1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Module Bufferization is an extension of One-Shot Bufferize that
// bufferizes function boundaries. It provides `BufferizableOpInterface`
// implementations for FuncOp, CallOp and ReturnOp.
//
// Module Bufferization is run via `runOneShotModuleBufferize(ModuleOp, ...)`.
// This function analyzes the given module and determines the order of analysis
// and bufferization: Functions that are called are processed before their
// respective callers.
//
// After analyzing a FuncOp, additional information about its bbArgs is
// gathered and stored in `FuncAnalysisState`.
//
// * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs
// for
// each tensor return value (if any).
// * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is
// read/written.
//
// Module Bufferization implements the following calling convention.
//
// * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always
// be written to in-place.
// * If a tensor operand of a CallOp is read after the CallOp, the operand of
// the CallOp must bufferize out-of-place.
//
// Example: The tensor.insert op bufferizes in-place because it is allowed to
// modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize
// out-of-place because `%t0` is modified by the callee but read by the
// tensor.extract op. The analysis of CallOps decides whether an OpOperand must
// bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`.
// ```
// func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> {
// %f = ... : f32
// %0 = tensor.insert %f into %t1[...] : tensor<?xf32>
// return %0 : tensor<?xf32>
// }
//
// func @caller() -> () {
// %t0 = ... : tensor<?xf32>
// %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>)
// %2 = tensor.extract %1[...] : tensor<?xf32>
// }
// ```
//
// Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot
// analyze the function body. In such a case, the CallOp analysis conservatively
// assumes that each tensor OpOperand is both read and written.
//
// TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked
// as "not reading" and/or "not writing".
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::bufferization::func_ext;
/// A mapping of FuncOps to their callers.
using FuncCallerMap = DenseMap<func::FuncOp, DenseSet<Operation *>>;
/// Get or create FuncAnalysisState.
static FuncAnalysisState &
getOrCreateFuncAnalysisState(OneShotAnalysisState &state) {
auto *result = state.getExtension<FuncAnalysisState>();
if (result)
return *result;
return state.addExtension<FuncAnalysisState>();
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) {
func::ReturnOp returnOp;
for (Block &b : funcOp.getBody()) {
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
namespace {
/// Annotate IR with the results of the analysis. For testing purposes only.
static void annotateEquivalentReturnBbArg(OpOperand &returnVal,
BlockArgument bbArg) {
const char *kEquivalentArgsAttr = "__equivalent_func_args__";
Operation *op = returnVal.getOwner();
SmallVector<int64_t> equivBbArgs;
if (op->hasAttr(kEquivalentArgsAttr)) {
auto attr = cast<ArrayAttr>(op->getAttr(kEquivalentArgsAttr));
equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
return cast<IntegerAttr>(a).getValue().getSExtValue();
}));
} else {
equivBbArgs.append(op->getNumOperands(), -1);
}
equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
OpBuilder b(op->getContext());
op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
}
/// Store function BlockArguments that are equivalent to/aliasing a returned
/// value in FuncAnalysisState.
static LogicalResult
aliasingFuncOpBBArgsAnalysis(FuncOp funcOp, OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
if (funcOp.getBody().empty()) {
// No function body available. Conservatively assume that every tensor
// return value may alias with any tensor bbArg.
FunctionType type = funcOp.getFunctionType();
for (const auto &inputIt : llvm::enumerate(type.getInputs())) {
if (!isa<TensorType>(inputIt.value()))
continue;
for (const auto &resultIt : llvm::enumerate(type.getResults())) {
if (!isa<TensorType>(resultIt.value()))
continue;
int64_t returnIdx = resultIt.index();
int64_t bbArgIdx = inputIt.index();
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
}
}
return success();
}
// Support only single return-terminated block in the function.
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
for (OpOperand &returnVal : returnOp->getOpOperands())
if (isa<RankedTensorType>(returnVal.get().getType()))
for (BlockArgument bbArg : funcOp.getArguments())
if (isa<RankedTensorType>(bbArg.getType())) {
int64_t returnIdx = returnVal.getOperandNumber();
int64_t bbArgIdx = bbArg.getArgNumber();
if (state.areEquivalentBufferizedValues(returnVal.get(), bbArg)) {
funcState.equivalentFuncArgs[funcOp][returnIdx] = bbArgIdx;
if (state.getOptions().testAnalysisOnly)
annotateEquivalentReturnBbArg(returnVal, bbArg);
}
if (state.areAliasingBufferizedValues(returnVal.get(), bbArg))
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
}
return success();
}
static void annotateFuncArgAccess(func::FuncOp funcOp, int64_t idx, bool isRead,
bool isWritten) {
OpBuilder b(funcOp.getContext());
Attribute accessType;
if (isRead && isWritten) {
accessType = b.getStringAttr("read-write");
} else if (isRead) {
accessType = b.getStringAttr("read");
} else if (isWritten) {
accessType = b.getStringAttr("write");
} else {
accessType = b.getStringAttr("none");
}
funcOp.setArgAttr(idx, BufferizationDialect::kBufferAccessAttrName,
accessType);
}
/// Determine which FuncOp bbArgs are read and which are written. When run on a
/// function with unknown ops, we conservatively assume that such ops bufferize
/// to a read + write.
static LogicalResult
funcOpBbArgReadWriteAnalysis(FuncOp funcOp, OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
for (int64_t idx = 0, e = funcOp.getFunctionType().getNumInputs(); idx < e;
++idx) {
// Skip non-tensor arguments.
if (!isa<TensorType>(funcOp.getFunctionType().getInput(idx)))
continue;
bool isRead;
bool isWritten;
if (auto accessAttr = funcOp.getArgAttrOfType<StringAttr>(
idx, BufferizationDialect::kBufferAccessAttrName)) {
// Buffer access behavior is specified on the function. Skip the analysis.
StringRef str = accessAttr.getValue();
isRead = str == "read" || str == "read-write";
isWritten = str == "write" || str == "read-write";
} else if (funcOp.getBody().empty()) {
// If the function has no body, conservatively assume that all args are
// read + written.
isRead = true;
isWritten = true;
} else {
// Analyze the body of the function.
BlockArgument bbArg = funcOp.getArgument(idx);
isRead = state.isValueRead(bbArg);
isWritten = state.isValueWritten(bbArg);
}
if (state.getOptions().testAnalysisOnly)
annotateFuncArgAccess(funcOp, idx, isRead, isWritten);
if (isRead)
funcState.readBbArgs[funcOp].insert(idx);
if (isWritten)
funcState.writtenBbArgs[funcOp].insert(idx);
}
return success();
}
} // namespace
/// Remove bufferization attributes on FuncOp arguments.
static void removeBufferizationAttributes(BlockArgument bbArg) {
auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kBufferLayoutAttrName);
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kWritableAttrName);
}
/// Return the func::FuncOp called by `callOp`.
static func::FuncOp getCalledFunction(func::CallOp callOp) {
SymbolRefAttr sym = llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee());
if (!sym)
return nullptr;
return dyn_cast_or_null<func::FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Gather equivalence info of CallOps.
/// Note: This only adds new equivalence info if the called function was already
/// analyzed.
// TODO: This does not handle cyclic function call graphs etc.
static void equivalenceAnalysis(func::FuncOp funcOp,
OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
funcOp->walk([&](func::CallOp callOp) {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
// No equivalence info available for the called function.
if (!funcState.equivalentFuncArgs.count(calledFunction))
return WalkResult::skip();
for (auto it : funcState.equivalentFuncArgs[calledFunction]) {
int64_t returnIdx = it.first;
int64_t bbargIdx = it.second;
if (!state.isInPlace(callOp->getOpOperand(bbargIdx)))
continue;
Value returnVal = callOp.getResult(returnIdx);
Value argVal = callOp->getOperand(bbargIdx);
state.unionEquivalenceClasses(returnVal, argVal);
}
return WalkResult::advance();
});
}
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
/// callee-caller order (i.e. callees without callers first).
/// Store the map of FuncOp to all its callers in `callerMap`.
/// Return `failure()` if a cycle of calls is detected or if we are unable to
/// retrieve the called FuncOp from any func::CallOp.
static LogicalResult
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
SmallVectorImpl<func::FuncOp> &orderedFuncOps,
FuncCallerMap &callerMap) {
// For each FuncOp, the set of functions called by it (i.e. the union of
// symbols of all nested func::CallOp).
DenseMap<func::FuncOp, DenseSet<func::FuncOp>> calledBy;
// For each FuncOp, the number of func::CallOp it contains.
DenseMap<func::FuncOp, unsigned> numberCallOpsContainedInFuncOp;
WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult {
if (!funcOp.getBody().empty()) {
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
if (!returnOp)
return funcOp->emitError()
<< "cannot bufferize a FuncOp with tensors and "
"without a unique ReturnOp";
}
numberCallOpsContainedInFuncOp[funcOp] = 0;
return funcOp.walk([&](func::CallOp callOp) -> WalkResult {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
callerMap[calledFunction].insert(callOp);
if (calledBy[calledFunction].insert(funcOp).second) {
numberCallOpsContainedInFuncOp[funcOp]++;
}
return WalkResult::advance();
});
});
if (res.wasInterrupted())
return failure();
// Iteratively remove function operation that do not call any of the
// functions remaining in the callCounter map and add them to the worklist.
while (!numberCallOpsContainedInFuncOp.empty()) {
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
[](auto entry) { return entry.getSecond() == 0; });
if (it == numberCallOpsContainedInFuncOp.end())
return moduleOp.emitOpError(
"expected callgraph to be free of circular dependencies.");
orderedFuncOps.push_back(it->getFirst());
for (auto callee : calledBy[it->getFirst()])
numberCallOpsContainedInFuncOp[callee]--;
numberCallOpsContainedInFuncOp.erase(it);
}
return success();
}
/// Fold return values that are memref casts and update function return types.
///
/// During FuncOp bufferization, the exact type of the returned memrefs (if any)
/// is not known yet. Therefore, the bufferization uses memref types with the
/// most generic layout map as function return types. After bufferizing the
/// entire function body, a more concise memref type can potentially be used for
/// the return type of the function.
static void foldMemRefCasts(func::FuncOp funcOp) {
if (funcOp.getBody().empty())
return;
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
SmallVector<Type> resultTypes;
for (OpOperand &operand : returnOp->getOpOperands()) {
if (auto castOp = operand.get().getDefiningOp<memref::CastOp>()) {
operand.set(castOp.getSource());
resultTypes.push_back(castOp.getSource().getType());
} else {
resultTypes.push_back(operand.get().getType());
}
}
auto newFuncType = FunctionType::get(
funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes);
funcOp.setType(newFuncType);
}
LogicalResult
mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp,
OneShotAnalysisState &state,
BufferizationStatistics *statistics) {
assert(state.getOptions().bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
FuncAnalysisState &funcState = getOrCreateFuncAnalysisState(state);
// A list of functions in the order in which they are analyzed + bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return failure();
// Analyze ops.
for (func::FuncOp funcOp : orderedFuncOps) {
if (!state.getOptions().isOpAllowed(funcOp))
continue;
// Now analyzing function.
funcState.startFunctionAnalysis(funcOp);
// Gather equivalence info for CallOps.
equivalenceAnalysis(funcOp, state, funcState);
// Analyze funcOp.
if (failed(analyzeOp(funcOp, state, statistics)))
return failure();
// Run some extra function analyses.
if (failed(aliasingFuncOpBBArgsAnalysis(funcOp, state, funcState)) ||
failed(funcOpBbArgReadWriteAnalysis(funcOp, state, funcState)))
return failure();
// Mark op as fully analyzed.
funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed;
}
return success();
}
void mlir::bufferization::removeBufferizationAttributesInModule(
ModuleOp moduleOp) {
moduleOp.walk([&](func::FuncOp op) {
for (BlockArgument bbArg : op.getArguments())
removeBufferizationAttributes(bbArg);
});
}
LogicalResult mlir::bufferization::bufferizeModuleOp(
ModuleOp moduleOp, const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
assert(options.bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
IRRewriter rewriter(moduleOp.getContext());
// A list of functions in the order in which they are analyzed + bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return failure();
// Bufferize functions.
for (func::FuncOp funcOp : orderedFuncOps) {
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
// would be invalidated.
bool copyBeforeWrite =
options.copyBeforeWrite ||
llvm::is_contained(options.noAnalysisFuncFilter, funcOp.getSymName());
if (failed(bufferizeOp(funcOp, options, copyBeforeWrite,
/*opFilter=*/nullptr, statistics)))
return failure();
// Change buffer return types to more precise layout maps.
if (options.inferFunctionResultLayout)
foldMemRefCasts(funcOp);
}
// Post-pass cleanup of function argument attributes.
removeBufferizationAttributesInModule(moduleOp);
return success();
}
LogicalResult mlir::bufferization::runOneShotModuleBufferize(
ModuleOp moduleOp, const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
assert(options.bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
assert(!(options.copyBeforeWrite && options.testAnalysisOnly) &&
"invalid combination of bufferization flags");
if (!options.copyBeforeWrite) {
if (options.noAnalysisFuncFilter.empty()) {
if (failed(insertTensorCopies(moduleOp, options, statistics)))
return failure();
} else {
// FuncOps whose names are specified in options.noAnalysisFuncFilter will
// not be analyzed. Ops in these FuncOps will not be analyzed as well.
OpFilter::Entry::FilterFn analysisFilterFn = [=](Operation *op) {
auto func = dyn_cast<func::FuncOp>(op);
if (!func)
func = op->getParentOfType<func::FuncOp>();
if (func)
return llvm::is_contained(options.noAnalysisFuncFilter,
func.getSymName());
return false;
};
OneShotBufferizationOptions updatedOptions(options);
updatedOptions.opFilter.denyOperation(analysisFilterFn);
if (failed(insertTensorCopies(moduleOp, updatedOptions, statistics)))
return failure();
}
}
if (options.testAnalysisOnly)
return success();
if (failed(bufferizeModuleOp(moduleOp, options, statistics)))
return failure();
return success();
}
|