1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
//===- IndexOps.cpp - Index operation definitions --------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Index/IR/IndexOps.h"
#include "mlir/Dialect/Index/IR/IndexAttrs.h"
#include "mlir/Dialect/Index/IR/IndexDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Interfaces/Utils/InferIntRangeCommon.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::index;
//===----------------------------------------------------------------------===//
// IndexDialect
//===----------------------------------------------------------------------===//
void IndexDialect::registerOperations() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Index/IR/IndexOps.cpp.inc"
>();
}
Operation *IndexDialect::materializeConstant(OpBuilder &b, Attribute value,
Type type, Location loc) {
// Materialize bool constants as `i1`.
if (auto boolValue = dyn_cast<BoolAttr>(value)) {
if (!type.isSignlessInteger(1))
return nullptr;
return b.create<BoolConstantOp>(loc, type, boolValue);
}
// Materialize integer attributes as `index`.
if (auto indexValue = dyn_cast<IntegerAttr>(value)) {
if (!llvm::isa<IndexType>(indexValue.getType()) ||
!llvm::isa<IndexType>(type))
return nullptr;
assert(indexValue.getValue().getBitWidth() ==
IndexType::kInternalStorageBitWidth);
return b.create<ConstantOp>(loc, indexValue);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Fold Utilities
//===----------------------------------------------------------------------===//
/// Fold an index operation irrespective of the target bitwidth. The
/// operation must satisfy the property:
///
/// ```
/// trunc(f(a, b)) = f(trunc(a), trunc(b))
/// ```
///
/// For all values of `a` and `b`. The function accepts a lambda that computes
/// the integer result, which in turn must satisfy the above property.
static OpFoldResult foldBinaryOpUnchecked(
ArrayRef<Attribute> operands,
function_ref<std::optional<APInt>(const APInt &, const APInt &)>
calculate) {
assert(operands.size() == 2 && "binary operation expected 2 operands");
auto lhs = dyn_cast_if_present<IntegerAttr>(operands[0]);
auto rhs = dyn_cast_if_present<IntegerAttr>(operands[1]);
if (!lhs || !rhs)
return {};
std::optional<APInt> result = calculate(lhs.getValue(), rhs.getValue());
if (!result)
return {};
assert(result->trunc(32) ==
calculate(lhs.getValue().trunc(32), rhs.getValue().trunc(32)));
return IntegerAttr::get(IndexType::get(lhs.getContext()), *result);
}
/// Fold an index operation only if the truncated 64-bit result matches the
/// 32-bit result for operations that don't satisfy the above property. These
/// are operations where the upper bits of the operands can affect the lower
/// bits of the results.
///
/// The function accepts a lambda that computes the integer result in both
/// 64-bit and 32-bit. If either call returns `std::nullopt`, the operation is
/// not folded.
static OpFoldResult foldBinaryOpChecked(
ArrayRef<Attribute> operands,
function_ref<std::optional<APInt>(const APInt &, const APInt &lhs)>
calculate) {
assert(operands.size() == 2 && "binary operation expected 2 operands");
auto lhs = dyn_cast_if_present<IntegerAttr>(operands[0]);
auto rhs = dyn_cast_if_present<IntegerAttr>(operands[1]);
// Only fold index operands.
if (!lhs || !rhs)
return {};
// Compute the 64-bit result and the 32-bit result.
std::optional<APInt> result64 = calculate(lhs.getValue(), rhs.getValue());
if (!result64)
return {};
std::optional<APInt> result32 =
calculate(lhs.getValue().trunc(32), rhs.getValue().trunc(32));
if (!result32)
return {};
// Compare the truncated 64-bit result to the 32-bit result.
if (result64->trunc(32) != *result32)
return {};
// The operation can be folded for these particular operands.
return IntegerAttr::get(IndexType::get(lhs.getContext()), *result64);
}
//===----------------------------------------------------------------------===//
// AddOp
//===----------------------------------------------------------------------===//
OpFoldResult AddOp::fold(FoldAdaptor adaptor) {
if (OpFoldResult result = foldBinaryOpUnchecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) { return lhs + rhs; }))
return result;
if (auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs())) {
// Fold `add(x, 0) -> x`.
if (rhs.getValue().isZero())
return getLhs();
}
return {};
}
//===----------------------------------------------------------------------===//
// SubOp
//===----------------------------------------------------------------------===//
OpFoldResult SubOp::fold(FoldAdaptor adaptor) {
if (OpFoldResult result = foldBinaryOpUnchecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) { return lhs - rhs; }))
return result;
if (auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs())) {
// Fold `sub(x, 0) -> x`.
if (rhs.getValue().isZero())
return getLhs();
}
return {};
}
//===----------------------------------------------------------------------===//
// MulOp
//===----------------------------------------------------------------------===//
OpFoldResult MulOp::fold(FoldAdaptor adaptor) {
if (OpFoldResult result = foldBinaryOpUnchecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) { return lhs * rhs; }))
return result;
if (auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs())) {
// Fold `mul(x, 1) -> x`.
if (rhs.getValue().isOne())
return getLhs();
// Fold `mul(x, 0) -> 0`.
if (rhs.getValue().isZero())
return rhs;
}
return {};
}
//===----------------------------------------------------------------------===//
// DivSOp
//===----------------------------------------------------------------------===//
OpFoldResult DivSOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) -> std::optional<APInt> {
// Don't fold division by zero.
if (rhs.isZero())
return std::nullopt;
return lhs.sdiv(rhs);
});
}
//===----------------------------------------------------------------------===//
// DivUOp
//===----------------------------------------------------------------------===//
OpFoldResult DivUOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) -> std::optional<APInt> {
// Don't fold division by zero.
if (rhs.isZero())
return std::nullopt;
return lhs.udiv(rhs);
});
}
//===----------------------------------------------------------------------===//
// CeilDivSOp
//===----------------------------------------------------------------------===//
/// Compute `ceildivs(n, m)` as `x = m > 0 ? -1 : 1` and then
/// `n*m > 0 ? (n+x)/m + 1 : -(-n/m)`.
static std::optional<APInt> calculateCeilDivS(const APInt &n, const APInt &m) {
// Don't fold division by zero.
if (m.isZero())
return std::nullopt;
// Short-circuit the zero case.
if (n.isZero())
return n;
bool mGtZ = m.sgt(0);
if (n.sgt(0) != mGtZ) {
// If the operands have different signs, compute the negative result. Signed
// division overflow is not possible, since if `m == -1`, `n` can be at most
// `INT_MAX`, and `-INT_MAX != INT_MIN` in two's complement.
return -(-n).sdiv(m);
}
// Otherwise, compute the positive result. Signed division overflow is not
// possible since if `m == -1`, `x` will be `1`.
int64_t x = mGtZ ? -1 : 1;
return (n + x).sdiv(m) + 1;
}
OpFoldResult CeilDivSOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(adaptor.getOperands(), calculateCeilDivS);
}
//===----------------------------------------------------------------------===//
// CeilDivUOp
//===----------------------------------------------------------------------===//
OpFoldResult CeilDivUOp::fold(FoldAdaptor adaptor) {
// Compute `ceildivu(n, m)` as `n == 0 ? 0 : (n-1)/m + 1`.
return foldBinaryOpChecked(
adaptor.getOperands(),
[](const APInt &n, const APInt &m) -> std::optional<APInt> {
// Don't fold division by zero.
if (m.isZero())
return std::nullopt;
// Short-circuit the zero case.
if (n.isZero())
return n;
return (n - 1).udiv(m) + 1;
});
}
//===----------------------------------------------------------------------===//
// FloorDivSOp
//===----------------------------------------------------------------------===//
/// Compute `floordivs(n, m)` as `x = m < 0 ? 1 : -1` and then
/// `n*m < 0 ? -1 - (x-n)/m : n/m`.
static std::optional<APInt> calculateFloorDivS(const APInt &n, const APInt &m) {
// Don't fold division by zero.
if (m.isZero())
return std::nullopt;
// Short-circuit the zero case.
if (n.isZero())
return n;
bool mLtZ = m.slt(0);
if (n.slt(0) == mLtZ) {
// If the operands have the same sign, compute the positive result.
return n.sdiv(m);
}
// If the operands have different signs, compute the negative result. Signed
// division overflow is not possible since if `m == -1`, `x` will be 1 and
// `n` can be at most `INT_MAX`.
int64_t x = mLtZ ? 1 : -1;
return -1 - (x - n).sdiv(m);
}
OpFoldResult FloorDivSOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(adaptor.getOperands(), calculateFloorDivS);
}
//===----------------------------------------------------------------------===//
// RemSOp
//===----------------------------------------------------------------------===//
OpFoldResult RemSOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) -> std::optional<APInt> {
// Don't fold division by zero.
if (rhs.isZero())
return std::nullopt;
return lhs.srem(rhs);
});
}
//===----------------------------------------------------------------------===//
// RemUOp
//===----------------------------------------------------------------------===//
OpFoldResult RemUOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) -> std::optional<APInt> {
// Don't fold division by zero.
if (rhs.isZero())
return std::nullopt;
return lhs.urem(rhs);
});
}
//===----------------------------------------------------------------------===//
// MaxSOp
//===----------------------------------------------------------------------===//
OpFoldResult MaxSOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) {
return lhs.sgt(rhs) ? lhs : rhs;
});
}
//===----------------------------------------------------------------------===//
// MaxUOp
//===----------------------------------------------------------------------===//
OpFoldResult MaxUOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) {
return lhs.ugt(rhs) ? lhs : rhs;
});
}
//===----------------------------------------------------------------------===//
// MinSOp
//===----------------------------------------------------------------------===//
OpFoldResult MinSOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) {
return lhs.slt(rhs) ? lhs : rhs;
});
}
//===----------------------------------------------------------------------===//
// MinUOp
//===----------------------------------------------------------------------===//
OpFoldResult MinUOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) {
return lhs.ult(rhs) ? lhs : rhs;
});
}
//===----------------------------------------------------------------------===//
// ShlOp
//===----------------------------------------------------------------------===//
OpFoldResult ShlOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpUnchecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) -> std::optional<APInt> {
// We cannot fold if the RHS is greater than or equal to 32 because
// this would be UB in 32-bit systems but not on 64-bit systems. RHS is
// already treated as unsigned.
if (rhs.uge(32))
return {};
return lhs << rhs;
});
}
//===----------------------------------------------------------------------===//
// ShrSOp
//===----------------------------------------------------------------------===//
OpFoldResult ShrSOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) -> std::optional<APInt> {
// Don't fold if RHS is greater than or equal to 32.
if (rhs.uge(32))
return {};
return lhs.ashr(rhs);
});
}
//===----------------------------------------------------------------------===//
// ShrUOp
//===----------------------------------------------------------------------===//
OpFoldResult ShrUOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpChecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) -> std::optional<APInt> {
// Don't fold if RHS is greater than or equal to 32.
if (rhs.uge(32))
return {};
return lhs.lshr(rhs);
});
}
//===----------------------------------------------------------------------===//
// AndOp
//===----------------------------------------------------------------------===//
OpFoldResult AndOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpUnchecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) { return lhs & rhs; });
}
//===----------------------------------------------------------------------===//
// OrOp
//===----------------------------------------------------------------------===//
OpFoldResult OrOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpUnchecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) { return lhs | rhs; });
}
//===----------------------------------------------------------------------===//
// XOrOp
//===----------------------------------------------------------------------===//
OpFoldResult XOrOp::fold(FoldAdaptor adaptor) {
return foldBinaryOpUnchecked(
adaptor.getOperands(),
[](const APInt &lhs, const APInt &rhs) { return lhs ^ rhs; });
}
//===----------------------------------------------------------------------===//
// CastSOp
//===----------------------------------------------------------------------===//
bool CastSOp::areCastCompatible(TypeRange lhsTypes, TypeRange rhsTypes) {
return llvm::isa<IndexType>(lhsTypes.front()) !=
llvm::isa<IndexType>(rhsTypes.front());
}
//===----------------------------------------------------------------------===//
// CastUOp
//===----------------------------------------------------------------------===//
bool CastUOp::areCastCompatible(TypeRange lhsTypes, TypeRange rhsTypes) {
return llvm::isa<IndexType>(lhsTypes.front()) !=
llvm::isa<IndexType>(rhsTypes.front());
}
//===----------------------------------------------------------------------===//
// CmpOp
//===----------------------------------------------------------------------===//
/// Compare two integers according to the comparison predicate.
bool compareIndices(const APInt &lhs, const APInt &rhs,
IndexCmpPredicate pred) {
switch (pred) {
case IndexCmpPredicate::EQ:
return lhs.eq(rhs);
case IndexCmpPredicate::NE:
return lhs.ne(rhs);
case IndexCmpPredicate::SGE:
return lhs.sge(rhs);
case IndexCmpPredicate::SGT:
return lhs.sgt(rhs);
case IndexCmpPredicate::SLE:
return lhs.sle(rhs);
case IndexCmpPredicate::SLT:
return lhs.slt(rhs);
case IndexCmpPredicate::UGE:
return lhs.uge(rhs);
case IndexCmpPredicate::UGT:
return lhs.ugt(rhs);
case IndexCmpPredicate::ULE:
return lhs.ule(rhs);
case IndexCmpPredicate::ULT:
return lhs.ult(rhs);
}
llvm_unreachable("unhandled IndexCmpPredicate predicate");
}
/// `cmp(max/min(x, cstA), cstB)` can be folded to a constant depending on the
/// values of `cstA` and `cstB`, the max or min operation, and the comparison
/// predicate. Check whether the value folds in both 32-bit and 64-bit
/// arithmetic and to the same value.
static std::optional<bool> foldCmpOfMaxOrMin(Operation *lhsOp,
const APInt &cstA,
const APInt &cstB, unsigned width,
IndexCmpPredicate pred) {
ConstantIntRanges lhsRange = TypeSwitch<Operation *, ConstantIntRanges>(lhsOp)
.Case([&](MinSOp op) {
return ConstantIntRanges::fromSigned(
APInt::getSignedMinValue(width), cstA);
})
.Case([&](MinUOp op) {
return ConstantIntRanges::fromUnsigned(
APInt::getMinValue(width), cstA);
})
.Case([&](MaxSOp op) {
return ConstantIntRanges::fromSigned(
cstA, APInt::getSignedMaxValue(width));
})
.Case([&](MaxUOp op) {
return ConstantIntRanges::fromUnsigned(
cstA, APInt::getMaxValue(width));
});
return intrange::evaluatePred(static_cast<intrange::CmpPredicate>(pred),
lhsRange, ConstantIntRanges::constant(cstB));
}
OpFoldResult CmpOp::fold(FoldAdaptor adaptor) {
// Attempt to fold if both inputs are constant.
auto lhs = dyn_cast_if_present<IntegerAttr>(adaptor.getLhs());
auto rhs = dyn_cast_if_present<IntegerAttr>(adaptor.getRhs());
if (lhs && rhs) {
// Perform the comparison in 64-bit and 32-bit.
bool result64 = compareIndices(lhs.getValue(), rhs.getValue(), getPred());
bool result32 = compareIndices(lhs.getValue().trunc(32),
rhs.getValue().trunc(32), getPred());
if (result64 == result32)
return BoolAttr::get(getContext(), result64);
}
// Fold `cmp(max/min(x, cstA), cstB)`.
Operation *lhsOp = getLhs().getDefiningOp();
IntegerAttr cstA;
if (isa_and_nonnull<MinSOp, MinUOp, MaxSOp, MaxUOp>(lhsOp) &&
matchPattern(lhsOp->getOperand(1), m_Constant(&cstA)) && rhs) {
std::optional<bool> result64 = foldCmpOfMaxOrMin(
lhsOp, cstA.getValue(), rhs.getValue(), 64, getPred());
std::optional<bool> result32 =
foldCmpOfMaxOrMin(lhsOp, cstA.getValue().trunc(32),
rhs.getValue().trunc(32), 32, getPred());
// Fold if the 32-bit and 64-bit results are the same.
if (result64 && result32 && *result64 == *result32)
return BoolAttr::get(getContext(), *result64);
}
return {};
}
//===----------------------------------------------------------------------===//
// ConstantOp
//===----------------------------------------------------------------------===//
void ConstantOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
SmallString<32> specialNameBuffer;
llvm::raw_svector_ostream specialName(specialNameBuffer);
specialName << "idx" << getValueAttr().getValue();
setNameFn(getResult(), specialName.str());
}
OpFoldResult ConstantOp::fold(FoldAdaptor adaptor) { return getValueAttr(); }
void ConstantOp::build(OpBuilder &b, OperationState &state, int64_t value) {
build(b, state, b.getIndexType(), b.getIndexAttr(value));
}
//===----------------------------------------------------------------------===//
// BoolConstantOp
//===----------------------------------------------------------------------===//
OpFoldResult BoolConstantOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void BoolConstantOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), getValue() ? "true" : "false");
}
//===----------------------------------------------------------------------===//
// ODS-Generated Definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Index/IR/IndexOps.cpp.inc"
|