1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
//===- TensorCopyInsertion.cpp - Resolve Bufferization Conflicts w/ Copies ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
namespace mlir {
namespace bufferization {
#define GEN_PASS_DEF_TENSORCOPYINSERTION
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
} // namespace bufferization
} // namespace mlir
using namespace mlir;
using namespace mlir::bufferization;
/// Resolve all operands that are also used inside of repetitive regions of the
/// same op. Such cases are not fully supported by One-Shot Bufferize.
///
/// E.g.:
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
/// "some_use"(%tensor)
/// ...
/// }
///
/// Is converted to:
/// %tensor_copy = bufferization.alloc_tensor copy(%tensor)
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
/// "some_use"(%tensor_copy)
/// ...
/// }
static void
resolveUsesInRepetitiveRegions(Operation *op,
const BufferizationOptions &options) {
IRRewriter rewriter(op->getContext());
AnalysisState state(options);
// Look for repetitive ops (loops).
op->walk([&](BufferizableOpInterface bufferizableOp) {
// Skip filtered ops.
if (!options.isOpAllowed(bufferizableOp.getOperation()))
return WalkResult::advance();
// Find all operands that are also used inside of a repetitive region of
// this op.
for (OpOperand &opOperand : bufferizableOp->getOpOperands()) {
Value operand = opOperand.get();
// Skip non-tensor operands.
if (!isa<TensorType>(operand.getType()))
continue;
// Skip operands that do not bufferize to memory writes.
if (!bufferizableOp.bufferizesToMemoryWrite(opOperand, state))
continue;
// Gather all uses inside repetitive regions.
SmallVector<OpOperand *> usesInsideRegion;
for (OpOperand &use : operand.getUses()) {
Operation *owner = use.getOwner();
if (!bufferizableOp->isProperAncestor(owner))
continue;
for (Region &r : bufferizableOp->getRegions()) {
if (r.findAncestorOpInRegion(*owner) &&
bufferizableOp.isRepetitiveRegion(r.getRegionNumber())) {
usesInsideRegion.push_back(&use);
break;
}
}
}
// Nothing to do if the operand is not used inside a repetitive region.
if (usesInsideRegion.empty())
continue;
// Insert a tensor copy and replace all uses inside of repetitive regions.
rewriter.setInsertionPoint(bufferizableOp);
auto tensorCopy = rewriter.create<AllocTensorOp>(
bufferizableOp->getLoc(), cast<TensorType>(operand.getType()),
/*dynamicSizes=*/ValueRange(),
/*copy=*/operand, /*memory_space=*/IntegerAttr());
for (OpOperand *use : usesInsideRegion)
use->set(tensorCopy);
}
return WalkResult::advance();
});
}
LogicalResult mlir::bufferization::insertTensorCopies(
Operation *op, const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
// Preprocessing: Resolve currently unsupported bufferization cases.
resolveUsesInRepetitiveRegions(op, options);
OneShotAnalysisState state(op, options);
// Run normal One-Shot Bufferize analysis or One-Shot Module Bufferize
// analysis depending on whether function boundary bufferization is enabled or
// not.
if (options.bufferizeFunctionBoundaries) {
if (failed(analyzeModuleOp(cast<ModuleOp>(op), state, statistics)))
return failure();
} else {
if (failed(analyzeOp(op, state, statistics)))
return failure();
}
if (options.testAnalysisOnly)
return success();
return insertTensorCopies(op, state);
}
LogicalResult
mlir::bufferization::insertTensorCopies(Operation *op,
const AnalysisState &state) {
IRRewriter rewriter(op->getContext());
StringRef escapeAttrName = BufferizationDialect::kEscapeAttrName;
WalkResult result = op->walk([&](Operation *op) {
auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op);
if (!bufferizableOp)
return WalkResult::skip();
// Find allocations without an `escape` attribute and add the attribute
// based on analysis results.
if (!op->hasAttr(escapeAttrName)) {
SmallVector<bool> escapeAttrValue;
bool foundTensorResult = false;
for (OpResult opResult : op->getOpResults()) {
if (!isa<TensorType>(opResult.getType()) ||
!bufferizableOp.bufferizesToAllocation(opResult)) {
escapeAttrValue.push_back(false);
continue;
}
foundTensorResult = true;
bool escape = !state.getOptions().createDeallocs ||
state.isTensorYielded(opResult);
escapeAttrValue.push_back(escape);
}
if (foundTensorResult)
op->setAttr(escapeAttrName, rewriter.getBoolArrayAttr(escapeAttrValue));
}
// Find inplacability conflicts and resolve them. (Typically with explicit
// tensor copies in the form of AllocTensorOps.)
rewriter.setInsertionPoint(op);
if (failed(bufferizableOp.resolveConflicts(rewriter, state)))
return WalkResult::interrupt();
return WalkResult::advance();
});
return failure(result.wasInterrupted());
}
|