1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
|
//===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// One-Shot Analysis analyzes function bodies. By default, function boundaries
// (FuncOp bbArgs, CallOps, ReturnOps) are treated as "unknown" ops.
// OneShotModuleBufferization.cpp is an extension of One-Shot Analysis for
// simple call graphs without loops.
//
// One-Shot Bufferize consists of three phases.
//
// 1. Analyze ops to decide which OpOperands can bufferize inplace, i.e.,
// without inserting buffer copies. The analysis queries op bufferization
// semantics via `BufferizableOpInterface`.
// 2. Insert copies for OpOperands that were decided to bufferize out-of-place
// in tensor land during `TensorCopyInsertion`.
// 3. Bufferize ops by calling `BufferizableOpInterface::bufferize`.
//
// This file contains only the analysis. For convenience, this file also
// contains a helper function `runOneShotBufferize` that analyzes an op (and its
// nested ops) and then bufferizes it.
//
// Inplace bufferization decisions are passed from the analysis to the
// `TensorCopyInsertion` phase via `AnalysisState`. They can be printed for
// debugging purposes with `testAnalysisOnly`.
//
// Ops that do not implement `BufferizableOpInterface` can be analyzed but are
// treated conservatively. E.g., the analysis has to assume that their tensor
// OpOperands bufferize to memory writes. While such ops can be analyzed, they
// are not bufferized and remain in the IR. to_tensor and to_memref ops are
// inserted at the bufferization boundary.
//
// This analysis caters to high-performance codegen where buffer reuse is deemed
// critical: the analysis should fail if the bufferized form of the function
// needs to return a buffer, unless `allowReturnAllocs` is enabled.
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include <random>
#include <optional>
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
MLIR_DEFINE_EXPLICIT_TYPE_ID(mlir::bufferization::OneShotAnalysisState)
// Run mlir-opt with `-debug-only="one-shot-analysis"` for detailed debug
// output.
#define DEBUG_TYPE "one-shot-analysis"
using namespace mlir;
using namespace mlir::bufferization;
static bool isaTensor(Type t) { return isa<TensorType>(t); }
//===----------------------------------------------------------------------===//
// Bufferization-specific attribute manipulation.
// These are for testing and debugging only. Bufferization information is stored
// in OneShotBufferizationState. When run with `testAnalysisOnly`, the IR is
// annotated with the results of the analysis, so that they can be checked in
// tests.
//===----------------------------------------------------------------------===//
/// Attribute marker to specify op operands that bufferize in-place.
constexpr StringLiteral kInPlaceOperandsAttrName = "__inplace_operands_attr__";
constexpr StringLiteral kAliasSetAttrName = "__alias_set_attr__";
/// Mark whether OpOperand will be bufferized inplace.
static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) {
Operation *op = opOperand.getOwner();
SmallVector<StringRef> inPlaceVector;
if (auto attr = op->getAttr(kInPlaceOperandsAttrName)) {
inPlaceVector = SmallVector<StringRef>(llvm::to_vector<4>(
cast<ArrayAttr>(attr).getAsValueRange<StringAttr>()));
} else {
inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none");
for (OpOperand &opOperand : op->getOpOperands())
if (isa<TensorType>(opOperand.get().getType()))
inPlaceVector[opOperand.getOperandNumber()] = "false";
}
inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false";
op->setAttr(kInPlaceOperandsAttrName,
OpBuilder(op).getStrArrayAttr(inPlaceVector));
}
//===----------------------------------------------------------------------===//
// OneShotAnalysisState
//===----------------------------------------------------------------------===//
OneShotAnalysisState::OneShotAnalysisState(
Operation *op, const OneShotBufferizationOptions &options)
: AnalysisState(options, TypeID::get<OneShotAnalysisState>()) {
// Set up alias sets.
op->walk([&](Operation *op) {
for (Value v : op->getResults())
if (isa<TensorType>(v.getType()))
createAliasInfoEntry(v);
for (Region &r : op->getRegions())
for (Block &b : r.getBlocks())
for (auto bbArg : b.getArguments())
if (isa<TensorType>(bbArg.getType()))
createAliasInfoEntry(bbArg);
});
// Mark OpOperands in-place that must bufferize in-place.
op->walk([&](BufferizableOpInterface bufferizableOp) {
if (!options.isOpAllowed(bufferizableOp))
return WalkResult::skip();
for (OpOperand &opOperand : bufferizableOp->getOpOperands())
if (isa<TensorType>(opOperand.get().getType()))
if (bufferizableOp.mustBufferizeInPlace(opOperand, *this))
bufferizeInPlace(opOperand);
return WalkResult::advance();
});
}
void OneShotAnalysisState::applyOnEquivalenceClass(
Value v, function_ref<void(Value)> fun) const {
auto leaderIt = equivalentInfo.findLeader(v);
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
++mit) {
fun(*mit);
}
}
void OneShotAnalysisState::applyOnAliases(Value v,
function_ref<void(Value)> fun) const {
auto leaderIt = aliasInfo.findLeader(v);
for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) {
fun(*mit);
}
}
bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1,
Value v2) const {
return equivalentInfo.isEquivalent(v1, v2);
}
bool OneShotAnalysisState::areAliasingBufferizedValues(Value v1,
Value v2) const {
return aliasInfo.isEquivalent(v1, v2);
}
void OneShotAnalysisState::bufferizeInPlace(OpOperand &operand) {
if (inplaceBufferized.contains(&operand))
return;
inplaceBufferized.insert(&operand);
for (AliasingOpResult alias : getAliasingOpResults(operand))
aliasInfo.unionSets(alias.opResult, operand.get());
++statNumTensorInPlace;
}
void OneShotAnalysisState::bufferizeOutOfPlace(OpOperand &operand) {
assert(!inplaceBufferized.contains(&operand) &&
"OpOperand was already decided to bufferize inplace");
++statNumTensorOutOfPlace;
}
void OneShotAnalysisState::createAliasInfoEntry(Value v) {
aliasInfo.insert(v);
equivalentInfo.insert(v);
}
// Gather yielded tensors in `yieldedTensors` by querying all aliases. This is
// to ensure that such information is available during bufferization time.
// Alias information can no longer be queried once we have started modifying
// the IR.
void OneShotAnalysisState::gatherYieldedTensors(Operation *op) {
op->walk([&](Operation *returnOp) {
if (!isRegionReturnLike(returnOp) || !getOptions().isOpAllowed(returnOp))
return WalkResult::advance();
for (OpOperand &returnValOperand : returnOp->getOpOperands()) {
Value returnVal = returnValOperand.get();
// Skip non-tensor values.
if (!isa<TensorType>(returnVal.getType()))
continue;
// Add all aliases of the returned value. But only the ones that are in
// the same block.
applyOnAliases(returnVal, [&](Value v) {
if (auto bbArg = dyn_cast<BlockArgument>(v)) {
if (bbArg.getOwner()->getParentOp() == returnOp->getParentOp())
yieldedTensors.insert(bbArg);
return;
}
Operation *definingOp = v.getDefiningOp();
if (definingOp->getParentOp() == returnOp->getParentOp())
yieldedTensors.insert(v);
});
}
return WalkResult::advance();
});
}
void OneShotAnalysisState::gatherUndefinedTensorUses(Operation *op) {
op->walk([&](Operation *op) {
// Skip unknown ops.
auto bufferizableOp = getOptions().dynCastBufferizableOp(op);
if (!bufferizableOp)
return WalkResult::skip();
// Check all tensor OpResults.
for (OpResult opResult : op->getOpResults()) {
if (!isa<TensorType>(opResult.getType()))
continue;
// If there is no preceding definition, the tensor contents are
// undefined.
if (findDefinitionsCached(opResult).empty())
for (OpOperand &use : opResult.getUses())
undefinedTensorUses.insert(&use);
}
return WalkResult::advance();
});
}
bool OneShotAnalysisState::hasUndefinedContents(OpOperand *opOperand) const {
return undefinedTensorUses.contains(opOperand);
}
bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const {
return inplaceBufferized.contains(&opOperand);
}
bool OneShotAnalysisState::isTensorYielded(Value tensor) const {
return yieldedTensors.contains(tensor);
}
bool OneShotAnalysisState::isValueWritten(Value value) const {
bool isWritten = false;
applyOnAliases(value, [&](Value val) {
for (OpOperand &use : val.getUses())
if (isInPlace(use) && bufferizesToMemoryWrite(use))
isWritten = true;
});
return isWritten;
}
bool OneShotAnalysisState::isWritable(Value value) const {
// TODO: Out-of-place bufferized value could be considered writable.
if (auto bufferizableOp = getOptions().dynCastBufferizableOp(value))
return bufferizableOp.isWritable(value, *this);
// Query BufferizableOpInterface to see if the BlockArgument is writable.
if (auto bbArg = dyn_cast<BlockArgument>(value))
if (auto bufferizableOp =
getOptions().dynCastBufferizableOp(bbArg.getOwner()->getParentOp()))
return bufferizableOp.isWritable(bbArg, *this);
// Not a bufferizable op: The conservative answer is "not writable".
return false;
}
void OneShotAnalysisState::unionAliasSets(Value v1, Value v2) {
aliasInfo.unionSets(v1, v2);
}
void OneShotAnalysisState::unionEquivalenceClasses(Value v1, Value v2) {
equivalentInfo.unionSets(v1, v2);
}
OneShotAnalysisState::Extension::~Extension() = default;
//===----------------------------------------------------------------------===//
// Bufferization-specific alias analysis.
//===----------------------------------------------------------------------===//
/// Return true if opOperand has been decided to bufferize in-place.
static bool isInplaceMemoryWrite(OpOperand &opOperand,
const OneShotAnalysisState &state) {
// OpOperands that do not bufferize to a memory write do not write in-place.
if (!state.bufferizesToMemoryWrite(opOperand))
return false;
// Check current bufferization decisions.
return state.isInPlace(opOperand);
}
/// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors
/// properly dominates `b` and `b` is not inside `a`.
static bool happensBefore(Operation *a, Operation *b,
const DominanceInfo &domInfo) {
do {
// TODO: Instead of isProperAncestor + properlyDominates, we should use
// properlyDominatesImpl(a, b, /*enclosingOpOk=*/false)
if (a->isProperAncestor(b))
return false;
if (domInfo.properlyDominates(a, b))
return true;
} while ((a = a->getParentOp()));
return false;
}
/// Return `true` if op dominance can be used to rule out a read-after-write
/// conflicts based on the ordering of ops.
///
/// Generalized op dominance can often be used to rule out potential conflicts
/// due to "read happens before write". E.g., the following IR is not a RaW
/// conflict because the read happens *before* the write.
///
/// Example 1:
/// %0 = ... : tensor<?xf32> // DEF
/// "reading_op"(%0) : tensor<?xf32> // READ
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> // WRITE
///
/// This is no longer true inside loops (or repetitive regions). In such cases,
/// there may not be a meaningful `happensBefore` relationship because ops
/// could be executed multiple times. E.g.:
///
/// Example 2:
/// %0 = ... : tensor<?xf32> // DEF
/// scf.for ... {
/// "reading_op"(%0) : tensor<?xf32> // READ
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> // WRITE
/// ...
/// }
///
/// In the above example, reading_op happens before writing_op according to
/// op dominance. However, both ops may happen multiple times; in
/// particular, the second execution of reading_op happens after the first
/// execution of writing_op. This is problematic because the tensor %0 they
/// operate on (i.e., the "definition") is defined outside of the loop.
///
/// On a high-level, there is a potential RaW in a program if there exists a
/// possible program execution such that there is a sequence of DEF, followed
/// by WRITE, followed by READ. Each additional DEF resets the sequence.
///
/// E.g.:
/// No conflict: DEF, WRITE, DEF, READ
/// Potential conflict: DEF, READ, WRITE, READ, WRITE
///
/// Example 1 has no conflict: DEF, READ, WRITE
/// Example 2 has a potential conflict: DEF, (READ, WRITE)*
//
/// Example 3:
/// scf.for ... {
/// %0 = ... : tensor<?xf32>
/// "reading_op"(%0) : tensor<?xf32>
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
/// ...
/// }
/// This has no conflict: (DEF, READ, WRITE)*
///
/// Example 4:
/// %0 = ... : tensor<?xf32>
/// scf.for ... {
/// scf.for ... { "reading_op"(%0) }
/// %1 = "writing_op"(%0)
/// }
/// This has a potential conflict: DEF, ((READ)*, WRITE)*
///
/// Example 5:
/// %0 = ... : tensor<?xf32>
/// scf.for ... { %1 = "writing_op"(%0) }
/// scf.for ... { "reading_op"(%0) }
/// This has a potential conflict: DEF, WRITE*, READ*
///
/// The following rules are used to rule out RaW conflicts via ordering of ops:
///
/// 1. If the closest enclosing repetitive region of DEF is a proper ancestor of
/// a repetitive region that enclosing both READ and WRITE, we cannot rule
/// out RaW conflict due to the ordering of ops.
/// 2. Otherwise: There are no loops that interfere with our analysis; for
/// analysis purposes, we can assume that there are no loops/repetitive
/// regions. I.e., we can rule out a RaW conflict if READ happensBefore WRITE
/// or WRITE happensBefore DEF. (Checked in `hasReadAfterWriteInterference`.)
///
static bool canUseOpDominance(OpOperand *uRead, OpOperand *uWrite,
const SetVector<Value> &definitions,
AnalysisState &state) {
const BufferizationOptions &options = state.getOptions();
for (Value def : definitions) {
Region *rRead =
state.getEnclosingRepetitiveRegion(uRead->getOwner(), options);
Region *rDef = state.getEnclosingRepetitiveRegion(def, options);
// READ and DEF are in the same repetitive region. `happensBefore` can be
// used to rule out RaW conflicts due to op ordering.
if (rRead == rDef)
continue;
// Find the enclosing repetitive region of READ that is closest to DEF but
// not the repetitive region of DEF itself.
while (true) {
Region *nextRegion = getNextEnclosingRepetitiveRegion(rRead, options);
if (nextRegion == rDef)
break;
assert(nextRegion && "expected to find another repetitive region");
rRead = nextRegion;
}
// We cannot use op dominance if WRITE is inside the same repetitive region.
if (rRead->getParentOp()->isAncestor(uWrite->getOwner()))
return false;
}
return true;
}
/// Annotate IR with details about the detected RaW conflict.
static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite,
Value definition) {
static uint64_t counter = 0;
Operation *readingOp = uRead->getOwner();
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
OpBuilder b(conflictingWritingOp->getContext());
std::string id = "C_" + std::to_string(counter++);
std::string conflictingWriteAttr =
id +
"[CONFL-WRITE: " + std::to_string(uConflictingWrite->getOperandNumber()) +
"]";
conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr());
std::string readAttr =
id + "[READ: " + std::to_string(uRead->getOperandNumber()) + "]";
readingOp->setAttr(readAttr, b.getUnitAttr());
if (auto opResult = dyn_cast<OpResult>(definition)) {
std::string defAttr =
id + "[DEF: result " + std::to_string(opResult.getResultNumber()) + "]";
opResult.getDefiningOp()->setAttr(defAttr, b.getUnitAttr());
} else {
auto bbArg = cast<BlockArgument>(definition);
std::string defAttr =
id + "[DEF: bbArg " + std::to_string(bbArg.getArgNumber()) + "]";
bbArg.getOwner()->getParentOp()->setAttr(defAttr, b.getUnitAttr());
}
}
/// Given sets of uses and writes, return true if there is a RaW conflict under
/// the assumption that all given reads/writes alias the same buffer and that
/// all given writes bufferize inplace.
///
/// A conflict is: According to SSA use-def chains, a read R is supposed to read
/// the result of a definition W1. But because of bufferization decisions, R
/// actually reads another definition W2.
static bool
hasReadAfterWriteInterference(const DenseSet<OpOperand *> &usesRead,
const DenseSet<OpOperand *> &usesWrite,
const DominanceInfo &domInfo,
OneShotAnalysisState &state) {
const BufferizationOptions &options = state.getOptions();
for (OpOperand *uRead : usesRead) {
Operation *readingOp = uRead->getOwner();
LLVM_DEBUG(llvm::dbgs() << "\n- check conflict:\n");
LLVM_DEBUG(llvm::dbgs() << " uRead = operand " << uRead->getOperandNumber()
<< " of " << *readingOp << "\n");
// Find the definition of uRead by following the SSA use-def chain.
// E.g.:
//
// %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32>
// %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32>
// %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type
//
// In the above example, if uRead is the OpOperand of reading_op, the
// definition is %0. Note that operations that create an alias but do not
// bufferize to a memory write (such as ExtractSliceOp) are skipped.
const SetVector<Value> &definitions =
state.findDefinitionsCached(uRead->get());
if (definitions.empty()) {
// Fast path: No conflict if there are no definitions.
LLVM_DEBUG(llvm::dbgs()
<< " no conflict: read value has no definitions\n");
continue;
}
// Look for conflicting memory writes. Potential conflicts are writes to an
// alias that have been decided to bufferize inplace.
for (OpOperand *uConflictingWrite : usesWrite) {
LLVM_DEBUG(llvm::dbgs() << " unConflictingWrite = operand "
<< uConflictingWrite->getOperandNumber() << " of "
<< *uConflictingWrite->getOwner() << "\n");
// Check if op dominance can be used to rule out read-after-write
// conflicts.
bool useDominance =
canUseOpDominance(uRead, uConflictingWrite, definitions, state);
LLVM_DEBUG(llvm::dbgs() << "\n- useDominance = " << useDominance << "\n");
// Throughout this loop, check for multiple requirements that have to be
// met for uConflictingWrite to be an actual conflict.
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
// Inside of repetitive regions, ops may be executed multiple times and op
// dominance cannot be used to rule out conflicts.
if (useDominance) {
// No conflict if the readingOp dominates conflictingWritingOp, i.e.,
// the write is not visible when reading.
//
// Note: If ops are executed multiple times (e.g., because they are
// inside a loop), there may be no meaningful `happensBefore`
// relationship.
if (happensBefore(readingOp, conflictingWritingOp, domInfo)) {
LLVM_DEBUG(llvm::dbgs()
<< " no conflict: read happens before write\n");
continue;
}
// No conflict if the reading use equals the use of the conflicting
// write. A use cannot conflict with itself.
//
// Note: Just being the same op is not enough. It has to be the same
// use.
// Note: If the op is executed multiple times (e.g., because it is
// inside a loop), it may be conflicting with itself.
if (uConflictingWrite == uRead) {
LLVM_DEBUG(llvm::dbgs()
<< " no conflict: read and write are same use\n");
continue;
}
// Ops are not conflicting if they are in mutually exclusive regions.
//
// Note: If ops are executed multiple times (e.g., because they are
// inside a loop), mutually exclusive regions may be executed
// multiple times.
if (insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp)) {
LLVM_DEBUG(llvm::dbgs() << " no conflict: read and write are in "
"mutually exclusive regions\n");
continue;
}
}
// No conflict if the op interface says so.
if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) {
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) {
LLVM_DEBUG(llvm::dbgs()
<< " no conflict: op interace of reading op says 'no'\n");
continue;
}
}
if (conflictingWritingOp != readingOp) {
if (auto bufferizableOp =
options.dynCastBufferizableOp(conflictingWritingOp)) {
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite,
state)) {
LLVM_DEBUG(
llvm::dbgs()
<< " no conflict: op interace of writing op says 'no'\n");
continue;
}
}
}
// Check all possible definitions.
for (Value definition : definitions) {
LLVM_DEBUG(llvm::dbgs() << " * definition = " << definition << "\n");
// No conflict if the conflicting write happens before the definition.
if (Operation *defOp = definition.getDefiningOp()) {
if (happensBefore(conflictingWritingOp, defOp, domInfo)) {
// conflictingWritingOp happens before defOp. No conflict.
LLVM_DEBUG(llvm::dbgs()
<< " no conflict: write happens before definition\n");
continue;
}
// No conflict if conflictingWritingOp is contained in defOp.
if (defOp->isProperAncestor(conflictingWritingOp)) {
LLVM_DEBUG(
llvm::dbgs()
<< " no conflict: write is contained in definition\n");
continue;
}
} else {
auto bbArg = cast<BlockArgument>(definition);
Block *block = bbArg.getOwner();
if (!block->findAncestorOpInBlock(*conflictingWritingOp)) {
LLVM_DEBUG(llvm::dbgs() << " no conflict: definition is bbArg "
"and write happens outside of block\n");
// conflictingWritingOp happens outside of the block. No
// conflict.
continue;
}
}
// No conflict if the conflicting write and the definition are the same
// use.
AliasingOpResultList aliases =
state.getAliasingOpResults(*uConflictingWrite);
if (aliases.getNumAliases() == 1 &&
aliases.getAliases()[0].opResult == definition) {
LLVM_DEBUG(llvm::dbgs()
<< " no conflict: definition and write are same\n");
continue;
}
// All requirements are met. Conflict found!
if (options.printConflicts)
annotateConflict(uRead, uConflictingWrite, definition);
LLVM_DEBUG(llvm::dbgs() << " => RaW CONFLICT FOUND\n");
return true;
}
}
}
return false;
}
// Helper function to iterate on aliases of `root` and capture the writes.
static void getAliasingInplaceWrites(DenseSet<OpOperand *> &res, Value root,
const OneShotAnalysisState &state) {
state.applyOnAliases(root, [&](Value alias) {
for (auto &use : alias.getUses())
// Inplace write to a value that aliases root.
if (isInplaceMemoryWrite(use, state))
res.insert(&use);
});
}
// Helper function to iterate on aliases of `root` and capture the reads.
static void getAliasingReads(DenseSet<OpOperand *> &res, Value root,
const OneShotAnalysisState &state) {
state.applyOnAliases(root, [&](Value alias) {
for (auto &use : alias.getUses()) {
// Read of a value that aliases root.
if (state.bufferizesToMemoryRead(use)) {
res.insert(&use);
continue;
}
// Read of a dependent value in the SSA use-def chain. E.g.:
//
// %0 = ...
// %1 = tensor.extract_slice %0 {not_analyzed_yet}
// "read"(%1)
//
// In the above example, getAliasingReads(%0) includes the first OpOperand
// of the tensor.extract_slice op. The extract_slice itself does not read
// but its aliasing result is eventually fed into an op that does.
//
// Note: This is considered a "read" only if the use does not bufferize to
// a memory write. (We already ruled out memory reads. In case of a memory
// write, the buffer would be entirely overwritten; in the above example
// there would then be no flow of data from the extract_slice operand to
// its result's uses.)
if (!state.bufferizesToMemoryWrite(use)) {
AliasingOpResultList aliases = state.getAliasingOpResults(use);
if (llvm::any_of(aliases, [&](AliasingOpResult a) {
return state.isValueRead(a.opResult);
}))
res.insert(&use);
}
}
});
}
/// Return true if bufferizing `operand` inplace would create a conflict. A read
/// R and a write W of the same alias set is a conflict if inplace bufferization
/// of W changes the value read by R to a value different from the one that
/// would be expected by tracing back R's origin through SSA use-def chains.
/// A conflict can only be introduced by a new alias and/or an inplace
/// bufferization decision.
///
/// Example:
/// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?}
/// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32>
/// %e = tensor.extract_slice %1
/// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32>
/// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32>
///
/// In the above example, the two TransferWriteOps have already been decided to
/// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a
/// conflict because:
/// * According to SSA use-def chains, we expect to read the result of %1.
/// * However, adding an alias {%0, %t} would mean that the second
/// TransferWriteOp overwrites the result of the first one. Therefore, the
/// TransferReadOp would no longer be reading the result of %1.
///
/// If `checkConsistencyOnly` is true, this function checks if there is a
/// read-after-write conflict without bufferizing `operand` inplace. This would
/// indicate a problem with the current inplace bufferization decisions.
///
/// Note: If `checkConsistencyOnly`, this function may be called with a null
/// OpResult. In that case, only the consistency of bufferization decisions
/// involving aliases of the given OpOperand are checked.
static bool wouldCreateReadAfterWriteInterference(
OpOperand &operand, const DominanceInfo &domInfo,
OneShotAnalysisState &state, bool checkConsistencyOnly = false) {
// Collect reads and writes of all aliases of OpOperand and OpResult.
DenseSet<OpOperand *> usesRead, usesWrite;
getAliasingReads(usesRead, operand.get(), state);
getAliasingInplaceWrites(usesWrite, operand.get(), state);
for (AliasingOpResult alias : state.getAliasingOpResults(operand)) {
getAliasingReads(usesRead, alias.opResult, state);
getAliasingInplaceWrites(usesWrite, alias.opResult, state);
}
if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand))
usesWrite.insert(&operand);
return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state);
}
/// Annotate IR with details about the detected non-writability conflict.
static void annotateNonWritableTensor(Value value) {
static int64_t counter = 0;
OpBuilder b(value.getContext());
std::string id = "W_" + std::to_string(counter++);
if (auto opResult = dyn_cast<OpResult>(value)) {
std::string attr = id + "[NOT-WRITABLE: result " +
std::to_string(opResult.getResultNumber()) + "]";
opResult.getDefiningOp()->setAttr(attr, b.getUnitAttr());
} else {
auto bbArg = cast<BlockArgument>(value);
std::string attr = id + "[NOT-WRITABLE: bbArg " +
std::to_string(bbArg.getArgNumber()) + "]";
bbArg.getOwner()->getParentOp()->setAttr(attr, b.getUnitAttr());
}
}
/// Return true if bufferizing `operand` inplace would create a write to a
/// non-writable buffer.
static bool
wouldCreateWriteToNonWritableBuffer(OpOperand &operand,
OneShotAnalysisState &state,
bool checkConsistencyOnly = false) {
bool foundWrite =
!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand);
if (!foundWrite) {
// Collect writes of all aliases of OpOperand and OpResult.
DenseSet<OpOperand *> usesWrite;
getAliasingInplaceWrites(usesWrite, operand.get(), state);
for (AliasingOpResult alias : state.getAliasingOpResults(operand))
getAliasingInplaceWrites(usesWrite, alias.opResult, state);
foundWrite = !usesWrite.empty();
}
if (!foundWrite)
return false;
// Look for a read-only tensor among all aliases.
bool foundReadOnly = false;
auto checkReadOnly = [&](Value v) {
if (!state.isWritable(v)) {
foundReadOnly = true;
if (state.getOptions().printConflicts)
annotateNonWritableTensor(v);
}
};
state.applyOnAliases(operand.get(), checkReadOnly);
for (AliasingOpResult alias : state.getAliasingOpResults(operand))
state.applyOnAliases(alias.opResult, checkReadOnly);
if (foundReadOnly) {
LLVM_DEBUG(llvm::dbgs() << "=> NOT WRITABLE\n");
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Bufferization analyses.
//===----------------------------------------------------------------------===//
// Find the values that define the contents of the given value.
const llvm::SetVector<Value> &
OneShotAnalysisState::findDefinitionsCached(Value value) {
if (!cachedDefinitions.count(value))
cachedDefinitions[value] = findDefinitions(value);
return cachedDefinitions[value];
}
void OneShotAnalysisState::resetCache() {
AnalysisState::resetCache();
cachedDefinitions.clear();
}
/// Determine if `operand` can be bufferized in-place.
static LogicalResult
bufferizableInPlaceAnalysisImpl(OpOperand &operand, OneShotAnalysisState &state,
const DominanceInfo &domInfo) {
LLVM_DEBUG(
llvm::dbgs() << "//===-------------------------------------------===//\n"
<< "Analyzing operand #" << operand.getOperandNumber()
<< " of " << *operand.getOwner() << "\n");
bool foundInterference =
wouldCreateWriteToNonWritableBuffer(operand, state) ||
wouldCreateReadAfterWriteInterference(operand, domInfo, state);
if (foundInterference)
state.bufferizeOutOfPlace(operand);
else
state.bufferizeInPlace(operand);
LLVM_DEBUG(llvm::dbgs()
<< "//===-------------------------------------------===//\n");
return success();
}
LogicalResult
OneShotAnalysisState::analyzeSingleOp(Operation *op,
const DominanceInfo &domInfo) {
for (OpOperand &opOperand : op->getOpOperands())
if (isa<TensorType>(opOperand.get().getType()))
if (failed(bufferizableInPlaceAnalysisImpl(opOperand, *this, domInfo)))
return failure();
return success();
}
/// Return true if the given op has a tensor result or a tensor operand.
static bool hasTensorSemantics(Operation *op) {
bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
return hasTensorResult || hasTensorOperand;
}
/// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops.
static void equivalenceAnalysis(SmallVector<Operation *> &ops,
OneShotAnalysisState &state) {
for (Operation *op : ops) {
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) {
for (OpResult opResult : op->getOpResults()) {
if (!isa<TensorType>(opResult.getType()))
continue;
AliasingOpOperandList aliases = state.getAliasingOpOperands(opResult);
if (aliases.getNumAliases() == 0)
// Nothing to do if there are no aliasing OpOperands.
continue;
Value firstOperand = aliases.begin()->opOperand->get();
bool allEquivalent = true;
for (AliasingOpOperand alias : aliases) {
bool isEquiv = alias.relation == BufferRelation::Equivalent;
bool isInPlace = state.isInPlace(*alias.opOperand);
Value operand = alias.opOperand->get();
if (isEquiv && isInPlace && alias.isDefinite) {
// Found a definite, equivalent alias. Merge equivalence sets.
// There can only be one definite alias, so we can stop here.
state.unionEquivalenceClasses(opResult, operand);
allEquivalent = false;
break;
}
if (!isEquiv || !isInPlace)
allEquivalent = false;
if (!state.areEquivalentBufferizedValues(operand, firstOperand))
allEquivalent = false;
}
// If all "maybe" aliases are equivalent and the OpResult is not a new
// allocation, it is a definite, equivalent alias. E.g.:
//
// aliasingOpOperands(%r) = {(%t0, EQUIV, MAYBE), (%t1, EQUIV, MAYBE)}
// aliasingOpResults(%t0) = {(%r, EQUIV, MAYBE)}
// aliasingOpResults(%t1) = {(%r, EQUIV, MAYBE)}
// %r = arith.select %c, %t0, %t1 : tensor<?xf32>
//
// If %t0 and %t1 are equivalent, it is safe to union the equivalence
// classes of %r, %t0 and %t1.
if (allEquivalent && !bufferizableOp.bufferizesToAllocation(opResult))
state.unionEquivalenceClasses(opResult, firstOperand);
}
}
}
}
/// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained
/// in `op`.
static void equivalenceAnalysis(Operation *op, OneShotAnalysisState &state) {
// Traverse ops in PostOrder: Nested ops first, then enclosing ops.
SmallVector<Operation *> ops;
op->walk<WalkOrder::PostOrder>([&](Operation *op) {
// No tensors => no buffers.
if (none_of(op->getResultTypes(), isaTensor))
return;
ops.push_back(op);
});
equivalenceAnalysis(ops, state);
}
LogicalResult OneShotAnalysisState::analyzeOp(Operation *op,
const DominanceInfo &domInfo) {
// Collect ops so we can build our own reverse traversal.
SmallVector<Operation *> ops;
op->walk([&](Operation *op) {
// No tensors => no buffers.
if (!hasTensorSemantics(op))
return;
ops.push_back(op);
});
if (getOptions().analysisFuzzerSeed) {
// This is a fuzzer. For testing purposes only. Randomize the order in which
// operations are analyzed. The bufferization quality is likely worse, but
// we want to make sure that no assertions are triggered anywhere.
std::mt19937 g(getOptions().analysisFuzzerSeed);
llvm::shuffle(ops.begin(), ops.end(), g);
}
OneShotBufferizationOptions::AnalysisHeuristic heuristic =
getOptions().analysisHeuristic;
if (heuristic == OneShotBufferizationOptions::AnalysisHeuristic::BottomUp) {
// Default: Walk ops in reverse for better interference analysis.
for (Operation *op : reverse(ops))
if (failed(analyzeSingleOp(op, domInfo)))
return failure();
} else if (heuristic ==
OneShotBufferizationOptions::AnalysisHeuristic::TopDown) {
for (Operation *op : ops)
if (failed(analyzeSingleOp(op, domInfo)))
return failure();
} else {
llvm_unreachable("unsupported heuristic");
}
equivalenceAnalysis(op, *this);
return success();
}
/// Assert that the current bufferization decisions are consistent.
static LogicalResult checkAliasInfoConsistency(Operation *op,
const DominanceInfo &domInfo,
OneShotAnalysisState &state) {
const BufferizationOptions &options = state.getOptions();
WalkResult walkResult = op->walk([&](BufferizableOpInterface op) {
// Skip ops that are not in the filter.
if (!options.isOpAllowed(op.getOperation()))
return WalkResult::advance();
// Input IR may not contain any ToTensorOps without the "restrict"
// attribute. Such tensors may alias any other tensor, which is currently
// not handled in the analysis.
if (auto toTensorOp = dyn_cast<ToTensorOp>(op.getOperation())) {
if (!toTensorOp.getRestrict() && !toTensorOp->getUses().empty()) {
op->emitError("to_tensor ops without `restrict` are not supported by "
"One-Shot Analysis");
return WalkResult::interrupt();
}
}
for (OpOperand &opOperand : op->getOpOperands()) {
if (isa<TensorType>(opOperand.get().getType())) {
if (wouldCreateReadAfterWriteInterference(
opOperand, domInfo, state,
/*checkConsistencyOnly=*/true)) {
// This error can happen if certain "mustBufferizeInPlace" interface
// methods are implemented incorrectly, such that the IR already has
// a RaW conflict before making any bufferization decisions.
op->emitError("input IR has RaW conflict");
return WalkResult::interrupt();
}
}
}
return WalkResult::advance();
});
return success(!walkResult.wasInterrupted());
}
/// Annotate the IR with the result of the analysis. For testing/debugging only.
static void
annotateOpsWithBufferizationMarkers(Operation *op,
const OneShotAnalysisState &state) {
// Add __inplace_operands_attr__.
op->walk([&](Operation *op) {
for (OpOperand &opOperand : op->getOpOperands())
if (isa<TensorType>(opOperand.get().getType()))
setInPlaceOpOperand(opOperand, state.isInPlace(opOperand));
});
}
static void annotateOpsWithAliasSets(Operation *op,
const OneShotAnalysisState &state) {
AsmState asmState(op);
Builder b(op->getContext());
op->walk([&](Operation *op) {
SmallVector<Attribute> aliasSets;
for (OpResult opResult : op->getOpResults()) {
if (llvm::isa<TensorType>(opResult.getType())) {
SmallVector<Attribute> aliases;
state.applyOnAliases(opResult, [&](Value alias) {
std::string buffer;
llvm::raw_string_ostream stream(buffer);
alias.printAsOperand(stream, asmState);
aliases.push_back(b.getStringAttr(stream.str()));
});
aliasSets.push_back(b.getArrayAttr(aliases));
}
}
if (!aliasSets.empty())
op->setAttr(kAliasSetAttrName, b.getArrayAttr(aliasSets));
});
}
/// Assert that every allocation can be deallocated in the same block. I.e.,
/// every value that is returned or yielded from a block is:
/// * guaranteed to be aliasing a bbArg of that block or a parent block, or
/// * guaranteed to be aliasing an OpResult of a op in a parent block.
///
/// In that case, buffer deallocation is simple: Every allocated buffer can be
/// deallocated in the same block. Otherwise, the buffer deallocation pass must
/// be run.
///
/// Note: The current implementation checks for equivalent values instead of
/// aliasing values, which is stricter than needed. We can currently not check
/// for aliasing values because the analysis is a maybe-alias analysis and we
/// need a must-alias analysis here.
///
/// Example:
/// ```
/// %0 = "some_op" : tensor<?xf32>
/// %1 = scf.if %c -> (tensor<?xf32>) {
/// scf.yield %0 : tensor<?xf32>
/// } else {
/// %t = linalg.alloc_tensor : tensor<?xf32>
/// scf.yield %t : tensor<?xf32>
/// }
/// ```
///
/// In the above example, the second scf.yield op is problematic because the
/// yielded value %t is defined in the same block as the scf.yield op and
/// and bufferizes to a new allocation.
// TODO: Remove buffer deallocation from One-Shot Bufferize and fix the buffer
// deallocation pass.
static LogicalResult assertNoAllocsReturned(Operation *op,
const OneShotAnalysisState &state) {
LogicalResult status = success();
DominanceInfo domInfo(op);
op->walk([&](Operation *returnOp) {
if (!isRegionReturnLike(returnOp) ||
!state.getOptions().isOpAllowed(returnOp))
return WalkResult::advance();
for (OpOperand &returnValOperand : returnOp->getOpOperands()) {
Value returnVal = returnValOperand.get();
// Skip non-tensor values.
if (!isa<TensorType>(returnVal.getType()))
continue;
bool foundEquivValue = false;
state.applyOnEquivalenceClass(returnVal, [&](Value equivVal) {
if (auto bbArg = dyn_cast<BlockArgument>(equivVal)) {
Operation *definingOp = bbArg.getOwner()->getParentOp();
if (definingOp->isProperAncestor(returnOp))
foundEquivValue = true;
return;
}
Operation *definingOp = equivVal.getDefiningOp();
if (definingOp->getBlock()->findAncestorOpInBlock(
*returnOp->getParentOp()))
// Skip ops that happen after `returnOp` and parent ops.
if (happensBefore(definingOp, returnOp, domInfo))
foundEquivValue = true;
});
// Note: Returning/yielding buffer allocations is allowed only if
// `allowReturnAllocs` is set.
if (!foundEquivValue)
status = returnOp->emitError()
<< "operand #" << returnValOperand.getOperandNumber()
<< " may return/yield a new buffer allocation";
}
return WalkResult::advance();
});
return status;
}
LogicalResult bufferization::analyzeOp(Operation *op,
OneShotAnalysisState &state,
BufferizationStatistics *statistics) {
DominanceInfo domInfo(op);
const OneShotBufferizationOptions &options = state.getOptions();
if (failed(checkAliasInfoConsistency(op, domInfo, state)))
return failure();
// If the analysis fails, just return.
if (failed(state.analyzeOp(op, domInfo)))
return failure();
if (statistics) {
statistics->numTensorInPlace = state.getStatNumTensorInPlace();
statistics->numTensorOutOfPlace = state.getStatNumTensorOutOfPlace();
}
bool failedAnalysis = false;
if (!options.allowReturnAllocs)
failedAnalysis |= failed(assertNoAllocsReturned(op, state));
// Gather some extra analysis data.
state.gatherYieldedTensors(op);
state.gatherUndefinedTensorUses(op);
// Analysis verification: After setting up alias/equivalence sets, each op
// can check for expected invariants/limitations and fail the analysis if
// necessary.
op->walk([&](Operation *op) {
if (BufferizableOpInterface bufferizableOp =
options.dynCastBufferizableOp(op))
failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state));
});
// Annotate operations if we only want to report the analysis.
if (options.testAnalysisOnly)
annotateOpsWithBufferizationMarkers(op, state);
if (options.dumpAliasSets)
annotateOpsWithAliasSets(op, state);
return success(!failedAnalysis);
}
LogicalResult
bufferization::runOneShotBufferize(Operation *op,
const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
assert(!(options.copyBeforeWrite && options.testAnalysisOnly) &&
"invalid combination of bufferization flags");
if (!options.copyBeforeWrite) {
// If a buffer is copied before every write, no analysis is needed.
if (failed(insertTensorCopies(op, options, statistics)))
return failure();
}
if (options.testAnalysisOnly)
return success();
return bufferizeOp(op, options, /*copyBeforeWrite=*/options.copyBeforeWrite,
/*opFilter=*/nullptr, statistics);
}
|