1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
|
//===- LLVMDialect.cpp - LLVM IR Ops and Dialect registration -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the types and operation details for the LLVM IR dialect in
// MLIR, and the LLVM IR dialect. It also registers the dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "LLVMInlining.h"
#include "TypeDetail.h"
#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
#include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/FunctionImplementation.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Matchers.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/SourceMgr.h"
#include <numeric>
#include <optional>
using namespace mlir;
using namespace mlir::LLVM;
using mlir::LLVM::cconv::getMaxEnumValForCConv;
using mlir::LLVM::linkage::getMaxEnumValForLinkage;
#include "mlir/Dialect/LLVMIR/LLVMOpsDialect.cpp.inc"
static constexpr const char kElemTypeAttrName[] = "elem_type";
static auto processFMFAttr(ArrayRef<NamedAttribute> attrs) {
SmallVector<NamedAttribute, 8> filteredAttrs(
llvm::make_filter_range(attrs, [&](NamedAttribute attr) {
if (attr.getName() == "fastmathFlags") {
auto defAttr =
FastmathFlagsAttr::get(attr.getValue().getContext(), {});
return defAttr != attr.getValue();
}
return true;
}));
return filteredAttrs;
}
static ParseResult parseLLVMOpAttrs(OpAsmParser &parser,
NamedAttrList &result) {
return parser.parseOptionalAttrDict(result);
}
static void printLLVMOpAttrs(OpAsmPrinter &printer, Operation *op,
DictionaryAttr attrs) {
printer.printOptionalAttrDict(processFMFAttr(attrs.getValue()));
}
/// Verifies `symbol`'s use in `op` to ensure the symbol is a valid and
/// fully defined llvm.func.
static LogicalResult verifySymbolAttrUse(FlatSymbolRefAttr symbol,
Operation *op,
SymbolTableCollection &symbolTable) {
StringRef name = symbol.getValue();
auto func =
symbolTable.lookupNearestSymbolFrom<LLVMFuncOp>(op, symbol.getAttr());
if (!func)
return op->emitOpError("'")
<< name << "' does not reference a valid LLVM function";
if (func.isExternal())
return op->emitOpError("'") << name << "' does not have a definition";
return success();
}
/// Returns a boolean type that has the same shape as `type`. It supports both
/// fixed size vectors as well as scalable vectors.
static Type getI1SameShape(Type type) {
Type i1Type = IntegerType::get(type.getContext(), 1);
if (LLVM::isCompatibleVectorType(type))
return LLVM::getVectorType(i1Type, LLVM::getVectorNumElements(type));
return i1Type;
}
//===----------------------------------------------------------------------===//
// Printing, parsing and builder for LLVM::CmpOp.
//===----------------------------------------------------------------------===//
void ICmpOp::print(OpAsmPrinter &p) {
p << " \"" << stringifyICmpPredicate(getPredicate()) << "\" " << getOperand(0)
<< ", " << getOperand(1);
p.printOptionalAttrDict((*this)->getAttrs(), {"predicate"});
p << " : " << getLhs().getType();
}
void FCmpOp::print(OpAsmPrinter &p) {
p << " \"" << stringifyFCmpPredicate(getPredicate()) << "\" " << getOperand(0)
<< ", " << getOperand(1);
p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), {"predicate"});
p << " : " << getLhs().getType();
}
// <operation> ::= `llvm.icmp` string-literal ssa-use `,` ssa-use
// attribute-dict? `:` type
// <operation> ::= `llvm.fcmp` string-literal ssa-use `,` ssa-use
// attribute-dict? `:` type
template <typename CmpPredicateType>
static ParseResult parseCmpOp(OpAsmParser &parser, OperationState &result) {
StringAttr predicateAttr;
OpAsmParser::UnresolvedOperand lhs, rhs;
Type type;
SMLoc predicateLoc, trailingTypeLoc;
if (parser.getCurrentLocation(&predicateLoc) ||
parser.parseAttribute(predicateAttr, "predicate", result.attributes) ||
parser.parseOperand(lhs) || parser.parseComma() ||
parser.parseOperand(rhs) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type) ||
parser.resolveOperand(lhs, type, result.operands) ||
parser.resolveOperand(rhs, type, result.operands))
return failure();
// Replace the string attribute `predicate` with an integer attribute.
int64_t predicateValue = 0;
if (std::is_same<CmpPredicateType, ICmpPredicate>()) {
std::optional<ICmpPredicate> predicate =
symbolizeICmpPredicate(predicateAttr.getValue());
if (!predicate)
return parser.emitError(predicateLoc)
<< "'" << predicateAttr.getValue()
<< "' is an incorrect value of the 'predicate' attribute";
predicateValue = static_cast<int64_t>(*predicate);
} else {
std::optional<FCmpPredicate> predicate =
symbolizeFCmpPredicate(predicateAttr.getValue());
if (!predicate)
return parser.emitError(predicateLoc)
<< "'" << predicateAttr.getValue()
<< "' is an incorrect value of the 'predicate' attribute";
predicateValue = static_cast<int64_t>(*predicate);
}
result.attributes.set("predicate",
parser.getBuilder().getI64IntegerAttr(predicateValue));
// The result type is either i1 or a vector type <? x i1> if the inputs are
// vectors.
if (!isCompatibleType(type))
return parser.emitError(trailingTypeLoc,
"expected LLVM dialect-compatible type");
result.addTypes(getI1SameShape(type));
return success();
}
ParseResult ICmpOp::parse(OpAsmParser &parser, OperationState &result) {
return parseCmpOp<ICmpPredicate>(parser, result);
}
ParseResult FCmpOp::parse(OpAsmParser &parser, OperationState &result) {
return parseCmpOp<FCmpPredicate>(parser, result);
}
//===----------------------------------------------------------------------===//
// Printing, parsing and verification for LLVM::AllocaOp.
//===----------------------------------------------------------------------===//
void AllocaOp::print(OpAsmPrinter &p) {
Type elemTy = llvm::cast<LLVM::LLVMPointerType>(getType()).getElementType();
if (!elemTy)
elemTy = *getElemType();
auto funcTy =
FunctionType::get(getContext(), {getArraySize().getType()}, {getType()});
if (getInalloca())
p << " inalloca";
p << ' ' << getArraySize() << " x " << elemTy;
if (getAlignment() && *getAlignment() != 0)
p.printOptionalAttrDict((*this)->getAttrs(),
{kElemTypeAttrName, getInallocaAttrName()});
else
p.printOptionalAttrDict(
(*this)->getAttrs(),
{getAlignmentAttrName(), kElemTypeAttrName, getInallocaAttrName()});
p << " : " << funcTy;
}
// <operation> ::= `llvm.alloca` `inalloca`? ssa-use `x` type
// attribute-dict? `:` type `,` type
ParseResult AllocaOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand arraySize;
Type type, elemType;
SMLoc trailingTypeLoc;
if (succeeded(parser.parseOptionalKeyword("inalloca")))
result.addAttribute(getInallocaAttrName(result.name),
UnitAttr::get(parser.getContext()));
if (parser.parseOperand(arraySize) || parser.parseKeyword("x") ||
parser.parseType(elemType) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
return failure();
std::optional<NamedAttribute> alignmentAttr =
result.attributes.getNamed("alignment");
if (alignmentAttr.has_value()) {
auto alignmentInt = llvm::dyn_cast<IntegerAttr>(alignmentAttr->getValue());
if (!alignmentInt)
return parser.emitError(parser.getNameLoc(),
"expected integer alignment");
if (alignmentInt.getValue().isZero())
result.attributes.erase("alignment");
}
// Extract the result type from the trailing function type.
auto funcType = llvm::dyn_cast<FunctionType>(type);
if (!funcType || funcType.getNumInputs() != 1 ||
funcType.getNumResults() != 1)
return parser.emitError(
trailingTypeLoc,
"expected trailing function type with one argument and one result");
if (parser.resolveOperand(arraySize, funcType.getInput(0), result.operands))
return failure();
Type resultType = funcType.getResult(0);
if (auto ptrResultType = llvm::dyn_cast<LLVMPointerType>(resultType)) {
if (ptrResultType.isOpaque())
result.addAttribute(kElemTypeAttrName, TypeAttr::get(elemType));
}
result.addTypes({funcType.getResult(0)});
return success();
}
/// Checks that the elemental type is present in either the pointer type or
/// the attribute, but not both.
static LogicalResult verifyOpaquePtr(Operation *op, LLVMPointerType ptrType,
std::optional<Type> ptrElementType) {
if (ptrType.isOpaque() && !ptrElementType.has_value()) {
return op->emitOpError() << "expected '" << kElemTypeAttrName
<< "' attribute if opaque pointer type is used";
}
if (!ptrType.isOpaque() && ptrElementType.has_value()) {
return op->emitOpError()
<< "unexpected '" << kElemTypeAttrName
<< "' attribute when non-opaque pointer type is used";
}
return success();
}
LogicalResult AllocaOp::verify() {
LLVMPointerType ptrType = llvm::cast<LLVMPointerType>(getType());
if (failed(verifyOpaquePtr(getOperation(), ptrType, getElemType())))
return failure();
Type elemTy =
(ptrType.isOpaque()) ? *getElemType() : ptrType.getElementType();
// Only certain target extension types can be used in 'alloca'.
if (auto targetExtType = dyn_cast<LLVMTargetExtType>(elemTy);
targetExtType && !targetExtType.supportsMemOps())
return emitOpError()
<< "this target extension type cannot be used in alloca";
return success();
}
Type AllocaOp::getResultPtrElementType() {
// This will become trivial once non-opaque pointers are gone.
return getElemType().has_value() ? *getElemType()
: getResult().getType().getElementType();
}
//===----------------------------------------------------------------------===//
// LLVM::BrOp
//===----------------------------------------------------------------------===//
SuccessorOperands BrOp::getSuccessorOperands(unsigned index) {
assert(index == 0 && "invalid successor index");
return SuccessorOperands(getDestOperandsMutable());
}
//===----------------------------------------------------------------------===//
// LLVM::CondBrOp
//===----------------------------------------------------------------------===//
SuccessorOperands CondBrOp::getSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return SuccessorOperands(index == 0 ? getTrueDestOperandsMutable()
: getFalseDestOperandsMutable());
}
void CondBrOp::build(OpBuilder &builder, OperationState &result,
Value condition, Block *trueDest, ValueRange trueOperands,
Block *falseDest, ValueRange falseOperands,
std::optional<std::pair<uint32_t, uint32_t>> weights) {
DenseI32ArrayAttr weightsAttr;
if (weights)
weightsAttr =
builder.getDenseI32ArrayAttr({static_cast<int32_t>(weights->first),
static_cast<int32_t>(weights->second)});
build(builder, result, condition, trueOperands, falseOperands, weightsAttr,
/*loop_annotation=*/{}, trueDest, falseDest);
}
//===----------------------------------------------------------------------===//
// LLVM::SwitchOp
//===----------------------------------------------------------------------===//
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
Block *defaultDestination, ValueRange defaultOperands,
DenseIntElementsAttr caseValues,
BlockRange caseDestinations,
ArrayRef<ValueRange> caseOperands,
ArrayRef<int32_t> branchWeights) {
DenseI32ArrayAttr weightsAttr;
if (!branchWeights.empty())
weightsAttr = builder.getDenseI32ArrayAttr(branchWeights);
build(builder, result, value, defaultOperands, caseOperands, caseValues,
weightsAttr, defaultDestination, caseDestinations);
}
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
Block *defaultDestination, ValueRange defaultOperands,
ArrayRef<APInt> caseValues, BlockRange caseDestinations,
ArrayRef<ValueRange> caseOperands,
ArrayRef<int32_t> branchWeights) {
DenseIntElementsAttr caseValuesAttr;
if (!caseValues.empty()) {
ShapedType caseValueType = VectorType::get(
static_cast<int64_t>(caseValues.size()), value.getType());
caseValuesAttr = DenseIntElementsAttr::get(caseValueType, caseValues);
}
build(builder, result, value, defaultDestination, defaultOperands,
caseValuesAttr, caseDestinations, caseOperands, branchWeights);
}
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
Block *defaultDestination, ValueRange defaultOperands,
ArrayRef<int32_t> caseValues, BlockRange caseDestinations,
ArrayRef<ValueRange> caseOperands,
ArrayRef<int32_t> branchWeights) {
DenseIntElementsAttr caseValuesAttr;
if (!caseValues.empty()) {
ShapedType caseValueType = VectorType::get(
static_cast<int64_t>(caseValues.size()), value.getType());
caseValuesAttr = DenseIntElementsAttr::get(caseValueType, caseValues);
}
build(builder, result, value, defaultDestination, defaultOperands,
caseValuesAttr, caseDestinations, caseOperands, branchWeights);
}
/// <cases> ::= `[` (case (`,` case )* )? `]`
/// <case> ::= integer `:` bb-id (`(` ssa-use-and-type-list `)`)?
static ParseResult parseSwitchOpCases(
OpAsmParser &parser, Type flagType, DenseIntElementsAttr &caseValues,
SmallVectorImpl<Block *> &caseDestinations,
SmallVectorImpl<SmallVector<OpAsmParser::UnresolvedOperand>> &caseOperands,
SmallVectorImpl<SmallVector<Type>> &caseOperandTypes) {
if (failed(parser.parseLSquare()))
return failure();
if (succeeded(parser.parseOptionalRSquare()))
return success();
SmallVector<APInt> values;
unsigned bitWidth = flagType.getIntOrFloatBitWidth();
auto parseCase = [&]() {
int64_t value = 0;
if (failed(parser.parseInteger(value)))
return failure();
values.push_back(APInt(bitWidth, value));
Block *destination;
SmallVector<OpAsmParser::UnresolvedOperand> operands;
SmallVector<Type> operandTypes;
if (parser.parseColon() || parser.parseSuccessor(destination))
return failure();
if (!parser.parseOptionalLParen()) {
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::None,
/*allowResultNumber=*/false) ||
parser.parseColonTypeList(operandTypes) || parser.parseRParen())
return failure();
}
caseDestinations.push_back(destination);
caseOperands.emplace_back(operands);
caseOperandTypes.emplace_back(operandTypes);
return success();
};
if (failed(parser.parseCommaSeparatedList(parseCase)))
return failure();
ShapedType caseValueType =
VectorType::get(static_cast<int64_t>(values.size()), flagType);
caseValues = DenseIntElementsAttr::get(caseValueType, values);
return parser.parseRSquare();
}
static void printSwitchOpCases(OpAsmPrinter &p, SwitchOp op, Type flagType,
DenseIntElementsAttr caseValues,
SuccessorRange caseDestinations,
OperandRangeRange caseOperands,
const TypeRangeRange &caseOperandTypes) {
p << '[';
p.printNewline();
if (!caseValues) {
p << ']';
return;
}
size_t index = 0;
llvm::interleave(
llvm::zip(caseValues, caseDestinations),
[&](auto i) {
p << " ";
p << std::get<0>(i).getLimitedValue();
p << ": ";
p.printSuccessorAndUseList(std::get<1>(i), caseOperands[index++]);
},
[&] {
p << ',';
p.printNewline();
});
p.printNewline();
p << ']';
}
LogicalResult SwitchOp::verify() {
if ((!getCaseValues() && !getCaseDestinations().empty()) ||
(getCaseValues() &&
getCaseValues()->size() !=
static_cast<int64_t>(getCaseDestinations().size())))
return emitOpError("expects number of case values to match number of "
"case destinations");
if (getBranchWeights() && getBranchWeights()->size() != getNumSuccessors())
return emitError("expects number of branch weights to match number of "
"successors: ")
<< getBranchWeights()->size() << " vs " << getNumSuccessors();
if (getCaseValues() &&
getValue().getType() != getCaseValues()->getElementType())
return emitError("expects case value type to match condition value type");
return success();
}
SuccessorOperands SwitchOp::getSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return SuccessorOperands(index == 0 ? getDefaultOperandsMutable()
: getCaseOperandsMutable(index - 1));
}
//===----------------------------------------------------------------------===//
// Code for LLVM::GEPOp.
//===----------------------------------------------------------------------===//
constexpr int32_t GEPOp::kDynamicIndex;
GEPIndicesAdaptor<ValueRange> GEPOp::getIndices() {
return GEPIndicesAdaptor<ValueRange>(getRawConstantIndicesAttr(),
getDynamicIndices());
}
/// Returns the elemental type of any LLVM-compatible vector type or self.
static Type extractVectorElementType(Type type) {
if (auto vectorType = llvm::dyn_cast<VectorType>(type))
return vectorType.getElementType();
if (auto scalableVectorType = llvm::dyn_cast<LLVMScalableVectorType>(type))
return scalableVectorType.getElementType();
if (auto fixedVectorType = llvm::dyn_cast<LLVMFixedVectorType>(type))
return fixedVectorType.getElementType();
return type;
}
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
Value basePtr, ArrayRef<GEPArg> indices, bool inbounds,
ArrayRef<NamedAttribute> attributes) {
auto ptrType =
llvm::cast<LLVMPointerType>(extractVectorElementType(basePtr.getType()));
assert(!ptrType.isOpaque() &&
"expected non-opaque pointer, provide elementType explicitly when "
"opaque pointers are used");
build(builder, result, resultType, ptrType.getElementType(), basePtr, indices,
inbounds, attributes);
}
/// Destructures the 'indices' parameter into 'rawConstantIndices' and
/// 'dynamicIndices', encoding the former in the process. In the process,
/// dynamic indices which are used to index into a structure type are converted
/// to constant indices when possible. To do this, the GEPs element type should
/// be passed as first parameter.
static void destructureIndices(Type currType, ArrayRef<GEPArg> indices,
SmallVectorImpl<int32_t> &rawConstantIndices,
SmallVectorImpl<Value> &dynamicIndices) {
for (const GEPArg &iter : indices) {
// If the thing we are currently indexing into is a struct we must turn
// any integer constants into constant indices. If this is not possible
// we don't do anything here. The verifier will catch it and emit a proper
// error. All other canonicalization is done in the fold method.
bool requiresConst = !rawConstantIndices.empty() &&
currType.isa_and_nonnull<LLVMStructType>();
if (Value val = llvm::dyn_cast_if_present<Value>(iter)) {
APInt intC;
if (requiresConst && matchPattern(val, m_ConstantInt(&intC)) &&
intC.isSignedIntN(kGEPConstantBitWidth)) {
rawConstantIndices.push_back(intC.getSExtValue());
} else {
rawConstantIndices.push_back(GEPOp::kDynamicIndex);
dynamicIndices.push_back(val);
}
} else {
rawConstantIndices.push_back(iter.get<GEPConstantIndex>());
}
// Skip for very first iteration of this loop. First index does not index
// within the aggregates, but is just a pointer offset.
if (rawConstantIndices.size() == 1 || !currType)
continue;
currType =
TypeSwitch<Type, Type>(currType)
.Case<VectorType, LLVMScalableVectorType, LLVMFixedVectorType,
LLVMArrayType>([](auto containerType) {
return containerType.getElementType();
})
.Case([&](LLVMStructType structType) -> Type {
int64_t memberIndex = rawConstantIndices.back();
if (memberIndex >= 0 && static_cast<size_t>(memberIndex) <
structType.getBody().size())
return structType.getBody()[memberIndex];
return nullptr;
})
.Default(Type(nullptr));
}
}
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
Type elementType, Value basePtr, ArrayRef<GEPArg> indices,
bool inbounds, ArrayRef<NamedAttribute> attributes) {
SmallVector<int32_t> rawConstantIndices;
SmallVector<Value> dynamicIndices;
destructureIndices(elementType, indices, rawConstantIndices, dynamicIndices);
result.addTypes(resultType);
result.addAttributes(attributes);
result.addAttribute(getRawConstantIndicesAttrName(result.name),
builder.getDenseI32ArrayAttr(rawConstantIndices));
if (inbounds) {
result.addAttribute(getInboundsAttrName(result.name),
builder.getUnitAttr());
}
if (llvm::cast<LLVMPointerType>(extractVectorElementType(basePtr.getType()))
.isOpaque())
result.addAttribute(kElemTypeAttrName, TypeAttr::get(elementType));
result.addOperands(basePtr);
result.addOperands(dynamicIndices);
}
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
Value basePtr, ValueRange indices, bool inbounds,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, resultType, basePtr, SmallVector<GEPArg>(indices),
inbounds, attributes);
}
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
Type elementType, Value basePtr, ValueRange indices,
bool inbounds, ArrayRef<NamedAttribute> attributes) {
build(builder, result, resultType, elementType, basePtr,
SmallVector<GEPArg>(indices), inbounds, attributes);
}
static ParseResult
parseGEPIndices(OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &indices,
DenseI32ArrayAttr &rawConstantIndices) {
SmallVector<int32_t> constantIndices;
auto idxParser = [&]() -> ParseResult {
int32_t constantIndex;
OptionalParseResult parsedInteger =
parser.parseOptionalInteger(constantIndex);
if (parsedInteger.has_value()) {
if (failed(parsedInteger.value()))
return failure();
constantIndices.push_back(constantIndex);
return success();
}
constantIndices.push_back(LLVM::GEPOp::kDynamicIndex);
return parser.parseOperand(indices.emplace_back());
};
if (parser.parseCommaSeparatedList(idxParser))
return failure();
rawConstantIndices =
DenseI32ArrayAttr::get(parser.getContext(), constantIndices);
return success();
}
static void printGEPIndices(OpAsmPrinter &printer, LLVM::GEPOp gepOp,
OperandRange indices,
DenseI32ArrayAttr rawConstantIndices) {
llvm::interleaveComma(
GEPIndicesAdaptor<OperandRange>(rawConstantIndices, indices), printer,
[&](PointerUnion<IntegerAttr, Value> cst) {
if (Value val = llvm::dyn_cast_if_present<Value>(cst))
printer.printOperand(val);
else
printer << cst.get<IntegerAttr>().getInt();
});
}
namespace {
/// Base class for llvm::Error related to GEP index.
class GEPIndexError : public llvm::ErrorInfo<GEPIndexError> {
protected:
unsigned indexPos;
public:
static char ID;
std::error_code convertToErrorCode() const override {
return llvm::inconvertibleErrorCode();
}
explicit GEPIndexError(unsigned pos) : indexPos(pos) {}
};
/// llvm::Error for out-of-bound GEP index.
struct GEPIndexOutOfBoundError
: public llvm::ErrorInfo<GEPIndexOutOfBoundError, GEPIndexError> {
static char ID;
using ErrorInfo::ErrorInfo;
void log(llvm::raw_ostream &os) const override {
os << "index " << indexPos << " indexing a struct is out of bounds";
}
};
/// llvm::Error for non-static GEP index indexing a struct.
struct GEPStaticIndexError
: public llvm::ErrorInfo<GEPStaticIndexError, GEPIndexError> {
static char ID;
using ErrorInfo::ErrorInfo;
void log(llvm::raw_ostream &os) const override {
os << "expected index " << indexPos << " indexing a struct "
<< "to be constant";
}
};
} // end anonymous namespace
char GEPIndexError::ID = 0;
char GEPIndexOutOfBoundError::ID = 0;
char GEPStaticIndexError::ID = 0;
/// For the given `structIndices` and `indices`, check if they're complied
/// with `baseGEPType`, especially check against LLVMStructTypes nested within.
static llvm::Error verifyStructIndices(Type baseGEPType, unsigned indexPos,
GEPIndicesAdaptor<ValueRange> indices) {
if (indexPos >= indices.size())
// Stop searching
return llvm::Error::success();
return llvm::TypeSwitch<Type, llvm::Error>(baseGEPType)
.Case<LLVMStructType>([&](LLVMStructType structType) -> llvm::Error {
if (!indices[indexPos].is<IntegerAttr>())
return llvm::make_error<GEPStaticIndexError>(indexPos);
int32_t gepIndex = indices[indexPos].get<IntegerAttr>().getInt();
ArrayRef<Type> elementTypes = structType.getBody();
if (gepIndex < 0 ||
static_cast<size_t>(gepIndex) >= elementTypes.size())
return llvm::make_error<GEPIndexOutOfBoundError>(indexPos);
// Instead of recursively going into every children types, we only
// dive into the one indexed by gepIndex.
return verifyStructIndices(elementTypes[gepIndex], indexPos + 1,
indices);
})
.Case<VectorType, LLVMScalableVectorType, LLVMFixedVectorType,
LLVMArrayType>([&](auto containerType) -> llvm::Error {
return verifyStructIndices(containerType.getElementType(), indexPos + 1,
indices);
})
.Default(
[](auto otherType) -> llvm::Error { return llvm::Error::success(); });
}
/// Driver function around `recordStructIndices`. Note that we always check
/// from the second GEP index since the first one is always dynamic.
static llvm::Error verifyStructIndices(Type baseGEPType,
GEPIndicesAdaptor<ValueRange> indices) {
return verifyStructIndices(baseGEPType, /*indexPos=*/1, indices);
}
LogicalResult LLVM::GEPOp::verify() {
if (failed(verifyOpaquePtr(
getOperation(),
llvm::cast<LLVMPointerType>(extractVectorElementType(getType())),
getElemType())))
return failure();
if (static_cast<size_t>(
llvm::count(getRawConstantIndices(), kDynamicIndex)) !=
getDynamicIndices().size())
return emitOpError("expected as many dynamic indices as specified in '")
<< getRawConstantIndicesAttrName().getValue() << "'";
if (llvm::Error err =
verifyStructIndices(getSourceElementType(), getIndices()))
return emitOpError() << llvm::toString(std::move(err));
return success();
}
Type LLVM::GEPOp::getSourceElementType() {
if (std::optional<Type> elemType = getElemType())
return *elemType;
return llvm::cast<LLVMPointerType>(
extractVectorElementType(getBase().getType()))
.getElementType();
}
Type GEPOp::getResultPtrElementType() {
// Set the initial type currently being used for indexing. This will be
// updated as the indices get walked over.
Type selectedType = getSourceElementType();
// Follow the indexed elements in the gep.
auto indices = getIndices();
for (GEPIndicesAdaptor<ValueRange>::value_type index :
llvm::drop_begin(indices)) {
// GEPs can only index into aggregates which can be structs or arrays.
// The resulting type if indexing into an array type is always the element
// type, regardless of index.
if (auto arrayType = dyn_cast<LLVMArrayType>(selectedType)) {
selectedType = arrayType.getElementType();
continue;
}
// The GEP verifier ensures that any index into structs are static and
// that they refer to a field within the struct.
selectedType = cast<DestructurableTypeInterface>(selectedType)
.getTypeAtIndex(cast<IntegerAttr>(index));
}
// When there are no more indices, the type currently being used for indexing
// is the type of the value pointed at by the returned indexed pointer.
return selectedType;
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
/// Returns true if the given type is supported by atomic operations. All
/// integer and float types with limited bit width are supported. Additionally,
/// depending on the operation pointers may be supported as well.
static bool isTypeCompatibleWithAtomicOp(Type type, bool isPointerTypeAllowed) {
if (llvm::isa<LLVMPointerType>(type))
return isPointerTypeAllowed;
std::optional<unsigned> bitWidth;
if (auto floatType = llvm::dyn_cast<FloatType>(type)) {
if (!isCompatibleFloatingPointType(type))
return false;
bitWidth = floatType.getWidth();
}
if (auto integerType = llvm::dyn_cast<IntegerType>(type))
bitWidth = integerType.getWidth();
// The type is neither an integer, float, or pointer type.
if (!bitWidth)
return false;
return *bitWidth == 8 || *bitWidth == 16 || *bitWidth == 32 ||
*bitWidth == 64;
}
/// Verifies the attributes and the type of atomic memory access operations.
template <typename OpTy>
LogicalResult verifyAtomicMemOp(OpTy memOp, Type valueType,
ArrayRef<AtomicOrdering> unsupportedOrderings) {
if (memOp.getOrdering() != AtomicOrdering::not_atomic) {
if (!isTypeCompatibleWithAtomicOp(valueType,
/*isPointerTypeAllowed=*/true))
return memOp.emitOpError("unsupported type ")
<< valueType << " for atomic access";
if (llvm::is_contained(unsupportedOrderings, memOp.getOrdering()))
return memOp.emitOpError("unsupported ordering '")
<< stringifyAtomicOrdering(memOp.getOrdering()) << "'";
if (!memOp.getAlignment())
return memOp.emitOpError("expected alignment for atomic access");
return success();
}
if (memOp.getSyncscope())
return memOp.emitOpError(
"expected syncscope to be null for non-atomic access");
return success();
}
LogicalResult LoadOp::verify() {
Type valueType = getResult().getType();
return verifyAtomicMemOp(*this, valueType,
{AtomicOrdering::release, AtomicOrdering::acq_rel});
}
void LoadOp::build(OpBuilder &builder, OperationState &state, Value addr,
unsigned alignment, bool isVolatile, bool isNonTemporal) {
auto type = llvm::cast<LLVMPointerType>(addr.getType()).getElementType();
assert(type && "must provide explicit element type to the constructor "
"when the pointer type is opaque");
build(builder, state, type, addr, alignment, isVolatile, isNonTemporal);
}
void LoadOp::build(OpBuilder &builder, OperationState &state, Type type,
Value addr, unsigned alignment, bool isVolatile,
bool isNonTemporal, AtomicOrdering ordering,
StringRef syncscope) {
build(builder, state, type, addr,
alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile,
isNonTemporal, ordering,
syncscope.empty() ? nullptr : builder.getStringAttr(syncscope),
/*access_groups=*/nullptr,
/*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr,
/*tbaa=*/nullptr);
}
// Extract the pointee type from the LLVM pointer type wrapped in MLIR. Return
// the resulting type if any, null type if opaque pointers are used, and
// std::nullopt if the given type is not the pointer type.
static std::optional<Type>
getLoadStoreElementType(OpAsmParser &parser, Type type, SMLoc trailingTypeLoc) {
auto llvmTy = llvm::dyn_cast<LLVM::LLVMPointerType>(type);
if (!llvmTy) {
parser.emitError(trailingTypeLoc, "expected LLVM pointer type");
return std::nullopt;
}
return llvmTy.getElementType();
}
/// Parses the LoadOp type either using the typed or opaque pointer format.
// TODO: Drop once the typed pointer assembly format is not needed anymore.
static ParseResult parseLoadType(OpAsmParser &parser, Type &type,
Type &elementType) {
SMLoc trailingTypeLoc;
if (parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
return failure();
std::optional<Type> pointerElementType =
getLoadStoreElementType(parser, type, trailingTypeLoc);
if (!pointerElementType)
return failure();
if (*pointerElementType) {
elementType = *pointerElementType;
return success();
}
if (parser.parseArrow() || parser.parseType(elementType))
return failure();
return success();
}
/// Prints the LoadOp type either using the typed or opaque pointer format.
// TODO: Drop once the typed pointer assembly format is not needed anymore.
static void printLoadType(OpAsmPrinter &printer, Operation *op, Type type,
Type elementType) {
printer << type;
auto pointerType = cast<LLVMPointerType>(type);
if (pointerType.isOpaque())
printer << " -> " << elementType;
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
LogicalResult StoreOp::verify() {
Type valueType = getValue().getType();
return verifyAtomicMemOp(*this, valueType,
{AtomicOrdering::acquire, AtomicOrdering::acq_rel});
}
void StoreOp::build(OpBuilder &builder, OperationState &state, Value value,
Value addr, unsigned alignment, bool isVolatile,
bool isNonTemporal, AtomicOrdering ordering,
StringRef syncscope) {
build(builder, state, value, addr,
alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile,
isNonTemporal, ordering,
syncscope.empty() ? nullptr : builder.getStringAttr(syncscope),
/*access_groups=*/nullptr,
/*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
}
/// Parses the StoreOp type either using the typed or opaque pointer format.
// TODO: Drop once the typed pointer assembly format is not needed anymore.
static ParseResult parseStoreType(OpAsmParser &parser, Type &elementType,
Type &type) {
SMLoc trailingTypeLoc;
if (parser.getCurrentLocation(&trailingTypeLoc) ||
parser.parseType(elementType))
return failure();
if (succeeded(parser.parseOptionalComma()))
return parser.parseType(type);
// Extract the element type from the pointer type.
type = elementType;
std::optional<Type> pointerElementType =
getLoadStoreElementType(parser, type, trailingTypeLoc);
if (!pointerElementType)
return failure();
elementType = *pointerElementType;
return success();
}
/// Prints the StoreOp type either using the typed or opaque pointer format.
// TODO: Drop once the typed pointer assembly format is not needed anymore.
static void printStoreType(OpAsmPrinter &printer, Operation *op,
Type elementType, Type type) {
auto pointerType = cast<LLVMPointerType>(type);
if (pointerType.isOpaque())
printer << elementType << ", ";
printer << type;
}
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results,
StringRef callee, ValueRange args) {
build(builder, state, results, builder.getStringAttr(callee), args);
}
void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results,
StringAttr callee, ValueRange args) {
build(builder, state, results, SymbolRefAttr::get(callee), args);
}
void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results,
FlatSymbolRefAttr callee, ValueRange args) {
build(builder, state, results, callee, args, /*fastmathFlags=*/nullptr,
/*branch_weights=*/nullptr,
/*access_groups=*/nullptr, /*alias_scopes=*/nullptr,
/*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
}
void CallOp::build(OpBuilder &builder, OperationState &state, LLVMFuncOp func,
ValueRange args) {
SmallVector<Type> results;
Type resultType = func.getFunctionType().getReturnType();
if (!llvm::isa<LLVM::LLVMVoidType>(resultType))
results.push_back(resultType);
build(builder, state, results, SymbolRefAttr::get(func), args,
/*fastmathFlags=*/nullptr,
/*branch_weights=*/nullptr,
/*access_groups=*/nullptr, /*alias_scopes=*/nullptr,
/*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
}
CallInterfaceCallable CallOp::getCallableForCallee() {
// Direct call.
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr())
return calleeAttr;
// Indirect call, callee Value is the first operand.
return getOperand(0);
}
void CallOp::setCalleeFromCallable(CallInterfaceCallable callee) {
// Direct call.
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr()) {
auto symRef = callee.get<SymbolRefAttr>();
return setCalleeAttr(cast<FlatSymbolRefAttr>(symRef));
}
// Indirect call, callee Value is the first operand.
return setOperand(0, callee.get<Value>());
}
Operation::operand_range CallOp::getArgOperands() {
return getOperands().drop_front(getCallee().has_value() ? 0 : 1);
}
LogicalResult CallOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
if (getNumResults() > 1)
return emitOpError("must have 0 or 1 result");
// Type for the callee, we'll get it differently depending if it is a direct
// or indirect call.
Type fnType;
bool isIndirect = false;
// If this is an indirect call, the callee attribute is missing.
FlatSymbolRefAttr calleeName = getCalleeAttr();
if (!calleeName) {
isIndirect = true;
if (!getNumOperands())
return emitOpError(
"must have either a `callee` attribute or at least an operand");
auto ptrType = llvm::dyn_cast<LLVMPointerType>(getOperand(0).getType());
if (!ptrType)
return emitOpError("indirect call expects a pointer as callee: ")
<< getOperand(0).getType();
if (ptrType.isOpaque())
return success();
fnType = ptrType.getElementType();
} else {
Operation *callee =
symbolTable.lookupNearestSymbolFrom(*this, calleeName.getAttr());
if (!callee)
return emitOpError()
<< "'" << calleeName.getValue()
<< "' does not reference a symbol in the current scope";
auto fn = dyn_cast<LLVMFuncOp>(callee);
if (!fn)
return emitOpError() << "'" << calleeName.getValue()
<< "' does not reference a valid LLVM function";
fnType = fn.getFunctionType();
}
LLVMFunctionType funcType = llvm::dyn_cast<LLVMFunctionType>(fnType);
if (!funcType)
return emitOpError("callee does not have a functional type: ") << fnType;
// Indirect variadic function calls are not supported since the translation to
// LLVM IR reconstructs the LLVM function type from the argument and result
// types. An additional type attribute that stores the LLVM function type
// would be needed to distinguish normal and variadic function arguments.
// TODO: Support indirect calls to variadic function pointers.
if (isIndirect && funcType.isVarArg())
return emitOpError()
<< "indirect calls to variadic functions are not supported";
// Verify that the operand and result types match the callee.
if (!funcType.isVarArg() &&
funcType.getNumParams() != (getNumOperands() - isIndirect))
return emitOpError() << "incorrect number of operands ("
<< (getNumOperands() - isIndirect)
<< ") for callee (expecting: "
<< funcType.getNumParams() << ")";
if (funcType.getNumParams() > (getNumOperands() - isIndirect))
return emitOpError() << "incorrect number of operands ("
<< (getNumOperands() - isIndirect)
<< ") for varargs callee (expecting at least: "
<< funcType.getNumParams() << ")";
for (unsigned i = 0, e = funcType.getNumParams(); i != e; ++i)
if (getOperand(i + isIndirect).getType() != funcType.getParamType(i))
return emitOpError() << "operand type mismatch for operand " << i << ": "
<< getOperand(i + isIndirect).getType()
<< " != " << funcType.getParamType(i);
if (getNumResults() == 0 &&
!llvm::isa<LLVM::LLVMVoidType>(funcType.getReturnType()))
return emitOpError() << "expected function call to produce a value";
if (getNumResults() != 0 &&
llvm::isa<LLVM::LLVMVoidType>(funcType.getReturnType()))
return emitOpError()
<< "calling function with void result must not produce values";
if (getNumResults() > 1)
return emitOpError()
<< "expected LLVM function call to produce 0 or 1 result";
if (getNumResults() && getResult().getType() != funcType.getReturnType())
return emitOpError() << "result type mismatch: " << getResult().getType()
<< " != " << funcType.getReturnType();
return success();
}
void CallOp::print(OpAsmPrinter &p) {
auto callee = getCallee();
bool isDirect = callee.has_value();
// Print the direct callee if present as a function attribute, or an indirect
// callee (first operand) otherwise.
p << ' ';
if (isDirect)
p.printSymbolName(callee.value());
else
p << getOperand(0);
auto args = getOperands().drop_front(isDirect ? 0 : 1);
p << '(' << args << ')';
p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), {"callee"});
p << " : ";
if (!isDirect)
p << getOperand(0).getType() << ", ";
// Reconstruct the function MLIR function type from operand and result types.
p.printFunctionalType(args.getTypes(), getResultTypes());
}
/// Parses the type of a call operation and resolves the operands if the parsing
/// succeeds. Returns failure otherwise.
static ParseResult parseCallTypeAndResolveOperands(
OpAsmParser &parser, OperationState &result, bool isDirect,
ArrayRef<OpAsmParser::UnresolvedOperand> operands) {
SMLoc trailingTypesLoc = parser.getCurrentLocation();
SmallVector<Type> types;
if (parser.parseColonTypeList(types))
return failure();
if (isDirect && types.size() != 1)
return parser.emitError(trailingTypesLoc,
"expected direct call to have 1 trailing type");
if (!isDirect && types.size() != 2)
return parser.emitError(trailingTypesLoc,
"expected indirect call to have 2 trailing types");
auto funcType = llvm::dyn_cast<FunctionType>(types.pop_back_val());
if (!funcType)
return parser.emitError(trailingTypesLoc,
"expected trailing function type");
if (funcType.getNumResults() > 1)
return parser.emitError(trailingTypesLoc,
"expected function with 0 or 1 result");
if (funcType.getNumResults() == 1 &&
llvm::isa<LLVM::LLVMVoidType>(funcType.getResult(0)))
return parser.emitError(trailingTypesLoc,
"expected a non-void result type");
// The head element of the types list matches the callee type for
// indirect calls, while the types list is emtpy for direct calls.
// Append the function input types to resolve the call operation
// operands.
llvm::append_range(types, funcType.getInputs());
if (parser.resolveOperands(operands, types, parser.getNameLoc(),
result.operands))
return failure();
if (funcType.getNumResults() != 0)
result.addTypes(funcType.getResults());
return success();
}
/// Parses an optional function pointer operand before the call argument list
/// for indirect calls, or stops parsing at the function identifier otherwise.
static ParseResult parseOptionalCallFuncPtr(
OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &operands) {
OpAsmParser::UnresolvedOperand funcPtrOperand;
OptionalParseResult parseResult = parser.parseOptionalOperand(funcPtrOperand);
if (parseResult.has_value()) {
if (failed(*parseResult))
return *parseResult;
operands.push_back(funcPtrOperand);
}
return success();
}
// <operation> ::= `llvm.call` (function-id | ssa-use)`(` ssa-use-list `)`
// attribute-dict? `:` (type `,`)? function-type
ParseResult CallOp::parse(OpAsmParser &parser, OperationState &result) {
SymbolRefAttr funcAttr;
SmallVector<OpAsmParser::UnresolvedOperand> operands;
// Parse a function pointer for indirect calls.
if (parseOptionalCallFuncPtr(parser, operands))
return failure();
bool isDirect = operands.empty();
// Parse a function identifier for direct calls.
if (isDirect)
if (parser.parseAttribute(funcAttr, "callee", result.attributes))
return failure();
// Parse the function arguments.
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
// Parse the trailing type list and resolve the operands.
return parseCallTypeAndResolveOperands(parser, result, isDirect, operands);
}
///===---------------------------------------------------------------------===//
/// LLVM::InvokeOp
///===---------------------------------------------------------------------===//
SuccessorOperands InvokeOp::getSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return SuccessorOperands(index == 0 ? getNormalDestOperandsMutable()
: getUnwindDestOperandsMutable());
}
CallInterfaceCallable InvokeOp::getCallableForCallee() {
// Direct call.
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr())
return calleeAttr;
// Indirect call, callee Value is the first operand.
return getOperand(0);
}
void InvokeOp::setCalleeFromCallable(CallInterfaceCallable callee) {
// Direct call.
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr()) {
auto symRef = callee.get<SymbolRefAttr>();
return setCalleeAttr(cast<FlatSymbolRefAttr>(symRef));
}
// Indirect call, callee Value is the first operand.
return setOperand(0, callee.get<Value>());
}
Operation::operand_range InvokeOp::getArgOperands() {
return getOperands().drop_front(getCallee().has_value() ? 0 : 1);
}
LogicalResult InvokeOp::verify() {
if (getNumResults() > 1)
return emitOpError("must have 0 or 1 result");
Block *unwindDest = getUnwindDest();
if (unwindDest->empty())
return emitError("must have at least one operation in unwind destination");
// In unwind destination, first operation must be LandingpadOp
if (!isa<LandingpadOp>(unwindDest->front()))
return emitError("first operation in unwind destination should be a "
"llvm.landingpad operation");
return success();
}
void InvokeOp::print(OpAsmPrinter &p) {
auto callee = getCallee();
bool isDirect = callee.has_value();
p << ' ';
// Either function name or pointer
if (isDirect)
p.printSymbolName(callee.value());
else
p << getOperand(0);
p << '(' << getOperands().drop_front(isDirect ? 0 : 1) << ')';
p << " to ";
p.printSuccessorAndUseList(getNormalDest(), getNormalDestOperands());
p << " unwind ";
p.printSuccessorAndUseList(getUnwindDest(), getUnwindDestOperands());
p.printOptionalAttrDict((*this)->getAttrs(),
{InvokeOp::getOperandSegmentSizeAttr(), "callee"});
p << " : ";
if (!isDirect)
p << getOperand(0).getType() << ", ";
p.printFunctionalType(llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1),
getResultTypes());
}
// <operation> ::= `llvm.invoke` (function-id | ssa-use)
// `(` ssa-use-list `)`
// `to` bb-id (`[` ssa-use-and-type-list `]`)?
// `unwind` bb-id (`[` ssa-use-and-type-list `]`)?
// attribute-dict? `:` (type `,`)? function-type
ParseResult InvokeOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::UnresolvedOperand, 8> operands;
SymbolRefAttr funcAttr;
Block *normalDest, *unwindDest;
SmallVector<Value, 4> normalOperands, unwindOperands;
Builder &builder = parser.getBuilder();
// Parse a function pointer for indirect calls.
if (parseOptionalCallFuncPtr(parser, operands))
return failure();
bool isDirect = operands.empty();
// Parse a function identifier for direct calls.
if (isDirect && parser.parseAttribute(funcAttr, "callee", result.attributes))
return failure();
// Parse the function arguments.
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
parser.parseKeyword("to") ||
parser.parseSuccessorAndUseList(normalDest, normalOperands) ||
parser.parseKeyword("unwind") ||
parser.parseSuccessorAndUseList(unwindDest, unwindOperands) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
// Parse the trailing type list and resolve the function operands.
if (parseCallTypeAndResolveOperands(parser, result, isDirect, operands))
return failure();
result.addSuccessors({normalDest, unwindDest});
result.addOperands(normalOperands);
result.addOperands(unwindOperands);
result.addAttribute(InvokeOp::getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(
{static_cast<int32_t>(operands.size()),
static_cast<int32_t>(normalOperands.size()),
static_cast<int32_t>(unwindOperands.size())}));
return success();
}
///===----------------------------------------------------------------------===//
/// Verifying/Printing/Parsing for LLVM::LandingpadOp.
///===----------------------------------------------------------------------===//
LogicalResult LandingpadOp::verify() {
Value value;
if (LLVMFuncOp func = (*this)->getParentOfType<LLVMFuncOp>()) {
if (!func.getPersonality())
return emitError(
"llvm.landingpad needs to be in a function with a personality");
}
// Consistency of llvm.landingpad result types is checked in
// LLVMFuncOp::verify().
if (!getCleanup() && getOperands().empty())
return emitError("landingpad instruction expects at least one clause or "
"cleanup attribute");
for (unsigned idx = 0, ie = getNumOperands(); idx < ie; idx++) {
value = getOperand(idx);
bool isFilter = llvm::isa<LLVMArrayType>(value.getType());
if (isFilter) {
// FIXME: Verify filter clauses when arrays are appropriately handled
} else {
// catch - global addresses only.
// Bitcast ops should have global addresses as their args.
if (auto bcOp = value.getDefiningOp<BitcastOp>()) {
if (auto addrOp = bcOp.getArg().getDefiningOp<AddressOfOp>())
continue;
return emitError("constant clauses expected").attachNote(bcOp.getLoc())
<< "global addresses expected as operand to "
"bitcast used in clauses for landingpad";
}
// NullOp and AddressOfOp allowed
if (value.getDefiningOp<NullOp>())
continue;
if (value.getDefiningOp<AddressOfOp>())
continue;
return emitError("clause #")
<< idx << " is not a known constant - null, addressof, bitcast";
}
}
return success();
}
void LandingpadOp::print(OpAsmPrinter &p) {
p << (getCleanup() ? " cleanup " : " ");
// Clauses
for (auto value : getOperands()) {
// Similar to llvm - if clause is an array type then it is filter
// clause else catch clause
bool isArrayTy = llvm::isa<LLVMArrayType>(value.getType());
p << '(' << (isArrayTy ? "filter " : "catch ") << value << " : "
<< value.getType() << ") ";
}
p.printOptionalAttrDict((*this)->getAttrs(), {"cleanup"});
p << ": " << getType();
}
// <operation> ::= `llvm.landingpad` `cleanup`?
// ((`catch` | `filter`) operand-type ssa-use)* attribute-dict?
ParseResult LandingpadOp::parse(OpAsmParser &parser, OperationState &result) {
// Check for cleanup
if (succeeded(parser.parseOptionalKeyword("cleanup")))
result.addAttribute("cleanup", parser.getBuilder().getUnitAttr());
// Parse clauses with types
while (succeeded(parser.parseOptionalLParen()) &&
(succeeded(parser.parseOptionalKeyword("filter")) ||
succeeded(parser.parseOptionalKeyword("catch")))) {
OpAsmParser::UnresolvedOperand operand;
Type ty;
if (parser.parseOperand(operand) || parser.parseColon() ||
parser.parseType(ty) ||
parser.resolveOperand(operand, ty, result.operands) ||
parser.parseRParen())
return failure();
}
Type type;
if (parser.parseColon() || parser.parseType(type))
return failure();
result.addTypes(type);
return success();
}
//===----------------------------------------------------------------------===//
// ExtractValueOp
//===----------------------------------------------------------------------===//
/// Extract the type at `position` in the LLVM IR aggregate type
/// `containerType`. Each element of `position` is an index into a nested
/// aggregate type. Return the resulting type or emit an error.
static Type getInsertExtractValueElementType(
function_ref<InFlightDiagnostic(StringRef)> emitError, Type containerType,
ArrayRef<int64_t> position) {
Type llvmType = containerType;
if (!isCompatibleType(containerType)) {
emitError("expected LLVM IR Dialect type, got ") << containerType;
return {};
}
// Infer the element type from the structure type: iteratively step inside the
// type by taking the element type, indexed by the position attribute for
// structures. Check the position index before accessing, it is supposed to
// be in bounds.
for (int64_t idx : position) {
if (auto arrayType = llvm::dyn_cast<LLVMArrayType>(llvmType)) {
if (idx < 0 || static_cast<unsigned>(idx) >= arrayType.getNumElements()) {
emitError("position out of bounds: ") << idx;
return {};
}
llvmType = arrayType.getElementType();
} else if (auto structType = llvm::dyn_cast<LLVMStructType>(llvmType)) {
if (idx < 0 ||
static_cast<unsigned>(idx) >= structType.getBody().size()) {
emitError("position out of bounds: ") << idx;
return {};
}
llvmType = structType.getBody()[idx];
} else {
emitError("expected LLVM IR structure/array type, got: ") << llvmType;
return {};
}
}
return llvmType;
}
/// Extract the type at `position` in the wrapped LLVM IR aggregate type
/// `containerType`.
static Type getInsertExtractValueElementType(Type llvmType,
ArrayRef<int64_t> position) {
for (int64_t idx : position) {
if (auto structType = llvm::dyn_cast<LLVMStructType>(llvmType))
llvmType = structType.getBody()[idx];
else
llvmType = llvm::cast<LLVMArrayType>(llvmType).getElementType();
}
return llvmType;
}
OpFoldResult LLVM::ExtractValueOp::fold(FoldAdaptor adaptor) {
auto insertValueOp = getContainer().getDefiningOp<InsertValueOp>();
OpFoldResult result = {};
while (insertValueOp) {
if (getPosition() == insertValueOp.getPosition())
return insertValueOp.getValue();
unsigned min =
std::min(getPosition().size(), insertValueOp.getPosition().size());
// If one is fully prefix of the other, stop propagating back as it will
// miss dependencies. For instance, %3 should not fold to %f0 in the
// following example:
// ```
// %1 = llvm.insertvalue %f0, %0[0, 0] :
// !llvm.array<4 x !llvm.array<4 x f32>>
// %2 = llvm.insertvalue %arr, %1[0] :
// !llvm.array<4 x !llvm.array<4 x f32>>
// %3 = llvm.extractvalue %2[0, 0] : !llvm.array<4 x !llvm.array<4 x f32>>
// ```
if (getPosition().take_front(min) ==
insertValueOp.getPosition().take_front(min))
return result;
// If neither a prefix, nor the exact position, we can extract out of the
// value being inserted into. Moreover, we can try again if that operand
// is itself an insertvalue expression.
getContainerMutable().assign(insertValueOp.getContainer());
result = getResult();
insertValueOp = insertValueOp.getContainer().getDefiningOp<InsertValueOp>();
}
return result;
}
LogicalResult ExtractValueOp::verify() {
auto emitError = [this](StringRef msg) { return emitOpError(msg); };
Type valueType = getInsertExtractValueElementType(
emitError, getContainer().getType(), getPosition());
if (!valueType)
return failure();
if (getRes().getType() != valueType)
return emitOpError() << "Type mismatch: extracting from "
<< getContainer().getType() << " should produce "
<< valueType << " but this op returns "
<< getRes().getType();
return success();
}
void ExtractValueOp::build(OpBuilder &builder, OperationState &state,
Value container, ArrayRef<int64_t> position) {
build(builder, state,
getInsertExtractValueElementType(container.getType(), position),
container, builder.getAttr<DenseI64ArrayAttr>(position));
}
//===----------------------------------------------------------------------===//
// InsertValueOp
//===----------------------------------------------------------------------===//
/// Infer the value type from the container type and position.
static ParseResult
parseInsertExtractValueElementType(AsmParser &parser, Type &valueType,
Type containerType,
DenseI64ArrayAttr position) {
valueType = getInsertExtractValueElementType(
[&](StringRef msg) {
return parser.emitError(parser.getCurrentLocation(), msg);
},
containerType, position.asArrayRef());
return success(!!valueType);
}
/// Nothing to print for an inferred type.
static void printInsertExtractValueElementType(AsmPrinter &printer,
Operation *op, Type valueType,
Type containerType,
DenseI64ArrayAttr position) {}
LogicalResult InsertValueOp::verify() {
auto emitError = [this](StringRef msg) { return emitOpError(msg); };
Type valueType = getInsertExtractValueElementType(
emitError, getContainer().getType(), getPosition());
if (!valueType)
return failure();
if (getValue().getType() != valueType)
return emitOpError() << "Type mismatch: cannot insert "
<< getValue().getType() << " into "
<< getContainer().getType();
return success();
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
LogicalResult ReturnOp::verify() {
auto parent = (*this)->getParentOfType<LLVMFuncOp>();
if (!parent)
return success();
Type expectedType = parent.getFunctionType().getReturnType();
if (llvm::isa<LLVMVoidType>(expectedType)) {
if (!getArg())
return success();
InFlightDiagnostic diag = emitOpError("expected no operands");
diag.attachNote(parent->getLoc()) << "when returning from function";
return diag;
}
if (!getArg()) {
if (llvm::isa<LLVMVoidType>(expectedType))
return success();
InFlightDiagnostic diag = emitOpError("expected 1 operand");
diag.attachNote(parent->getLoc()) << "when returning from function";
return diag;
}
if (expectedType != getArg().getType()) {
InFlightDiagnostic diag = emitOpError("mismatching result types");
diag.attachNote(parent->getLoc()) << "when returning from function";
return diag;
}
return success();
}
//===----------------------------------------------------------------------===//
// Verifier for LLVM::AddressOfOp.
//===----------------------------------------------------------------------===//
static Operation *parentLLVMModule(Operation *op) {
Operation *module = op->getParentOp();
while (module && !satisfiesLLVMModule(module))
module = module->getParentOp();
assert(module && "unexpected operation outside of a module");
return module;
}
GlobalOp AddressOfOp::getGlobal(SymbolTableCollection &symbolTable) {
return dyn_cast_or_null<GlobalOp>(
symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr()));
}
LLVMFuncOp AddressOfOp::getFunction(SymbolTableCollection &symbolTable) {
return dyn_cast_or_null<LLVMFuncOp>(
symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr()));
}
LogicalResult
AddressOfOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
Operation *symbol =
symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr());
auto global = dyn_cast_or_null<GlobalOp>(symbol);
auto function = dyn_cast_or_null<LLVMFuncOp>(symbol);
if (!global && !function)
return emitOpError(
"must reference a global defined by 'llvm.mlir.global' or 'llvm.func'");
LLVMPointerType type = getType();
if (global && global.getAddrSpace() != type.getAddressSpace())
return emitOpError("pointer address space must match address space of the "
"referenced global");
if (type.isOpaque())
return success();
if (global && type.getElementType() != global.getType())
return emitOpError(
"the type must be a pointer to the type of the referenced global");
if (function && type.getElementType() != function.getFunctionType())
return emitOpError(
"the type must be a pointer to the type of the referenced function");
return success();
}
//===----------------------------------------------------------------------===//
// Verifier for LLVM::ComdatOp.
//===----------------------------------------------------------------------===//
void ComdatOp::build(OpBuilder &builder, OperationState &result,
StringRef symName) {
result.addAttribute(getSymNameAttrName(result.name),
builder.getStringAttr(symName));
Region *body = result.addRegion();
body->emplaceBlock();
}
LogicalResult ComdatOp::verifyRegions() {
Region &body = getBody();
for (Operation &op : body.getOps())
if (!isa<ComdatSelectorOp>(op))
return op.emitError(
"only comdat selector symbols can appear in a comdat region");
return success();
}
//===----------------------------------------------------------------------===//
// Builder, printer and verifier for LLVM::GlobalOp.
//===----------------------------------------------------------------------===//
void GlobalOp::build(OpBuilder &builder, OperationState &result, Type type,
bool isConstant, Linkage linkage, StringRef name,
Attribute value, uint64_t alignment, unsigned addrSpace,
bool dsoLocal, bool threadLocal, SymbolRefAttr comdat,
ArrayRef<NamedAttribute> attrs) {
result.addAttribute(getSymNameAttrName(result.name),
builder.getStringAttr(name));
result.addAttribute(getGlobalTypeAttrName(result.name), TypeAttr::get(type));
if (isConstant)
result.addAttribute(getConstantAttrName(result.name),
builder.getUnitAttr());
if (value)
result.addAttribute(getValueAttrName(result.name), value);
if (dsoLocal)
result.addAttribute(getDsoLocalAttrName(result.name),
builder.getUnitAttr());
if (threadLocal)
result.addAttribute(getThreadLocal_AttrName(result.name),
builder.getUnitAttr());
if (comdat)
result.addAttribute(getComdatAttrName(result.name), comdat);
// Only add an alignment attribute if the "alignment" input
// is different from 0. The value must also be a power of two, but
// this is tested in GlobalOp::verify, not here.
if (alignment != 0)
result.addAttribute(getAlignmentAttrName(result.name),
builder.getI64IntegerAttr(alignment));
result.addAttribute(getLinkageAttrName(result.name),
LinkageAttr::get(builder.getContext(), linkage));
if (addrSpace != 0)
result.addAttribute(getAddrSpaceAttrName(result.name),
builder.getI32IntegerAttr(addrSpace));
result.attributes.append(attrs.begin(), attrs.end());
result.addRegion();
}
void GlobalOp::print(OpAsmPrinter &p) {
p << ' ' << stringifyLinkage(getLinkage()) << ' ';
StringRef visibility = stringifyVisibility(getVisibility_());
if (!visibility.empty())
p << visibility << ' ';
if (getThreadLocal_())
p << "thread_local ";
if (auto unnamedAddr = getUnnamedAddr()) {
StringRef str = stringifyUnnamedAddr(*unnamedAddr);
if (!str.empty())
p << str << ' ';
}
if (getConstant())
p << "constant ";
p.printSymbolName(getSymName());
p << '(';
if (auto value = getValueOrNull())
p.printAttribute(value);
p << ')';
if (auto comdat = getComdat())
p << " comdat(" << *comdat << ')';
// Note that the alignment attribute is printed using the
// default syntax here, even though it is an inherent attribute
// (as defined in https://mlir.llvm.org/docs/LangRef/#attributes)
p.printOptionalAttrDict((*this)->getAttrs(),
{SymbolTable::getSymbolAttrName(),
getGlobalTypeAttrName(), getConstantAttrName(),
getValueAttrName(), getLinkageAttrName(),
getUnnamedAddrAttrName(), getThreadLocal_AttrName(),
getVisibility_AttrName(), getComdatAttrName(),
getUnnamedAddrAttrName()});
// Print the trailing type unless it's a string global.
if (llvm::dyn_cast_or_null<StringAttr>(getValueOrNull()))
return;
p << " : " << getType();
Region &initializer = getInitializerRegion();
if (!initializer.empty()) {
p << ' ';
p.printRegion(initializer, /*printEntryBlockArgs=*/false);
}
}
// Parses one of the keywords provided in the list `keywords` and returns the
// position of the parsed keyword in the list. If none of the keywords from the
// list is parsed, returns -1.
static int parseOptionalKeywordAlternative(OpAsmParser &parser,
ArrayRef<StringRef> keywords) {
for (const auto &en : llvm::enumerate(keywords)) {
if (succeeded(parser.parseOptionalKeyword(en.value())))
return en.index();
}
return -1;
}
namespace {
template <typename Ty>
struct EnumTraits {};
#define REGISTER_ENUM_TYPE(Ty) \
template <> \
struct EnumTraits<Ty> { \
static StringRef stringify(Ty value) { return stringify##Ty(value); } \
static unsigned getMaxEnumVal() { return getMaxEnumValFor##Ty(); } \
}
REGISTER_ENUM_TYPE(Linkage);
REGISTER_ENUM_TYPE(UnnamedAddr);
REGISTER_ENUM_TYPE(CConv);
REGISTER_ENUM_TYPE(Visibility);
} // namespace
/// Parse an enum from the keyword, or default to the provided default value.
/// The return type is the enum type by default, unless overriden with the
/// second template argument.
template <typename EnumTy, typename RetTy = EnumTy>
static RetTy parseOptionalLLVMKeyword(OpAsmParser &parser,
OperationState &result,
EnumTy defaultValue) {
SmallVector<StringRef, 10> names;
for (unsigned i = 0, e = EnumTraits<EnumTy>::getMaxEnumVal(); i <= e; ++i)
names.push_back(EnumTraits<EnumTy>::stringify(static_cast<EnumTy>(i)));
int index = parseOptionalKeywordAlternative(parser, names);
if (index == -1)
return static_cast<RetTy>(defaultValue);
return static_cast<RetTy>(index);
}
static LogicalResult verifyComdat(Operation *op,
std::optional<SymbolRefAttr> attr) {
if (!attr)
return success();
auto *comdatSelector = SymbolTable::lookupNearestSymbolFrom(op, *attr);
if (!isa_and_nonnull<ComdatSelectorOp>(comdatSelector))
return op->emitError() << "expected comdat symbol";
return success();
}
// operation ::= `llvm.mlir.global` linkage? visibility?
// (`unnamed_addr` | `local_unnamed_addr`)?
// `thread_local`? `constant`? `@` identifier
// `(` attribute? `)` (`comdat(` symbol-ref-id `)`)?
// attribute-list? (`:` type)? region?
//
// The type can be omitted for string attributes, in which case it will be
// inferred from the value of the string as [strlen(value) x i8].
ParseResult GlobalOp::parse(OpAsmParser &parser, OperationState &result) {
MLIRContext *ctx = parser.getContext();
// Parse optional linkage, default to External.
result.addAttribute(getLinkageAttrName(result.name),
LLVM::LinkageAttr::get(
ctx, parseOptionalLLVMKeyword<Linkage>(
parser, result, LLVM::Linkage::External)));
// Parse optional visibility, default to Default.
result.addAttribute(getVisibility_AttrName(result.name),
parser.getBuilder().getI64IntegerAttr(
parseOptionalLLVMKeyword<LLVM::Visibility, int64_t>(
parser, result, LLVM::Visibility::Default)));
// Parse optional UnnamedAddr, default to None.
result.addAttribute(getUnnamedAddrAttrName(result.name),
parser.getBuilder().getI64IntegerAttr(
parseOptionalLLVMKeyword<UnnamedAddr, int64_t>(
parser, result, LLVM::UnnamedAddr::None)));
if (succeeded(parser.parseOptionalKeyword("thread_local")))
result.addAttribute(getThreadLocal_AttrName(result.name),
parser.getBuilder().getUnitAttr());
if (succeeded(parser.parseOptionalKeyword("constant")))
result.addAttribute(getConstantAttrName(result.name),
parser.getBuilder().getUnitAttr());
StringAttr name;
if (parser.parseSymbolName(name, getSymNameAttrName(result.name),
result.attributes) ||
parser.parseLParen())
return failure();
Attribute value;
if (parser.parseOptionalRParen()) {
if (parser.parseAttribute(value, getValueAttrName(result.name),
result.attributes) ||
parser.parseRParen())
return failure();
}
if (succeeded(parser.parseOptionalKeyword("comdat"))) {
SymbolRefAttr comdat;
if (parser.parseLParen() || parser.parseAttribute(comdat) ||
parser.parseRParen())
return failure();
result.addAttribute(getComdatAttrName(result.name), comdat);
}
SmallVector<Type, 1> types;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseOptionalColonTypeList(types))
return failure();
if (types.size() > 1)
return parser.emitError(parser.getNameLoc(), "expected zero or one type");
Region &initRegion = *result.addRegion();
if (types.empty()) {
if (auto strAttr = llvm::dyn_cast_or_null<StringAttr>(value)) {
MLIRContext *context = parser.getContext();
auto arrayType = LLVM::LLVMArrayType::get(IntegerType::get(context, 8),
strAttr.getValue().size());
types.push_back(arrayType);
} else {
return parser.emitError(parser.getNameLoc(),
"type can only be omitted for string globals");
}
} else {
OptionalParseResult parseResult =
parser.parseOptionalRegion(initRegion, /*arguments=*/{},
/*argTypes=*/{});
if (parseResult.has_value() && failed(*parseResult))
return failure();
}
result.addAttribute(getGlobalTypeAttrName(result.name),
TypeAttr::get(types[0]));
return success();
}
static bool isZeroAttribute(Attribute value) {
if (auto intValue = llvm::dyn_cast<IntegerAttr>(value))
return intValue.getValue().isZero();
if (auto fpValue = llvm::dyn_cast<FloatAttr>(value))
return fpValue.getValue().isZero();
if (auto splatValue = llvm::dyn_cast<SplatElementsAttr>(value))
return isZeroAttribute(splatValue.getSplatValue<Attribute>());
if (auto elementsValue = llvm::dyn_cast<ElementsAttr>(value))
return llvm::all_of(elementsValue.getValues<Attribute>(), isZeroAttribute);
if (auto arrayValue = llvm::dyn_cast<ArrayAttr>(value))
return llvm::all_of(arrayValue.getValue(), isZeroAttribute);
return false;
}
LogicalResult GlobalOp::verify() {
if (!LLVMPointerType::isValidElementType(getType()))
return emitOpError(
"expects type to be a valid element type for an LLVM pointer");
if ((*this)->getParentOp() && !satisfiesLLVMModule((*this)->getParentOp()))
return emitOpError("must appear at the module level");
if (auto strAttr = llvm::dyn_cast_or_null<StringAttr>(getValueOrNull())) {
auto type = llvm::dyn_cast<LLVMArrayType>(getType());
IntegerType elementType =
type ? llvm::dyn_cast<IntegerType>(type.getElementType()) : nullptr;
if (!elementType || elementType.getWidth() != 8 ||
type.getNumElements() != strAttr.getValue().size())
return emitOpError(
"requires an i8 array type of the length equal to that of the string "
"attribute");
}
if (auto targetExtType = dyn_cast<LLVMTargetExtType>(getType())) {
if (!targetExtType.hasProperty(LLVMTargetExtType::CanBeGlobal))
return emitOpError()
<< "this target extension type cannot be used in a global";
if (Attribute value = getValueOrNull()) {
// Only a single, zero integer attribute (=zeroinitializer) is allowed for
// a global value with TargetExtType.
// TODO: Replace with 'zeroinitializer' once there is a dedicated
// zeroinitializer operation in the LLVM dialect.
if (!isa<IntegerAttr>(value) || !isZeroAttribute(value))
return emitOpError()
<< "expected zero value for global with target extension type";
}
}
if (getLinkage() == Linkage::Common) {
if (Attribute value = getValueOrNull()) {
if (!isZeroAttribute(value)) {
return emitOpError()
<< "expected zero value for '"
<< stringifyLinkage(Linkage::Common) << "' linkage";
}
}
}
if (getLinkage() == Linkage::Appending) {
if (!llvm::isa<LLVMArrayType>(getType())) {
return emitOpError() << "expected array type for '"
<< stringifyLinkage(Linkage::Appending)
<< "' linkage";
}
}
if (failed(verifyComdat(*this, getComdat())))
return failure();
std::optional<uint64_t> alignAttr = getAlignment();
if (alignAttr.has_value()) {
uint64_t value = alignAttr.value();
if (!llvm::isPowerOf2_64(value))
return emitError() << "alignment attribute is not a power of 2";
}
return success();
}
LogicalResult GlobalOp::verifyRegions() {
if (Block *b = getInitializerBlock()) {
ReturnOp ret = cast<ReturnOp>(b->getTerminator());
if (ret.operand_type_begin() == ret.operand_type_end())
return emitOpError("initializer region cannot return void");
if (*ret.operand_type_begin() != getType())
return emitOpError("initializer region type ")
<< *ret.operand_type_begin() << " does not match global type "
<< getType();
for (Operation &op : *b) {
auto iface = dyn_cast<MemoryEffectOpInterface>(op);
if (!iface || !iface.hasNoEffect())
return op.emitError()
<< "ops with side effects not allowed in global initializers";
}
if (getValueOrNull())
return emitOpError("cannot have both initializer value and region");
}
return success();
}
//===----------------------------------------------------------------------===//
// LLVM::GlobalCtorsOp
//===----------------------------------------------------------------------===//
LogicalResult
GlobalCtorsOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
for (Attribute ctor : getCtors()) {
if (failed(verifySymbolAttrUse(llvm::cast<FlatSymbolRefAttr>(ctor), *this,
symbolTable)))
return failure();
}
return success();
}
LogicalResult GlobalCtorsOp::verify() {
if (getCtors().size() != getPriorities().size())
return emitError(
"mismatch between the number of ctors and the number of priorities");
return success();
}
//===----------------------------------------------------------------------===//
// LLVM::GlobalDtorsOp
//===----------------------------------------------------------------------===//
LogicalResult
GlobalDtorsOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
for (Attribute dtor : getDtors()) {
if (failed(verifySymbolAttrUse(llvm::cast<FlatSymbolRefAttr>(dtor), *this,
symbolTable)))
return failure();
}
return success();
}
LogicalResult GlobalDtorsOp::verify() {
if (getDtors().size() != getPriorities().size())
return emitError(
"mismatch between the number of dtors and the number of priorities");
return success();
}
//===----------------------------------------------------------------------===//
// ShuffleVectorOp
//===----------------------------------------------------------------------===//
void ShuffleVectorOp::build(OpBuilder &builder, OperationState &state, Value v1,
Value v2, DenseI32ArrayAttr mask,
ArrayRef<NamedAttribute> attrs) {
auto containerType = v1.getType();
auto vType = LLVM::getVectorType(LLVM::getVectorElementType(containerType),
mask.size(),
LLVM::isScalableVectorType(containerType));
build(builder, state, vType, v1, v2, mask);
state.addAttributes(attrs);
}
void ShuffleVectorOp::build(OpBuilder &builder, OperationState &state, Value v1,
Value v2, ArrayRef<int32_t> mask) {
build(builder, state, v1, v2, builder.getDenseI32ArrayAttr(mask));
}
/// Build the result type of a shuffle vector operation.
static ParseResult parseShuffleType(AsmParser &parser, Type v1Type,
Type &resType, DenseI32ArrayAttr mask) {
if (!LLVM::isCompatibleVectorType(v1Type))
return parser.emitError(parser.getCurrentLocation(),
"expected an LLVM compatible vector type");
resType = LLVM::getVectorType(LLVM::getVectorElementType(v1Type), mask.size(),
LLVM::isScalableVectorType(v1Type));
return success();
}
/// Nothing to do when the result type is inferred.
static void printShuffleType(AsmPrinter &printer, Operation *op, Type v1Type,
Type resType, DenseI32ArrayAttr mask) {}
LogicalResult ShuffleVectorOp::verify() {
if (LLVM::isScalableVectorType(getV1().getType()) &&
llvm::any_of(getMask(), [](int32_t v) { return v != 0; }))
return emitOpError("expected a splat operation for scalable vectors");
return success();
}
//===----------------------------------------------------------------------===//
// Implementations for LLVM::LLVMFuncOp.
//===----------------------------------------------------------------------===//
// Add the entry block to the function.
Block *LLVMFuncOp::addEntryBlock() {
assert(empty() && "function already has an entry block");
auto *entry = new Block;
push_back(entry);
// FIXME: Allow passing in proper locations for the entry arguments.
LLVMFunctionType type = getFunctionType();
for (unsigned i = 0, e = type.getNumParams(); i < e; ++i)
entry->addArgument(type.getParamType(i), getLoc());
return entry;
}
void LLVMFuncOp::build(OpBuilder &builder, OperationState &result,
StringRef name, Type type, LLVM::Linkage linkage,
bool dsoLocal, CConv cconv, SymbolRefAttr comdat,
ArrayRef<NamedAttribute> attrs,
ArrayRef<DictionaryAttr> argAttrs,
std::optional<uint64_t> functionEntryCount) {
result.addRegion();
result.addAttribute(SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
result.addAttribute(getFunctionTypeAttrName(result.name),
TypeAttr::get(type));
result.addAttribute(getLinkageAttrName(result.name),
LinkageAttr::get(builder.getContext(), linkage));
result.addAttribute(getCConvAttrName(result.name),
CConvAttr::get(builder.getContext(), cconv));
result.attributes.append(attrs.begin(), attrs.end());
if (dsoLocal)
result.addAttribute(getDsoLocalAttrName(result.name),
builder.getUnitAttr());
if (comdat)
result.addAttribute(getComdatAttrName(result.name), comdat);
if (functionEntryCount)
result.addAttribute(getFunctionEntryCountAttrName(result.name),
builder.getI64IntegerAttr(functionEntryCount.value()));
if (argAttrs.empty())
return;
assert(llvm::cast<LLVMFunctionType>(type).getNumParams() == argAttrs.size() &&
"expected as many argument attribute lists as arguments");
function_interface_impl::addArgAndResultAttrs(
builder, result, argAttrs, /*resultAttrs=*/std::nullopt,
getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name));
}
// Builds an LLVM function type from the given lists of input and output types.
// Returns a null type if any of the types provided are non-LLVM types, or if
// there is more than one output type.
static Type
buildLLVMFunctionType(OpAsmParser &parser, SMLoc loc, ArrayRef<Type> inputs,
ArrayRef<Type> outputs,
function_interface_impl::VariadicFlag variadicFlag) {
Builder &b = parser.getBuilder();
if (outputs.size() > 1) {
parser.emitError(loc, "failed to construct function type: expected zero or "
"one function result");
return {};
}
// Convert inputs to LLVM types, exit early on error.
SmallVector<Type, 4> llvmInputs;
for (auto t : inputs) {
if (!isCompatibleType(t)) {
parser.emitError(loc, "failed to construct function type: expected LLVM "
"type for function arguments");
return {};
}
llvmInputs.push_back(t);
}
// No output is denoted as "void" in LLVM type system.
Type llvmOutput =
outputs.empty() ? LLVMVoidType::get(b.getContext()) : outputs.front();
if (!isCompatibleType(llvmOutput)) {
parser.emitError(loc, "failed to construct function type: expected LLVM "
"type for function results")
<< llvmOutput;
return {};
}
return LLVMFunctionType::get(llvmOutput, llvmInputs,
variadicFlag.isVariadic());
}
// Parses an LLVM function.
//
// operation ::= `llvm.func` linkage? cconv? function-signature
// (`comdat(` symbol-ref-id `)`)?
// function-attributes?
// function-body
//
ParseResult LLVMFuncOp::parse(OpAsmParser &parser, OperationState &result) {
// Default to external linkage if no keyword is provided.
result.addAttribute(
getLinkageAttrName(result.name),
LinkageAttr::get(parser.getContext(),
parseOptionalLLVMKeyword<Linkage>(
parser, result, LLVM::Linkage::External)));
// Parse optional visibility, default to Default.
result.addAttribute(getVisibility_AttrName(result.name),
parser.getBuilder().getI64IntegerAttr(
parseOptionalLLVMKeyword<LLVM::Visibility, int64_t>(
parser, result, LLVM::Visibility::Default)));
// Parse optional UnnamedAddr, default to None.
result.addAttribute(getUnnamedAddrAttrName(result.name),
parser.getBuilder().getI64IntegerAttr(
parseOptionalLLVMKeyword<UnnamedAddr, int64_t>(
parser, result, LLVM::UnnamedAddr::None)));
// Default to C Calling Convention if no keyword is provided.
result.addAttribute(
getCConvAttrName(result.name),
CConvAttr::get(parser.getContext(), parseOptionalLLVMKeyword<CConv>(
parser, result, LLVM::CConv::C)));
StringAttr nameAttr;
SmallVector<OpAsmParser::Argument> entryArgs;
SmallVector<DictionaryAttr> resultAttrs;
SmallVector<Type> resultTypes;
bool isVariadic;
auto signatureLocation = parser.getCurrentLocation();
if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
result.attributes) ||
function_interface_impl::parseFunctionSignature(
parser, /*allowVariadic=*/true, entryArgs, isVariadic, resultTypes,
resultAttrs))
return failure();
SmallVector<Type> argTypes;
for (auto &arg : entryArgs)
argTypes.push_back(arg.type);
auto type =
buildLLVMFunctionType(parser, signatureLocation, argTypes, resultTypes,
function_interface_impl::VariadicFlag(isVariadic));
if (!type)
return failure();
result.addAttribute(getFunctionTypeAttrName(result.name),
TypeAttr::get(type));
// Parse the optional comdat selector.
if (succeeded(parser.parseOptionalKeyword("comdat"))) {
SymbolRefAttr comdat;
if (parser.parseLParen() || parser.parseAttribute(comdat) ||
parser.parseRParen())
return failure();
result.addAttribute(getComdatAttrName(result.name), comdat);
}
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
return failure();
function_interface_impl::addArgAndResultAttrs(
parser.getBuilder(), result, entryArgs, resultAttrs,
getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name));
auto *body = result.addRegion();
OptionalParseResult parseResult =
parser.parseOptionalRegion(*body, entryArgs);
return failure(parseResult.has_value() && failed(*parseResult));
}
// Print the LLVMFuncOp. Collects argument and result types and passes them to
// helper functions. Drops "void" result since it cannot be parsed back. Skips
// the external linkage since it is the default value.
void LLVMFuncOp::print(OpAsmPrinter &p) {
p << ' ';
if (getLinkage() != LLVM::Linkage::External)
p << stringifyLinkage(getLinkage()) << ' ';
StringRef visibility = stringifyVisibility(getVisibility_());
if (!visibility.empty())
p << visibility << ' ';
if (auto unnamedAddr = getUnnamedAddr()) {
StringRef str = stringifyUnnamedAddr(*unnamedAddr);
if (!str.empty())
p << str << ' ';
}
if (getCConv() != LLVM::CConv::C)
p << stringifyCConv(getCConv()) << ' ';
p.printSymbolName(getName());
LLVMFunctionType fnType = getFunctionType();
SmallVector<Type, 8> argTypes;
SmallVector<Type, 1> resTypes;
argTypes.reserve(fnType.getNumParams());
for (unsigned i = 0, e = fnType.getNumParams(); i < e; ++i)
argTypes.push_back(fnType.getParamType(i));
Type returnType = fnType.getReturnType();
if (!llvm::isa<LLVMVoidType>(returnType))
resTypes.push_back(returnType);
function_interface_impl::printFunctionSignature(p, *this, argTypes,
isVarArg(), resTypes);
// Print the optional comdat selector.
if (auto comdat = getComdat())
p << " comdat(" << *comdat << ')';
function_interface_impl::printFunctionAttributes(
p, *this,
{getFunctionTypeAttrName(), getArgAttrsAttrName(), getResAttrsAttrName(),
getLinkageAttrName(), getCConvAttrName(), getVisibility_AttrName(),
getComdatAttrName(), getUnnamedAddrAttrName()});
// Print the body if this is not an external function.
Region &body = getBody();
if (!body.empty()) {
p << ' ';
p.printRegion(body, /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
}
// Verifies LLVM- and implementation-specific properties of the LLVM func Op:
// - functions don't have 'common' linkage
// - external functions have 'external' or 'extern_weak' linkage;
// - vararg is (currently) only supported for external functions;
LogicalResult LLVMFuncOp::verify() {
if (getLinkage() == LLVM::Linkage::Common)
return emitOpError() << "functions cannot have '"
<< stringifyLinkage(LLVM::Linkage::Common)
<< "' linkage";
if (failed(verifyComdat(*this, getComdat())))
return failure();
if (isExternal()) {
if (getLinkage() != LLVM::Linkage::External &&
getLinkage() != LLVM::Linkage::ExternWeak)
return emitOpError() << "external functions must have '"
<< stringifyLinkage(LLVM::Linkage::External)
<< "' or '"
<< stringifyLinkage(LLVM::Linkage::ExternWeak)
<< "' linkage";
return success();
}
Type landingpadResultTy;
StringRef diagnosticMessage;
bool isLandingpadTypeConsistent =
!walk([&](Operation *op) {
const auto checkType = [&](Type type, StringRef errorMessage) {
if (!landingpadResultTy) {
landingpadResultTy = type;
return WalkResult::advance();
}
if (landingpadResultTy != type) {
diagnosticMessage = errorMessage;
return WalkResult::interrupt();
}
return WalkResult::advance();
};
return TypeSwitch<Operation *, WalkResult>(op)
.Case<LandingpadOp>([&](auto landingpad) {
constexpr StringLiteral errorMessage =
"'llvm.landingpad' should have a consistent result type "
"inside a function";
return checkType(landingpad.getType(), errorMessage);
})
.Case<ResumeOp>([&](auto resume) {
constexpr StringLiteral errorMessage =
"'llvm.resume' should have a consistent input type inside a "
"function";
return checkType(resume.getValue().getType(), errorMessage);
})
.Default([](auto) { return WalkResult::skip(); });
}).wasInterrupted();
if (!isLandingpadTypeConsistent) {
assert(!diagnosticMessage.empty() &&
"Expecting a non-empty diagnostic message");
return emitError(diagnosticMessage);
}
return success();
}
/// Verifies LLVM- and implementation-specific properties of the LLVM func Op:
/// - entry block arguments are of LLVM types.
LogicalResult LLVMFuncOp::verifyRegions() {
if (isExternal())
return success();
unsigned numArguments = getFunctionType().getNumParams();
Block &entryBlock = front();
for (unsigned i = 0; i < numArguments; ++i) {
Type argType = entryBlock.getArgument(i).getType();
if (!isCompatibleType(argType))
return emitOpError("entry block argument #")
<< i << " is not of LLVM type";
}
return success();
}
Region *LLVMFuncOp::getCallableRegion() {
if (isExternal())
return nullptr;
return &getBody();
}
//===----------------------------------------------------------------------===//
// Verification for LLVM::ConstantOp.
//===----------------------------------------------------------------------===//
LogicalResult LLVM::ConstantOp::verify() {
if (StringAttr sAttr = llvm::dyn_cast<StringAttr>(getValue())) {
auto arrayType = llvm::dyn_cast<LLVMArrayType>(getType());
if (!arrayType || arrayType.getNumElements() != sAttr.getValue().size() ||
!arrayType.getElementType().isInteger(8)) {
return emitOpError() << "expected array type of "
<< sAttr.getValue().size()
<< " i8 elements for the string constant";
}
return success();
}
if (auto structType = llvm::dyn_cast<LLVMStructType>(getType())) {
if (structType.getBody().size() != 2 ||
structType.getBody()[0] != structType.getBody()[1]) {
return emitError() << "expected struct type with two elements of the "
"same type, the type of a complex constant";
}
auto arrayAttr = llvm::dyn_cast<ArrayAttr>(getValue());
if (!arrayAttr || arrayAttr.size() != 2) {
return emitOpError() << "expected array attribute with two elements, "
"representing a complex constant";
}
auto re = llvm::dyn_cast<TypedAttr>(arrayAttr[0]);
auto im = llvm::dyn_cast<TypedAttr>(arrayAttr[1]);
if (!re || !im || re.getType() != im.getType()) {
return emitOpError()
<< "expected array attribute with two elements of the same type";
}
Type elementType = structType.getBody()[0];
if (!llvm::isa<IntegerType, Float16Type, Float32Type, Float64Type>(
elementType)) {
return emitError()
<< "expected struct element types to be floating point type or "
"integer type";
}
return success();
}
if (auto targetExtType = dyn_cast<LLVMTargetExtType>(getType())) {
if (!targetExtType.hasProperty(LLVM::LLVMTargetExtType::HasZeroInit))
return emitOpError()
<< "target extension type does not support zero-initializer";
// Only a single, zero integer attribute (=zeroinitializer) is allowed for a
// global value with TargetExtType.
if (!isa<IntegerAttr>(getValue()) || !isZeroAttribute(getValue()))
return emitOpError()
<< "only zero-initializer allowed for target extension types";
return success();
}
if (!llvm::isa<IntegerAttr, ArrayAttr, FloatAttr, ElementsAttr>(getValue()))
return emitOpError()
<< "only supports integer, float, string or elements attributes";
return success();
}
// Constant op constant-folds to its value.
OpFoldResult LLVM::ConstantOp::fold(FoldAdaptor) { return getValue(); }
//===----------------------------------------------------------------------===//
// AtomicRMWOp
//===----------------------------------------------------------------------===//
void AtomicRMWOp::build(OpBuilder &builder, OperationState &state,
AtomicBinOp binOp, Value ptr, Value val,
AtomicOrdering ordering, StringRef syncscope,
unsigned alignment, bool isVolatile) {
build(builder, state, val.getType(), binOp, ptr, val, ordering,
!syncscope.empty() ? builder.getStringAttr(syncscope) : nullptr,
alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile,
/*access_groups=*/nullptr,
/*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
}
LogicalResult AtomicRMWOp::verify() {
auto ptrType = llvm::cast<LLVM::LLVMPointerType>(getPtr().getType());
auto valType = getVal().getType();
if (!ptrType.isOpaque() && valType != ptrType.getElementType())
return emitOpError("expected LLVM IR element type for operand #0 to "
"match type for operand #1");
if (getBinOp() == AtomicBinOp::fadd || getBinOp() == AtomicBinOp::fsub ||
getBinOp() == AtomicBinOp::fmin || getBinOp() == AtomicBinOp::fmax) {
if (!mlir::LLVM::isCompatibleFloatingPointType(valType))
return emitOpError("expected LLVM IR floating point type");
} else if (getBinOp() == AtomicBinOp::xchg) {
if (!isTypeCompatibleWithAtomicOp(valType, /*isPointerTypeAllowed=*/true))
return emitOpError("unexpected LLVM IR type for 'xchg' bin_op");
} else {
auto intType = llvm::dyn_cast<IntegerType>(valType);
unsigned intBitWidth = intType ? intType.getWidth() : 0;
if (intBitWidth != 8 && intBitWidth != 16 && intBitWidth != 32 &&
intBitWidth != 64)
return emitOpError("expected LLVM IR integer type");
}
if (static_cast<unsigned>(getOrdering()) <
static_cast<unsigned>(AtomicOrdering::monotonic))
return emitOpError() << "expected at least '"
<< stringifyAtomicOrdering(AtomicOrdering::monotonic)
<< "' ordering";
return success();
}
//===----------------------------------------------------------------------===//
// AtomicCmpXchgOp
//===----------------------------------------------------------------------===//
/// Returns an LLVM struct type that contains a value type and a boolean type.
static LLVMStructType getValAndBoolStructType(Type valType) {
auto boolType = IntegerType::get(valType.getContext(), 1);
return LLVMStructType::getLiteral(valType.getContext(), {valType, boolType});
}
void AtomicCmpXchgOp::build(OpBuilder &builder, OperationState &state,
Value ptr, Value cmp, Value val,
AtomicOrdering successOrdering,
AtomicOrdering failureOrdering, StringRef syncscope,
unsigned alignment, bool isWeak, bool isVolatile) {
build(builder, state, getValAndBoolStructType(val.getType()), ptr, cmp, val,
successOrdering, failureOrdering,
!syncscope.empty() ? builder.getStringAttr(syncscope) : nullptr,
alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isWeak,
isVolatile, /*access_groups=*/nullptr,
/*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
}
LogicalResult AtomicCmpXchgOp::verify() {
auto ptrType = llvm::cast<LLVM::LLVMPointerType>(getPtr().getType());
if (!ptrType)
return emitOpError("expected LLVM IR pointer type for operand #0");
auto valType = getVal().getType();
if (!ptrType.isOpaque() && valType != ptrType.getElementType())
return emitOpError("expected LLVM IR element type for operand #0 to "
"match type for all other operands");
if (!isTypeCompatibleWithAtomicOp(valType,
/*isPointerTypeAllowed=*/true))
return emitOpError("unexpected LLVM IR type");
if (getSuccessOrdering() < AtomicOrdering::monotonic ||
getFailureOrdering() < AtomicOrdering::monotonic)
return emitOpError("ordering must be at least 'monotonic'");
if (getFailureOrdering() == AtomicOrdering::release ||
getFailureOrdering() == AtomicOrdering::acq_rel)
return emitOpError("failure ordering cannot be 'release' or 'acq_rel'");
return success();
}
//===----------------------------------------------------------------------===//
// FenceOp
//===----------------------------------------------------------------------===//
void FenceOp::build(OpBuilder &builder, OperationState &state,
AtomicOrdering ordering, StringRef syncscope) {
build(builder, state, ordering,
syncscope.empty() ? nullptr : builder.getStringAttr(syncscope));
}
LogicalResult FenceOp::verify() {
if (getOrdering() == AtomicOrdering::not_atomic ||
getOrdering() == AtomicOrdering::unordered ||
getOrdering() == AtomicOrdering::monotonic)
return emitOpError("can be given only acquire, release, acq_rel, "
"and seq_cst orderings");
return success();
}
//===----------------------------------------------------------------------===//
// Verifier for extension ops
//===----------------------------------------------------------------------===//
/// Verifies that the given extension operation operates on consistent scalars
/// or vectors, and that the target width is larger than the input width.
template <class ExtOp>
static LogicalResult verifyExtOp(ExtOp op) {
IntegerType inputType, outputType;
if (isCompatibleVectorType(op.getArg().getType())) {
if (!isCompatibleVectorType(op.getResult().getType()))
return op.emitError(
"input type is a vector but output type is an integer");
if (getVectorNumElements(op.getArg().getType()) !=
getVectorNumElements(op.getResult().getType()))
return op.emitError("input and output vectors are of incompatible shape");
// Because this is a CastOp, the element of vectors is guaranteed to be an
// integer.
inputType = cast<IntegerType>(getVectorElementType(op.getArg().getType()));
outputType =
cast<IntegerType>(getVectorElementType(op.getResult().getType()));
} else {
// Because this is a CastOp and arg is not a vector, arg is guaranteed to be
// an integer.
inputType = cast<IntegerType>(op.getArg().getType());
outputType = dyn_cast<IntegerType>(op.getResult().getType());
if (!outputType)
return op.emitError(
"input type is an integer but output type is a vector");
}
if (outputType.getWidth() <= inputType.getWidth())
return op.emitError("integer width of the output type is smaller or "
"equal to the integer width of the input type");
return success();
}
//===----------------------------------------------------------------------===//
// ZExtOp
//===----------------------------------------------------------------------===//
LogicalResult ZExtOp::verify() { return verifyExtOp<ZExtOp>(*this); }
OpFoldResult LLVM::ZExtOp::fold(FoldAdaptor adaptor) {
auto arg = dyn_cast_or_null<IntegerAttr>(adaptor.getArg());
if (!arg)
return {};
size_t targetSize = cast<IntegerType>(getType()).getWidth();
return IntegerAttr::get(getType(), arg.getValue().zext(targetSize));
}
//===----------------------------------------------------------------------===//
// SExtOp
//===----------------------------------------------------------------------===//
LogicalResult SExtOp::verify() { return verifyExtOp<SExtOp>(*this); }
//===----------------------------------------------------------------------===//
// Folder and verifier for LLVM::BitcastOp
//===----------------------------------------------------------------------===//
OpFoldResult LLVM::BitcastOp::fold(FoldAdaptor adaptor) {
// bitcast(x : T0, T0) -> x
if (getArg().getType() == getType())
return getArg();
// bitcast(bitcast(x : T0, T1), T0) -> x
if (auto prev = getArg().getDefiningOp<BitcastOp>())
if (prev.getArg().getType() == getType())
return prev.getArg();
return {};
}
LogicalResult LLVM::BitcastOp::verify() {
auto resultType = llvm::dyn_cast<LLVMPointerType>(
extractVectorElementType(getResult().getType()));
auto sourceType = llvm::dyn_cast<LLVMPointerType>(
extractVectorElementType(getArg().getType()));
// If one of the types is a pointer (or vector of pointers), then
// both source and result type have to be pointers.
if (static_cast<bool>(resultType) != static_cast<bool>(sourceType))
return emitOpError("can only cast pointers from and to pointers");
if (!resultType)
return success();
auto isVector = [](Type type) {
return llvm::isa<VectorType, LLVMScalableVectorType, LLVMFixedVectorType>(
type);
};
// Due to bitcast requiring both operands to be of the same size, it is not
// possible for only one of the two to be a pointer of vectors.
if (isVector(getResult().getType()) && !isVector(getArg().getType()))
return emitOpError("cannot cast pointer to vector of pointers");
if (!isVector(getResult().getType()) && isVector(getArg().getType()))
return emitOpError("cannot cast vector of pointers to pointer");
// Bitcast cannot cast between pointers of different address spaces.
// 'llvm.addrspacecast' must be used for this purpose instead.
if (resultType.getAddressSpace() != sourceType.getAddressSpace())
return emitOpError("cannot cast pointers of different address spaces, "
"use 'llvm.addrspacecast' instead");
return success();
}
//===----------------------------------------------------------------------===//
// Folder for LLVM::AddrSpaceCastOp
//===----------------------------------------------------------------------===//
OpFoldResult LLVM::AddrSpaceCastOp::fold(FoldAdaptor adaptor) {
// addrcast(x : T0, T0) -> x
if (getArg().getType() == getType())
return getArg();
// addrcast(addrcast(x : T0, T1), T0) -> x
if (auto prev = getArg().getDefiningOp<AddrSpaceCastOp>())
if (prev.getArg().getType() == getType())
return prev.getArg();
return {};
}
//===----------------------------------------------------------------------===//
// Folder for LLVM::GEPOp
//===----------------------------------------------------------------------===//
OpFoldResult LLVM::GEPOp::fold(FoldAdaptor adaptor) {
GEPIndicesAdaptor<ArrayRef<Attribute>> indices(getRawConstantIndicesAttr(),
adaptor.getDynamicIndices());
// gep %x:T, 0 -> %x
if (getBase().getType() == getType() && indices.size() == 1)
if (auto integer = llvm::dyn_cast_or_null<IntegerAttr>(indices[0]))
if (integer.getValue().isZero())
return getBase();
// Canonicalize any dynamic indices of constant value to constant indices.
bool changed = false;
SmallVector<GEPArg> gepArgs;
for (auto iter : llvm::enumerate(indices)) {
auto integer = llvm::dyn_cast_or_null<IntegerAttr>(iter.value());
// Constant indices can only be int32_t, so if integer does not fit we
// are forced to keep it dynamic, despite being a constant.
if (!indices.isDynamicIndex(iter.index()) || !integer ||
!integer.getValue().isSignedIntN(kGEPConstantBitWidth)) {
PointerUnion<IntegerAttr, Value> existing = getIndices()[iter.index()];
if (Value val = llvm::dyn_cast_if_present<Value>(existing))
gepArgs.emplace_back(val);
else
gepArgs.emplace_back(existing.get<IntegerAttr>().getInt());
continue;
}
changed = true;
gepArgs.emplace_back(integer.getInt());
}
if (changed) {
SmallVector<int32_t> rawConstantIndices;
SmallVector<Value> dynamicIndices;
destructureIndices(getSourceElementType(), gepArgs, rawConstantIndices,
dynamicIndices);
getDynamicIndicesMutable().assign(dynamicIndices);
setRawConstantIndices(rawConstantIndices);
return Value{*this};
}
return {};
}
//===----------------------------------------------------------------------===//
// ShlOp
//===----------------------------------------------------------------------===//
OpFoldResult LLVM::ShlOp::fold(FoldAdaptor adaptor) {
auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs());
if (!rhs)
return {};
if (rhs.getValue().getZExtValue() >=
getLhs().getType().getIntOrFloatBitWidth())
return {}; // TODO: Fold into poison.
auto lhs = dyn_cast_or_null<IntegerAttr>(adaptor.getLhs());
if (!lhs)
return {};
return IntegerAttr::get(getType(), lhs.getValue().shl(rhs.getValue()));
}
//===----------------------------------------------------------------------===//
// OrOp
//===----------------------------------------------------------------------===//
OpFoldResult LLVM::OrOp::fold(FoldAdaptor adaptor) {
auto lhs = dyn_cast_or_null<IntegerAttr>(adaptor.getLhs());
if (!lhs)
return {};
auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs());
if (!rhs)
return {};
return IntegerAttr::get(getType(), lhs.getValue() | rhs.getValue());
}
//===----------------------------------------------------------------------===//
// Utilities for LLVM::MetadataOp
//===----------------------------------------------------------------------===//
void MetadataOp::build(OpBuilder &builder, OperationState &result,
StringRef symName, bool createBodyBlock,
ArrayRef<NamedAttribute> attributes) {
result.addAttribute(getSymNameAttrName(result.name),
builder.getStringAttr(symName));
result.attributes.append(attributes.begin(), attributes.end());
Region *body = result.addRegion();
if (createBodyBlock)
body->emplaceBlock();
}
ParseResult MetadataOp::parse(OpAsmParser &parser, OperationState &result) {
StringAttr symName;
if (parser.parseSymbolName(symName, getSymNameAttrName(result.name),
result.attributes) ||
parser.parseOptionalAttrDictWithKeyword(result.attributes))
return failure();
Region *bodyRegion = result.addRegion();
if (parser.parseRegion(*bodyRegion))
return failure();
// If the region appeared to be empty to parseRegion(),
// add the body block explicitly.
if (bodyRegion->empty())
bodyRegion->emplaceBlock();
return success();
}
void MetadataOp::print(OpAsmPrinter &printer) {
printer << ' ';
printer.printSymbolName(getSymName());
printer.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
{getSymNameAttrName().getValue()});
printer << ' ';
printer.printRegion(getBody());
}
//===----------------------------------------------------------------------===//
// OpAsmDialectInterface
//===----------------------------------------------------------------------===//
namespace {
struct LLVMOpAsmDialectInterface : public OpAsmDialectInterface {
using OpAsmDialectInterface::OpAsmDialectInterface;
AliasResult getAlias(Attribute attr, raw_ostream &os) const override {
return TypeSwitch<Attribute, AliasResult>(attr)
.Case<AccessGroupAttr, AliasScopeAttr, AliasScopeDomainAttr,
DIBasicTypeAttr, DICompileUnitAttr, DICompositeTypeAttr,
DIDerivedTypeAttr, DIFileAttr, DILabelAttr, DILexicalBlockAttr,
DILexicalBlockFileAttr, DILocalVariableAttr, DINamespaceAttr,
DINullTypeAttr, DISubprogramAttr, DISubroutineTypeAttr,
LoopAnnotationAttr, LoopVectorizeAttr, LoopInterleaveAttr,
LoopUnrollAttr, LoopUnrollAndJamAttr, LoopLICMAttr,
LoopDistributeAttr, LoopPipelineAttr, LoopPeeledAttr,
LoopUnswitchAttr, TBAARootAttr, TBAATagAttr,
TBAATypeDescriptorAttr>([&](auto attr) {
os << decltype(attr)::getMnemonic();
return AliasResult::OverridableAlias;
})
.Default([](Attribute) { return AliasResult::NoAlias; });
}
};
} // namespace
//===----------------------------------------------------------------------===//
// LLVMDialect initialization, type parsing, and registration.
//===----------------------------------------------------------------------===//
void LLVMDialect::initialize() {
registerAttributes();
// clang-format off
addTypes<LLVMVoidType,
LLVMPPCFP128Type,
LLVMX86MMXType,
LLVMTokenType,
LLVMLabelType,
LLVMMetadataType,
LLVMStructType>();
// clang-format on
registerTypes();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc"
,
#define GET_OP_LIST
#include "mlir/Dialect/LLVMIR/LLVMIntrinsicOps.cpp.inc"
>();
// Support unknown operations because not all LLVM operations are registered.
allowUnknownOperations();
// clang-format off
addInterfaces<LLVMOpAsmDialectInterface>();
// clang-format on
detail::addLLVMInlinerInterface(this);
}
#define GET_OP_CLASSES
#include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/LLVMIR/LLVMIntrinsicOps.cpp.inc"
LogicalResult LLVMDialect::verifyDataLayoutString(
StringRef descr, llvm::function_ref<void(const Twine &)> reportError) {
llvm::Expected<llvm::DataLayout> maybeDataLayout =
llvm::DataLayout::parse(descr);
if (maybeDataLayout)
return success();
std::string message;
llvm::raw_string_ostream messageStream(message);
llvm::logAllUnhandledErrors(maybeDataLayout.takeError(), messageStream);
reportError("invalid data layout descriptor: " + messageStream.str());
return failure();
}
/// Verify LLVM dialect attributes.
LogicalResult LLVMDialect::verifyOperationAttribute(Operation *op,
NamedAttribute attr) {
// If the data layout attribute is present, it must use the LLVM data layout
// syntax. Try parsing it and report errors in case of failure. Users of this
// attribute may assume it is well-formed and can pass it to the (asserting)
// llvm::DataLayout constructor.
if (attr.getName() != LLVM::LLVMDialect::getDataLayoutAttrName())
return success();
if (auto stringAttr = llvm::dyn_cast<StringAttr>(attr.getValue()))
return verifyDataLayoutString(
stringAttr.getValue(),
[op](const Twine &message) { op->emitOpError() << message.str(); });
return op->emitOpError() << "expected '"
<< LLVM::LLVMDialect::getDataLayoutAttrName()
<< "' to be a string attributes";
}
LogicalResult LLVMDialect::verifyParameterAttribute(Operation *op,
Type paramType,
NamedAttribute paramAttr) {
// LLVM attribute may be attached to a result of operation that has not been
// converted to LLVM dialect yet, so the result may have a type with unknown
// representation in LLVM dialect type space. In this case we cannot verify
// whether the attribute may be
bool verifyValueType = isCompatibleType(paramType);
StringAttr name = paramAttr.getName();
auto checkUnitAttrType = [&]() -> LogicalResult {
if (!llvm::isa<UnitAttr>(paramAttr.getValue()))
return op->emitError() << name << " should be a unit attribute";
return success();
};
auto checkTypeAttrType = [&]() -> LogicalResult {
if (!llvm::isa<TypeAttr>(paramAttr.getValue()))
return op->emitError() << name << " should be a type attribute";
return success();
};
auto checkIntegerAttrType = [&]() -> LogicalResult {
if (!llvm::isa<IntegerAttr>(paramAttr.getValue()))
return op->emitError() << name << " should be an integer attribute";
return success();
};
auto checkPointerType = [&]() -> LogicalResult {
if (!llvm::isa<LLVMPointerType>(paramType))
return op->emitError()
<< name << " attribute attached to non-pointer LLVM type";
return success();
};
auto checkIntegerType = [&]() -> LogicalResult {
if (!llvm::isa<IntegerType>(paramType))
return op->emitError()
<< name << " attribute attached to non-integer LLVM type";
return success();
};
auto checkPointerTypeMatches = [&]() -> LogicalResult {
if (failed(checkPointerType()))
return failure();
auto ptrType = llvm::cast<LLVMPointerType>(paramType);
auto typeAttr = llvm::cast<TypeAttr>(paramAttr.getValue());
if (!ptrType.isOpaque() && ptrType.getElementType() != typeAttr.getValue())
return op->emitError()
<< name
<< " attribute attached to LLVM pointer argument of "
"different type";
return success();
};
// Check a unit attribute that is attached to a pointer value.
if (name == LLVMDialect::getNoAliasAttrName() ||
name == LLVMDialect::getReadonlyAttrName() ||
name == LLVMDialect::getReadnoneAttrName() ||
name == LLVMDialect::getWriteOnlyAttrName() ||
name == LLVMDialect::getNestAttrName() ||
name == LLVMDialect::getNoCaptureAttrName() ||
name == LLVMDialect::getNoFreeAttrName() ||
name == LLVMDialect::getNonNullAttrName()) {
if (failed(checkUnitAttrType()))
return failure();
if (verifyValueType && failed(checkPointerType()))
return failure();
return success();
}
// Check a type attribute that is attached to a pointer value.
if (name == LLVMDialect::getStructRetAttrName() ||
name == LLVMDialect::getByValAttrName() ||
name == LLVMDialect::getByRefAttrName() ||
name == LLVMDialect::getInAllocaAttrName() ||
name == LLVMDialect::getPreallocatedAttrName()) {
if (failed(checkTypeAttrType()))
return failure();
if (verifyValueType && failed(checkPointerTypeMatches()))
return failure();
return success();
}
// Check a unit attribute that is attached to an integer value.
if (name == LLVMDialect::getSExtAttrName() ||
name == LLVMDialect::getZExtAttrName()) {
if (failed(checkUnitAttrType()))
return failure();
if (verifyValueType && failed(checkIntegerType()))
return failure();
return success();
}
// Check an integer attribute that is attached to a pointer value.
if (name == LLVMDialect::getAlignAttrName() ||
name == LLVMDialect::getDereferenceableAttrName() ||
name == LLVMDialect::getDereferenceableOrNullAttrName() ||
name == LLVMDialect::getStackAlignmentAttrName()) {
if (failed(checkIntegerAttrType()))
return failure();
if (verifyValueType && failed(checkPointerType()))
return failure();
return success();
}
// Check a unit attribute that can be attached to arbitrary types.
if (name == LLVMDialect::getNoUndefAttrName() ||
name == LLVMDialect::getInRegAttrName() ||
name == LLVMDialect::getReturnedAttrName())
return checkUnitAttrType();
return success();
}
/// Verify LLVMIR function argument attributes.
LogicalResult LLVMDialect::verifyRegionArgAttribute(Operation *op,
unsigned regionIdx,
unsigned argIdx,
NamedAttribute argAttr) {
auto funcOp = dyn_cast<FunctionOpInterface>(op);
if (!funcOp)
return success();
Type argType = funcOp.getArgumentTypes()[argIdx];
return verifyParameterAttribute(op, argType, argAttr);
}
LogicalResult LLVMDialect::verifyRegionResultAttribute(Operation *op,
unsigned regionIdx,
unsigned resIdx,
NamedAttribute resAttr) {
auto funcOp = dyn_cast<FunctionOpInterface>(op);
if (!funcOp)
return success();
Type resType = funcOp.getResultTypes()[resIdx];
// Check to see if this function has a void return with a result attribute
// to it. It isn't clear what semantics we would assign to that.
if (llvm::isa<LLVMVoidType>(resType))
return op->emitError() << "cannot attach result attributes to functions "
"with a void return";
// Check to see if this attribute is allowed as a result attribute. Only
// explicitly forbidden LLVM attributes will cause an error.
auto name = resAttr.getName();
if (name == LLVMDialect::getAllocAlignAttrName() ||
name == LLVMDialect::getAllocatedPointerAttrName() ||
name == LLVMDialect::getByValAttrName() ||
name == LLVMDialect::getByRefAttrName() ||
name == LLVMDialect::getInAllocaAttrName() ||
name == LLVMDialect::getNestAttrName() ||
name == LLVMDialect::getNoCaptureAttrName() ||
name == LLVMDialect::getNoFreeAttrName() ||
name == LLVMDialect::getPreallocatedAttrName() ||
name == LLVMDialect::getReadnoneAttrName() ||
name == LLVMDialect::getReadonlyAttrName() ||
name == LLVMDialect::getReturnedAttrName() ||
name == LLVMDialect::getStackAlignmentAttrName() ||
name == LLVMDialect::getStructRetAttrName() ||
name == LLVMDialect::getWriteOnlyAttrName())
return op->emitError() << name << " is not a valid result attribute";
return verifyParameterAttribute(op, resType, resAttr);
}
Operation *LLVMDialect::materializeConstant(OpBuilder &builder, Attribute value,
Type type, Location loc) {
// TODO: Accept more possible attributes. So far, only IntegerAttr may come
// up.
if (!isa<IntegerAttr>(value))
return nullptr;
return builder.create<LLVM::ConstantOp>(loc, type, value);
}
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
Value mlir::LLVM::createGlobalString(Location loc, OpBuilder &builder,
StringRef name, StringRef value,
LLVM::Linkage linkage,
bool useOpaquePointers) {
assert(builder.getInsertionBlock() &&
builder.getInsertionBlock()->getParentOp() &&
"expected builder to point to a block constrained in an op");
auto module =
builder.getInsertionBlock()->getParentOp()->getParentOfType<ModuleOp>();
assert(module && "builder points to an op outside of a module");
// Create the global at the entry of the module.
OpBuilder moduleBuilder(module.getBodyRegion(), builder.getListener());
MLIRContext *ctx = builder.getContext();
auto type = LLVM::LLVMArrayType::get(IntegerType::get(ctx, 8), value.size());
auto global = moduleBuilder.create<LLVM::GlobalOp>(
loc, type, /*isConstant=*/true, linkage, name,
builder.getStringAttr(value), /*alignment=*/0);
LLVMPointerType resultType;
LLVMPointerType charPtr;
if (!useOpaquePointers) {
resultType = LLVMPointerType::get(type);
charPtr = LLVMPointerType::get(IntegerType::get(ctx, 8));
} else {
resultType = charPtr = LLVMPointerType::get(ctx);
}
// Get the pointer to the first character in the global string.
Value globalPtr = builder.create<LLVM::AddressOfOp>(loc, resultType,
global.getSymNameAttr());
return builder.create<LLVM::GEPOp>(loc, charPtr, type, globalPtr,
ArrayRef<GEPArg>{0, 0});
}
bool mlir::LLVM::satisfiesLLVMModule(Operation *op) {
return op->hasTrait<OpTrait::SymbolTable>() &&
op->hasTrait<OpTrait::IsIsolatedFromAbove>();
}
|