File: Utils.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (346 lines) | stat: -rw-r--r-- 16,052 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//===- Utils.cpp - Utils for GPU transform ops ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/GPU/TransformOps/Utils.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Value.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"

using namespace mlir;
using namespace mlir::gpu;
using namespace mlir::transform;
using namespace mlir::transform::gpu;

#define DEBUG_TYPE "gpu-transforms"

#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
#define DBGS_ALIAS() (llvm::dbgs() << '[' << DEBUG_TYPE_ALIAS << "] ")

/// Return a flattened thread id for the workgroup with given sizes.
static Value buildLinearThreadId(RewriterBase &rewriter, Location loc,
                                 ArrayRef<OpFoldResult> blockDimsOfr) {
  LLVM_DEBUG(llvm::interleaveComma(
                 blockDimsOfr,
                 DBGS() << "----buildLinearThreadId with blockDimsOfr:  ");
             llvm::dbgs() << "\n");
  assert(blockDimsOfr.size() == 3 && "expected 3 workgroup sizes");
  AffineExpr tx, ty, tz, BDX, BDY;
  bindDims(rewriter.getContext(), tx, ty, tz);
  bindSymbols(rewriter.getContext(), BDX, BDY);
  IndexType indexType = rewriter.getIndexType();
  SmallVector<OpFoldResult> threadsAndWorkGroups{
      rewriter.create<ThreadIdOp>(loc, indexType, Dimension::x).getResult(),
      rewriter.create<ThreadIdOp>(loc, indexType, Dimension::y).getResult(),
      rewriter.create<ThreadIdOp>(loc, indexType, Dimension::z).getResult()};
  threadsAndWorkGroups.push_back(blockDimsOfr[0]);
  threadsAndWorkGroups.push_back(blockDimsOfr[1]);
  OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
      rewriter, loc, tx + ty * BDX + tz * BDX * BDY, threadsAndWorkGroups);
  return getValueOrCreateConstantIndexOp(rewriter, loc, ofr);
}

namespace mlir {
namespace transform {
namespace gpu {

GpuBlockIdBuilder::GpuBlockIdBuilder(MLIRContext *ctx,
                                     ArrayRef<OpFoldResult> blockDims,
                                     ArrayRef<int64_t> mappingSizes)
    : GpuIdBuilder(blockDims, mappingSizes) {
  mappingAttributes = {GPUBlockMappingAttr::get(ctx, Blocks::DimX),
                       GPUBlockMappingAttr::get(ctx, Blocks::DimY),
                       GPUBlockMappingAttr::get(ctx, Blocks::DimZ)},
  idBuilder = [](RewriterBase &rewriter, Location loc,
                 ArrayRef<int64_t> forallMappingSizes) {
    IndexType indexType = rewriter.getIndexType();
    SmallVector<Value> ids{
        rewriter.create<BlockIdOp>(loc, indexType, Dimension::x),
        rewriter.create<BlockIdOp>(loc, indexType, Dimension::y),
        rewriter.create<BlockIdOp>(loc, indexType, Dimension::z)};
    // Return 3-D ids for indexing rewrite and 3-D sizes and ids for
    // predicate generation.
    return IdBuilderResult{ids, SmallVector<int64_t>{forallMappingSizes}, ids};
  };
}

GpuThreadIdBuilder::GpuThreadIdBuilder(MLIRContext *ctx,
                                       ArrayRef<OpFoldResult> blockDims,
                                       ArrayRef<int64_t> mappingSizes)
    : GpuIdBuilder(blockDims, mappingSizes) {
  mappingAttributes = {GPUThreadMappingAttr::get(ctx, Threads::DimX),
                       GPUThreadMappingAttr::get(ctx, Threads::DimY),
                       GPUThreadMappingAttr::get(ctx, Threads::DimZ)};
  idBuilder = [](RewriterBase &rewriter, Location loc,
                 ArrayRef<int64_t> forallMappingSizes) {
    IndexType indexType = rewriter.getIndexType();
    SmallVector<Value> ids{
        rewriter.create<ThreadIdOp>(loc, indexType, Dimension::x),
        rewriter.create<ThreadIdOp>(loc, indexType, Dimension::y),
        rewriter.create<ThreadIdOp>(loc, indexType, Dimension::z)};
    // Return 3-D ids for indexing rewrite and 3-D sizes and ids for
    // predicate generation.
    return IdBuilderResult{ids, SmallVector<int64_t>{forallMappingSizes}, ids};
  };
}

GpuWarpIdBuilder::GpuWarpIdBuilder(MLIRContext *ctx,
                                   ArrayRef<OpFoldResult> blockDims,
                                   ArrayRef<int64_t> mappingSizes)
    : GpuIdBuilder(blockDims, mappingSizes) {
  mappingAttributes = {GPUWarpMappingAttr::get(ctx, Warps::DimX),
                       GPUWarpMappingAttr::get(ctx, Warps::DimY),
                       GPUWarpMappingAttr::get(ctx, Warps::DimZ)};
  idBuilder = [this](RewriterBase &rewriter, Location loc,
                     ArrayRef<int64_t> forallMappingSizes) {
    // Build the linear warp id and decompose it in the basis of
    // `forallMappingSizes`.
    Value linearId = buildLinearThreadId(rewriter, loc, this->blockDimsOfr);
    AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
    OpFoldResult warpIdOfr = affine::makeComposedFoldedAffineApply(
        rewriter, loc, d0.floorDiv(kWarpSize), {linearId});
    Value warpId = getValueOrCreateConstantIndexOp(rewriter, loc, warpIdOfr);
    // Sizes in [x, y, z] -> [z, y x] order to properly compute strides in
    // "row-major" order.
    SmallVector<int64_t> reverseBasisSizes(
        llvm::reverse(this->availableMappingSizes));
    SmallVector<int64_t> strides = computeStrides(reverseBasisSizes);
    SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, strides);
    SmallVector<Value> ids;
    // Reverse back to be in [x, y, z] order.
    for (AffineExpr e : llvm::reverse(delinearizingExprs))
      ids.push_back(
          affine::makeComposedAffineApply(rewriter, loc, e, {warpId}));

    // clang-format off
      LDBG("----linearId: " << linearId);
          LDBG("----warpId: " << warpId);
      LLVM_DEBUG(llvm::interleaveComma(reverseBasisSizes,
                                       DBGS() << "--delinearization basis: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(strides,
                                       DBGS() << "--delinearization strides: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(delinearizingExprs,
                                       DBGS() << "--delinearization exprs: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(ids, DBGS() << "--ids: ");
                 llvm::dbgs() << "\n";);
    // clang-format on

    // Return 3-D ids for indexing rewrite and 3-D sizes and ids for
    // predicate generation.
    return IdBuilderResult{ids, SmallVector<int64_t>{forallMappingSizes}, ids};
  };
}

GpuLinearIdBuilder::GpuLinearIdBuilder(MLIRContext *ctx,
                                       ArrayRef<OpFoldResult> blockDims,
                                       ArrayRef<int64_t> mappingSizes)
    : GpuIdBuilder(blockDims, mappingSizes) {
  mappingAttributes = {GPULinearIdMappingAttr::get(ctx, LinearId::DimX),
                       GPULinearIdMappingAttr::get(ctx, LinearId::DimY),
                       GPULinearIdMappingAttr::get(ctx, LinearId::DimZ)};
  idBuilder = [this](RewriterBase &rewriter, Location loc,
                     ArrayRef<int64_t> forallMappingSizes) {
    // Build the linear thread id and decompose it in the basis of
    // `forallMappingSizes`.
    Value linearId = buildLinearThreadId(rewriter, loc, this->blockDimsOfr);
    // Sizes in [x, y, z] -> [z, y x] order to properly compute strides in
    // "row-major" order.
    SmallVector<int64_t> reverseBasisSizes(llvm::reverse(forallMappingSizes));
    SmallVector<int64_t> strides = computeStrides(reverseBasisSizes);
    AffineExpr d0;
    bindDims(rewriter.getContext(), d0);
    SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, strides);
    SmallVector<Value> ids;
    // Reverse back to be in [x, y, z] order.
    for (AffineExpr e : llvm::reverse(delinearizingExprs))
      ids.push_back(
          affine::makeComposedAffineApply(rewriter, loc, e, {linearId}));

    // clang-format off
      LLVM_DEBUG(llvm::interleaveComma(reverseBasisSizes,
                                       DBGS() << "--delinearization basis: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(strides,
                                       DBGS() << "--delinearization strides: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(delinearizingExprs,
                                       DBGS() << "--delinearization exprs: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(ids, DBGS() << "--ids: ");
                 llvm::dbgs() << "\n";);
    // clang-format on

    // Compute and return the 1-D actual mapping size spanned by the linearId,
    // it will be used to predicate against the linearized total number of
    // threads.
    int64_t actualMappingSize = 1;
    for (int64_t s : forallMappingSizes)
      actualMappingSize *= s;

    // Return 3-D ids for indexing rewrite and 1-D size and id for
    // predicate generation.
    return IdBuilderResult{ids, SmallVector<int64_t>{actualMappingSize},
                           SmallVector<Value>{linearId}};
  };
}

DiagnosedSilenceableFailure checkGpuLimits(TransformOpInterface transformOp,
                                           std::optional<int64_t> gridDimX,
                                           std::optional<int64_t> gridDimY,
                                           std::optional<int64_t> gridDimZ,
                                           std::optional<int64_t> blockDimX,
                                           std::optional<int64_t> blockDimY,
                                           std::optional<int64_t> blockDimZ) {

  // TODO: pass a configuration object to set the limits properly.
  static constexpr int maxTotalBlockdim = 1024;
  static constexpr int maxBlockdimx = 1024;
  static constexpr int maxBlockdimy = 1024;
  static constexpr int maxBlockdimz = 64;
  static constexpr int maxTotalGriddim = 2147483647;
  static constexpr int maxGriddimx = 2147483647;
  static constexpr int maxGriddimy = 65535;
  static constexpr int maxGriddimz = 65535;

  if ((blockDimX.value_or(1) * blockDimY.value_or(1) * blockDimZ.value_or(1)) >
          maxTotalBlockdim ||
      (gridDimX.value_or(1) * gridDimY.value_or(1) * gridDimZ.value_or(1)) >
          maxTotalGriddim ||
      blockDimX.value_or(1) > maxBlockdimx ||
      blockDimY.value_or(1) > maxBlockdimy ||
      blockDimZ.value_or(1) > maxBlockdimz ||
      gridDimY.value_or(1) > maxGriddimy ||
      gridDimZ.value_or(1) > maxGriddimz ||
      gridDimX.value_or(1) > maxGriddimx) {
    return transformOp.emitSilenceableError()
           << "Trying to launch a GPU kernel with grid_dims = ("
           << gridDimX.value_or(1) << ", " << gridDimY.value_or(1) << ", "
           << gridDimZ.value_or(1) << ") block_dims = ("
           << blockDimX.value_or(1) << ", " << blockDimY.value_or(1) << ", "
           << blockDimZ.value_or(1) << "). It is larger than the limits.";
  }
  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure createGpuLaunch(
    RewriterBase &rewriter, Location loc, TransformOpInterface transformOp,
    LaunchOp &launchOp, std::optional<int64_t> gridDimX,
    std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
    std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
    std::optional<int64_t> blockDimZ) {
  DiagnosedSilenceableFailure diag =
      checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
                     blockDimY, blockDimZ);
  if (!diag.succeeded())
    return diag;

  auto createConst = [&](int dim) {
    return rewriter.create<arith::ConstantIndexOp>(loc, dim);
  };
  OpBuilder::InsertionGuard guard(rewriter);
  Value one = createConst(1);
  Value gridSizeX = gridDimX.has_value() ? createConst(gridDimX.value()) : one;
  Value gridSizeY = gridDimY.has_value() ? createConst(gridDimY.value()) : one;
  Value gridSizeZ = gridDimZ.has_value() ? createConst(gridDimZ.value()) : one;
  Value blkSizeX = blockDimX.has_value() ? createConst(blockDimX.value()) : one;
  Value blkSizeY = blockDimY.has_value() ? createConst(blockDimY.value()) : one;
  Value blkSizeZ = blockDimZ.has_value() ? createConst(blockDimZ.value()) : one;
  launchOp = rewriter.create<LaunchOp>(loc, gridSizeX, gridSizeY, gridSizeZ,
                                       blkSizeX, blkSizeY, blkSizeZ);
  rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
  rewriter.create<TerminatorOp>(loc);
  return DiagnosedSilenceableFailure::success();
}

/// Alter kernel configuration of the given kernel.
DiagnosedSilenceableFailure alterGpuLaunch(
    RewriterBase &rewriter, LaunchOp gpuLaunch,
    TransformOpInterface transformOp, std::optional<int64_t> gridDimX,
    std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
    std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
    std::optional<int64_t> blockDimZ) {
  DiagnosedSilenceableFailure diag =
      checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
                     blockDimY, blockDimZ);
  if (!diag.succeeded())
    return diag;

  KernelDim3 currentBlockdim = gpuLaunch.getBlockSizeOperandValues();
  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPointAfterValue(currentBlockdim.x);
  auto createConstValue = [&](int dim) {
    return rewriter.create<arith::ConstantIndexOp>(currentBlockdim.x.getLoc(),
                                                   dim);
  };

  if (gridDimX.has_value())
    gpuLaunch.getGridSizeXMutable().assign(createConstValue(gridDimX.value()));
  if (gridDimY.has_value())
    gpuLaunch.getGridSizeYMutable().assign(createConstValue(gridDimY.value()));
  if (gridDimZ.has_value())
    gpuLaunch.getGridSizeZMutable().assign(createConstValue(gridDimZ.value()));
  if (blockDimX.has_value())
    gpuLaunch.getBlockSizeXMutable().assign(
        createConstValue(blockDimX.value()));
  if (blockDimY.has_value())
    gpuLaunch.getBlockSizeYMutable().assign(
        createConstValue(blockDimY.value()));
  if (blockDimZ.has_value())
    gpuLaunch.getBlockSizeZMutable().assign(
        createConstValue(blockDimZ.value()));
  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure
findTopLevelForallOp(Operation *target, scf::ForallOp &topLevelForallOp,
                     TransformOpInterface transformOp) {
  auto walkResult = target->walk([&](scf::ForallOp forallOp) {
    if (forallOp->getParentOfType<scf::ForallOp>())
      return WalkResult::advance();
    if (topLevelForallOp)
      // TODO: Handle multiple forall if they are independent.
      return WalkResult::interrupt();
    topLevelForallOp = forallOp;
    return WalkResult::advance();
  });

  if (walkResult.wasInterrupted())
    return transformOp.emitSilenceableError()
           << "could not find a unique topLevel scf.forall";
  return DiagnosedSilenceableFailure::success();
}

} // namespace gpu
} // namespace transform
} // namespace mlir