File: KernelOutlining.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (445 lines) | stat: -rw-r--r-- 18,458 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
//===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the GPU dialect kernel outlining pass.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/GPU/Transforms/Passes.h"

#include "mlir/AsmParser/AsmParser.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/RegionUtils.h"
#include <limits>

namespace mlir {
#define GEN_PASS_DEF_GPULAUNCHSINKINDEXCOMPUTATIONS
#define GEN_PASS_DEF_GPUKERNELOUTLINING
#include "mlir/Dialect/GPU/Transforms/Passes.h.inc"
} // namespace mlir

using namespace mlir;

template <typename OpTy>
static void createForAllDimensions(OpBuilder &builder, Location loc,
                                   SmallVectorImpl<Value> &values) {
  for (auto dim : {gpu::Dimension::x, gpu::Dimension::y, gpu::Dimension::z})
    values.push_back(builder.create<OpTy>(loc, builder.getIndexType(), dim));
}

/// Adds operations generating block/thread ids and grid/block dimensions at the
/// beginning of the `launchFuncOpBody` region. Add mapping from argument in
/// entry block of `launchOpBody`, to the corresponding result value of the
/// added operations.
static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody,
                                     Region &launchOpBody, IRMapping &map) {
  OpBuilder builder(loc->getContext());
  Block &firstBlock = launchOpBody.front();
  builder.setInsertionPointToStart(&launchFuncOpBody.front());
  SmallVector<Value, 12> indexOps;
  createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
  createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
  createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
  createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
  // Replace the leading 12 function args with the respective thread/block index
  // operations. Iterate backwards since args are erased and indices change.
  for (const auto &indexOp : enumerate(indexOps))
    map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
}

/// Identifies operations that are beneficial to sink into kernels. These
/// operations may not have side-effects, as otherwise sinking (and hence
/// duplicating them) is not legal.
static bool isLikelyAnIndexComputation(Operation *op) {
  return matchPattern(op, m_Constant()) ||
         isa<memref::DimOp, arith::SelectOp, arith::CmpIOp>(op);
}

/// For a given operation `op`, computes whether it is beneficial to sink the
/// operation into the kernel. An operation can be sunk if doing so does not
/// introduce new kernel arguments. Whether a value is already available in the
/// kernel (and hence does not introduce new arguments) is checked by
/// querying `existingDependencies` and `availableValues`.
/// If an operand is not yet available, we recursively check whether it can be
/// made available by siking its defining op.
/// Operations that are indentified for sinking are added to `beneficiaryOps` in
/// the order they should appear in the kernel. Furthermore, `availableValues`
/// is updated with results that will be available after sinking the identified
/// ops.
static bool extractBeneficiaryOps(
    Operation *op, const SetVector<Value> &existingDependencies,
    SetVector<Operation *> &beneficiaryOps,
    llvm::SmallPtrSetImpl<Value> &availableValues,
    llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) {
  if (beneficiaryOps.count(op))
    return true;

  if (!isSinkingBeneficiary(op))
    return false;

  for (Value operand : op->getOperands()) {
    // It is already visible in the kernel, keep going.
    if (availableValues.count(operand))
      continue;
    // Else check whether it can be made available via sinking or already is a
    // dependency.
    Operation *definingOp = operand.getDefiningOp();
    if ((!definingOp || !extractBeneficiaryOps(definingOp, existingDependencies,
                                               beneficiaryOps, availableValues,
                                               isSinkingBeneficiary)) &&
        !existingDependencies.count(operand))
      return false;
  }
  // We will sink the operation, mark its results as now available.
  beneficiaryOps.insert(op);
  for (Value result : op->getResults())
    availableValues.insert(result);
  return true;
}

LogicalResult mlir::sinkOperationsIntoLaunchOp(
    gpu::LaunchOp launchOp,
    llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) {
  assert(isSinkingBeneficiary);
  Region &launchOpBody = launchOp.getBody();

  // Identify uses from values defined outside of the scope of the launch
  // operation.
  SetVector<Value> sinkCandidates;
  getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);

  SetVector<Operation *> toBeSunk;
  llvm::SmallPtrSet<Value, 4> availableValues;
  for (Value operand : sinkCandidates) {
    Operation *operandOp = operand.getDefiningOp();
    if (!operandOp)
      continue;
    extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues,
                          isSinkingBeneficiary);
  }

  // Insert operations so that the defs get cloned before uses.
  IRMapping map;
  OpBuilder builder(launchOpBody);
  for (Operation *op : toBeSunk) {
    Operation *clonedOp = builder.clone(*op, map);
    // Only replace uses within the launch op.
    for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults()))
      replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair),
                                 launchOp.getBody());
  }
  return success();
}

/// Return the provided KernelDim3 as an array of i32 constants if possible.
static DenseI32ArrayAttr maybeConstantDimsAttr(gpu::KernelDim3 dims) {
  SmallVector<int32_t, 3> constants;
  MLIRContext *ctx = dims.x.getContext();
  for (Value v : {dims.x, dims.y, dims.z}) {
    APInt constValue;
    if (!matchPattern(v, m_ConstantInt(&constValue)))
      return nullptr;
    // In the event someone called for a too-large block or grid dimension,
    // don't set bounds as it is likely to cause more confusing behavior.
    if (constValue.ugt(std::numeric_limits<uint32_t>::max()))
      return nullptr;
    constants.push_back(
        constValue.getLimitedValue(std::numeric_limits<uint32_t>::max()));
  }
  return DenseI32ArrayAttr::get(ctx, constants);
}

/// Outline the `gpu.launch` operation body into a kernel function. Replace
/// `gpu.terminator` operations by `gpu.return` in the generated function.
/// Set block and grid size bounds if known.
static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
                                            StringRef kernelFnName,
                                            SetVector<Value> &operands) {
  Location loc = launchOp.getLoc();
  // Create a builder with no insertion point, insertion will happen separately
  // due to symbol table manipulation.
  OpBuilder builder(launchOp.getContext());
  Region &launchOpBody = launchOp.getBody();

  // Identify uses from values defined outside of the scope of the launch
  // operation.
  getUsedValuesDefinedAbove(launchOpBody, operands);

  // Create the gpu.func operation.
  SmallVector<Type, 4> kernelOperandTypes;
  kernelOperandTypes.reserve(operands.size());
  for (Value operand : operands) {
    kernelOperandTypes.push_back(operand.getType());
  }
  FunctionType type =
      FunctionType::get(launchOp.getContext(), kernelOperandTypes, {});
  auto outlinedFunc = builder.create<gpu::GPUFuncOp>(
      loc, kernelFnName, type,
      TypeRange(ValueRange(launchOp.getWorkgroupAttributions())),
      TypeRange(ValueRange(launchOp.getPrivateAttributions())));
  outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
                        builder.getUnitAttr());

  // If we can infer bounds on the grid and/or block sizes from the arguments
  // to the launch op, propagate them to the generated kernel. This is safe
  // because multiple launches with the same body are not deduplicated.
  if (auto blockBounds =
          maybeConstantDimsAttr(launchOp.getBlockSizeOperandValues()))
    outlinedFunc->setAttr(gpu::GPUFuncOp::getKnownBlockSizeAttrName(),
                          blockBounds);
  if (auto gridBounds =
          maybeConstantDimsAttr(launchOp.getGridSizeOperandValues()))
    outlinedFunc->setAttr(gpu::GPUFuncOp::getKnownGridSizeAttrName(),
                          gridBounds);

  IRMapping map;

  // Map the arguments corresponding to the launch parameters like blockIdx,
  // threadIdx, etc.
  Region &outlinedFuncBody = outlinedFunc.getBody();
  injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map);

  // Map memory attributions from the LaunOp op to the GPUFuncOp attributions.
  for (const auto &[launchArg, funcArg] :
       llvm::zip(launchOp.getWorkgroupAttributions(),
                 outlinedFunc.getWorkgroupAttributions()))
    map.map(launchArg, funcArg);
  for (const auto &[launchArg, funcArg] :
       llvm::zip(launchOp.getPrivateAttributions(),
                 outlinedFunc.getPrivateAttributions()))
    map.map(launchArg, funcArg);

  // Map arguments from gpu.launch region to the arguments of the gpu.func
  // operation.
  Block &entryBlock = outlinedFuncBody.front();
  for (const auto &operand : enumerate(operands))
    map.map(operand.value(), entryBlock.getArgument(operand.index()));

  // Clone the region of the gpu.launch operation into the gpu.func operation.
  // TODO: If cloneInto can be modified such that if a mapping for
  // a block exists, that block will be used to clone operations into (at the
  // end of the block), instead of creating a new block, this would be much
  // cleaner.
  launchOpBody.cloneInto(&outlinedFuncBody, map);

  // Branch from entry of the gpu.func operation to the block that is cloned
  // from the entry block of the gpu.launch operation.
  Block &launchOpEntry = launchOpBody.front();
  Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry);
  builder.setInsertionPointToEnd(&entryBlock);
  builder.create<cf::BranchOp>(loc, clonedLaunchOpEntry);

  outlinedFunc.walk([](gpu::TerminatorOp op) {
    OpBuilder replacer(op);
    replacer.create<gpu::ReturnOp>(op.getLoc());
    op.erase();
  });
  return outlinedFunc;
}

gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp,
                                       StringRef kernelFnName,
                                       llvm::SmallVectorImpl<Value> &operands) {
  DenseSet<Value> inputOperandSet;
  inputOperandSet.insert(operands.begin(), operands.end());
  SetVector<Value> operandSet(operands.begin(), operands.end());
  auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet);
  for (auto operand : operandSet) {
    if (!inputOperandSet.count(operand))
      operands.push_back(operand);
  }
  return funcOp;
}

/// Replace `gpu.launch` operations with an `gpu.launch_func` operation
/// launching `kernelFunc`. The kernel func contains the body of the
/// `gpu.launch` with constant region arguments inlined.
static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
                                  gpu::GPUFuncOp kernelFunc,
                                  ValueRange operands) {
  OpBuilder builder(launchOp);
  // The launch op has an optional dynamic shared memory size. If it doesn't
  // exist, we use zero.
  Value asyncToken = launchOp.getAsyncToken();
  auto launchFunc = builder.create<gpu::LaunchFuncOp>(
      launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
      launchOp.getBlockSizeOperandValues(),
      launchOp.getDynamicSharedMemorySize(), operands,
      asyncToken ? asyncToken.getType() : nullptr,
      launchOp.getAsyncDependencies());
  launchOp.replaceAllUsesWith(launchFunc);
  launchOp.erase();
}

namespace {
/// Pass that moves ops which are likely an index computation into gpu.launch
/// body.
class GpuLaunchSinkIndexComputationsPass
    : public impl::GpuLaunchSinkIndexComputationsBase<
          GpuLaunchSinkIndexComputationsPass> {
public:
  void runOnOperation() override {
    Operation *op = getOperation();
    if (op->walk([](gpu::LaunchOp launch) {
            // Pull in instructions that can be sunk
            if (failed(sinkOperationsIntoLaunchOp(launch,
                                                  isLikelyAnIndexComputation)))
              return WalkResult::interrupt();

            return WalkResult::advance();
          }).wasInterrupted())
      signalPassFailure();
  }
};

/// Pass that moves the kernel of each LaunchOp into its separate nested module.
///
/// This pass moves the kernel code of each LaunchOp into a function created
/// inside a nested module. It also creates an external function of the same
/// name in the parent module.
///
/// The gpu.modules are intended to be compiled to a cubin blob independently in
/// a separate pass. The external functions can then be annotated with the
/// symbol of the cubin accessor function.
class GpuKernelOutliningPass
    : public impl::GpuKernelOutliningBase<GpuKernelOutliningPass> {
public:
  GpuKernelOutliningPass(StringRef dlStr) {
    if (!dlStr.empty() && !dataLayoutStr.hasValue())
      dataLayoutStr = dlStr.str();
  }

  GpuKernelOutliningPass(const GpuKernelOutliningPass &other)
      : GpuKernelOutliningBase(other), dataLayoutSpec(other.dataLayoutSpec) {
    dataLayoutStr = other.dataLayoutStr.getValue();
  }

  LogicalResult initialize(MLIRContext *context) override {
    // Initialize the data layout specification from the data layout string.
    if (!dataLayoutStr.empty()) {
      Attribute resultAttr = mlir::parseAttribute(dataLayoutStr, context);
      if (!resultAttr)
        return failure();

      dataLayoutSpec = dyn_cast<DataLayoutSpecInterface>(resultAttr);
      if (!dataLayoutSpec)
        return failure();
    }

    return success();
  }

  void runOnOperation() override {
    SymbolTable symbolTable(getOperation());
    bool modified = false;
    for (auto func : getOperation().getOps<func::FuncOp>()) {
      // Insert just after the function.
      Block::iterator insertPt(func->getNextNode());
      auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
        SetVector<Value> operands;
        std::string kernelFnName =
            Twine(op->getParentOfType<func::FuncOp>().getName(), "_kernel")
                .str();

        gpu::GPUFuncOp outlinedFunc =
            outlineKernelFuncImpl(op, kernelFnName, operands);

        // Create nested module and insert outlinedFunc. The module will
        // originally get the same name as the function, but may be renamed on
        // insertion into the parent module.
        auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
        symbolTable.insert(kernelModule, insertPt);

        // Potentially changes signature, pulling in constants.
        convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef());
        modified = true;
        return WalkResult::advance();
      });
      if (funcWalkResult.wasInterrupted())
        return signalPassFailure();
    }

    // If any new module was inserted in this module, annotate this module as
    // a container module.
    if (modified)
      getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
                              UnitAttr::get(&getContext()));
  }

private:
  /// Returns a gpu.module containing kernelFunc and all callees (recursive).
  gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
                                      const SymbolTable &parentSymbolTable) {
    // TODO: This code cannot use an OpBuilder because it must be inserted into
    // a SymbolTable by the caller. SymbolTable needs to be refactored to
    // prevent manual building of Ops with symbols in code using SymbolTables
    // and then this needs to use the OpBuilder.
    auto *context = getOperation().getContext();
    OpBuilder builder(context);
    auto kernelModule = builder.create<gpu::GPUModuleOp>(kernelFunc.getLoc(),
                                                         kernelFunc.getName());

    // If a valid data layout spec was provided, attach it to the kernel module.
    // Otherwise, the default data layout will be used.
    if (dataLayoutSpec)
      kernelModule->setAttr(DLTIDialect::kDataLayoutAttrName, dataLayoutSpec);

    SymbolTable symbolTable(kernelModule);
    symbolTable.insert(kernelFunc);

    SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
    while (!symbolDefWorklist.empty()) {
      if (std::optional<SymbolTable::UseRange> symbolUses =
              SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
        for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
          StringRef symbolName =
              cast<FlatSymbolRefAttr>(symbolUse.getSymbolRef()).getValue();
          if (symbolTable.lookup(symbolName))
            continue;

          Operation *symbolDefClone =
              parentSymbolTable.lookup(symbolName)->clone();
          symbolDefWorklist.push_back(symbolDefClone);
          symbolTable.insert(symbolDefClone);
        }
      }
    }

    return kernelModule;
  }

  Option<std::string> dataLayoutStr{
      *this, "data-layout-str",
      llvm::cl::desc("String containing the data layout specification to be "
                     "attached to the GPU kernel module")};

  DataLayoutSpecInterface dataLayoutSpec;
};

} // namespace

std::unique_ptr<Pass> mlir::createGpuLauchSinkIndexComputationsPass() {
  return std::make_unique<GpuLaunchSinkIndexComputationsPass>();
}

std::unique_ptr<OperationPass<ModuleOp>>
mlir::createGpuKernelOutliningPass(StringRef dataLayoutStr) {
  return std::make_unique<GpuKernelOutliningPass>(dataLayoutStr);
}