
argTypes.push_back(
getBufferizedFunctionArgType(funcOp, it.index(), options));
continue;
}
argTypes.push_back(argType);
}
// Bodiless functions are assumed opaque and we cannot know the
// bufferization contract they want to enforce. As a consequence, only
// support functions that don't return any tensors atm.
if (funcOp.getBody().empty()) {
SmallVector<Type> retTypes;
for (Type resultType : funcType.getResults()) {
if (isa<TensorType>(resultType))
return funcOp->emitError() << "cannot bufferize bodiless function "
<< "that returns a tensor";
retTypes.push_back(resultType);
}
funcOp.setType(FunctionType::get(op->getContext(), argTypes, retTypes));
return success();
}
// TODO: Support functions with multiple returns.
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
Location loc = returnOp.getLoc();
// 1. Rewrite the bbArgs. Turn every tensor bbArg into a memref bbArg.
Block &frontBlock = funcOp.getBody().front();
for (BlockArgument &bbArg : frontBlock.getArguments()) {
auto tensorType = dyn_cast<TensorType>(bbArg.getType());
// Non-tensor types stay the same.
if (!tensorType)
continue;
// Collect all uses of the bbArg.
SmallVector<OpOperand *> bbArgUses;
for (OpOperand &use : bbArg.getUses())
bbArgUses.push_back(&use);
// Change the bbArg type to memref.
Type memrefType =
getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(), options);
bbArg.setType(memrefType);
// Replace all uses of the original tensor bbArg.
rewriter.setInsertionPointToStart(&frontBlock);
if (!bbArgUses.empty()) {
// Insert to_tensor because the remaining function body has not been
// bufferized yet.
Value toTensorOp =
rewriter.create<bufferization::ToTensorOp>(funcOp.getLoc(), bbArg);
for (OpOperand *use : bbArgUses)
use->set(toTensorOp);
}
}
// 2. For each result, keep track of which inplace argument it reuses.
SmallVector<Value> returnValues;
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
Value returnVal = returnOperand.get();
auto tensorType = dyn_cast<TensorType>(returnVal.getType());
rewriter.setInsertionPoint(returnOp);
// If not a tensor type just forward it.
if (!tensorType) {
returnValues.push_back(returnVal);
continue;
}
// Note: If `inferFunctionResultLayout = true`, cast are later folded
// away.
BaseMemRefType resultType = options.functionArgTypeConverterFn(
tensorType, *options.defaultMemorySpace, funcOp, options);
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
loc, resultType, returnVal);
returnValues.push_back(toMemrefOp);
}
// 3. Rewrite the terminator without the in-place bufferizable values.
returnOp.getOperandsMutable().assign(returnValues);
// 4. Rewrite the FuncOp type to buffer form.
funcOp.setType(FunctionType::get(op->getContext(), argTypes,
ValueRange(returnValues).getTypes()));
return success();
}
/// Return `true` if the given function argument is writable.
bool isWritable(Operation *op, Value value,
const AnalysisState &state) const {
auto funcOp = cast<FuncOp>(op);
BlockArgument bbArg = dyn_cast<BlockArgument>(value);
assert(bbArg && "expected BlockArgument");
// "bufferization.writable" overrides other writability decisions. This is
// currently used for testing only.
if (BoolAttr writable = funcOp.getArgAttrOfType<BoolAttr>(
bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName))
return writable.getValue();
// All function arguments are writable by default.
return true;
}
};
} // namespace func_ext
} // namespace bufferization
} // namespace mlir
void mlir::bufferization::func_ext::
registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, func::FuncDialect *dialect) {
func::CallOp::attachInterface<func_ext::CallOpInterface>(*ctx);
func::FuncOp::attachInterface<func_ext::FuncOpInterface>(*ctx);
func::ReturnOp::attachInterface<func_ext::ReturnOpInterface>(*ctx);
});
}
|