1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
//===- LLVMInlining.cpp - LLVM inlining interface and logic -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Logic for inlining LLVM functions and the definition of the
// LLVMInliningInterface.
//
//===----------------------------------------------------------------------===//
#include "LLVMInlining.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Interfaces/DataLayoutInterfaces.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "llvm-inliner"
using namespace mlir;
/// Check whether the given alloca is an input to a lifetime intrinsic,
/// optionally passing through one or more casts on the way. This is not
/// transitive through block arguments.
static bool hasLifetimeMarkers(LLVM::AllocaOp allocaOp) {
SmallVector<Operation *> stack(allocaOp->getUsers().begin(),
allocaOp->getUsers().end());
while (!stack.empty()) {
Operation *op = stack.pop_back_val();
if (isa<LLVM::LifetimeStartOp, LLVM::LifetimeEndOp>(op))
return true;
if (isa<LLVM::BitcastOp>(op))
stack.append(op->getUsers().begin(), op->getUsers().end());
}
return false;
}
/// Handles alloca operations in the inlined blocks:
/// - Moves all alloca operations with a constant size in the former entry block
/// of the callee into the entry block of the caller, so they become part of
/// the function prologue/epilogue during code generation.
/// - Inserts lifetime intrinsics that limit the scope of inlined static allocas
/// to the inlined blocks.
/// - Inserts StackSave and StackRestore operations if dynamic allocas were
/// inlined.
static void
handleInlinedAllocas(Operation *call,
iterator_range<Region::iterator> inlinedBlocks) {
Block *calleeEntryBlock = &(*inlinedBlocks.begin());
Block *callerEntryBlock = &(*calleeEntryBlock->getParent()->begin());
if (calleeEntryBlock == callerEntryBlock)
// Nothing to do.
return;
SmallVector<std::tuple<LLVM::AllocaOp, IntegerAttr, bool>> allocasToMove;
bool shouldInsertLifetimes = false;
bool hasDynamicAlloca = false;
// Conservatively only move static alloca operations that are part of the
// entry block and do not inspect nested regions, since they may execute
// conditionally or have other unknown semantics.
for (auto allocaOp : calleeEntryBlock->getOps<LLVM::AllocaOp>()) {
IntegerAttr arraySize;
if (!matchPattern(allocaOp.getArraySize(), m_Constant(&arraySize))) {
hasDynamicAlloca = true;
continue;
}
bool shouldInsertLifetime =
arraySize.getValue() != 0 && !hasLifetimeMarkers(allocaOp);
shouldInsertLifetimes |= shouldInsertLifetime;
allocasToMove.emplace_back(allocaOp, arraySize, shouldInsertLifetime);
}
// Check the remaining inlined blocks for dynamic allocas as well.
for (Block &block : llvm::drop_begin(inlinedBlocks)) {
if (hasDynamicAlloca)
break;
hasDynamicAlloca =
llvm::any_of(block.getOps<LLVM::AllocaOp>(), [](auto allocaOp) {
return !matchPattern(allocaOp.getArraySize(), m_Constant());
});
}
if (allocasToMove.empty() && !hasDynamicAlloca)
return;
OpBuilder builder(calleeEntryBlock, calleeEntryBlock->begin());
Value stackPtr;
if (hasDynamicAlloca) {
// This may result in multiple stacksave/stackrestore intrinsics in the same
// scope if some are already present in the body of the caller. This is not
// invalid IR, but LLVM cleans these up in InstCombineCalls.cpp, along with
// other cases where the stacksave/stackrestore is redundant.
stackPtr = builder.create<LLVM::StackSaveOp>(
call->getLoc(), LLVM::LLVMPointerType::get(call->getContext()));
}
builder.setInsertionPoint(callerEntryBlock, callerEntryBlock->begin());
for (auto &[allocaOp, arraySize, shouldInsertLifetime] : allocasToMove) {
auto newConstant = builder.create<LLVM::ConstantOp>(
allocaOp->getLoc(), allocaOp.getArraySize().getType(), arraySize);
// Insert a lifetime start intrinsic where the alloca was before moving it.
if (shouldInsertLifetime) {
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPoint(allocaOp);
builder.create<LLVM::LifetimeStartOp>(
allocaOp.getLoc(), arraySize.getValue().getLimitedValue(),
allocaOp.getResult());
}
allocaOp->moveAfter(newConstant);
allocaOp.getArraySizeMutable().assign(newConstant.getResult());
}
if (!shouldInsertLifetimes && !hasDynamicAlloca)
return;
// Insert a lifetime end intrinsic before each return in the callee function.
for (Block &block : inlinedBlocks) {
if (!block.getTerminator()->hasTrait<OpTrait::ReturnLike>())
continue;
builder.setInsertionPoint(block.getTerminator());
if (hasDynamicAlloca)
builder.create<LLVM::StackRestoreOp>(call->getLoc(), stackPtr);
for (auto &[allocaOp, arraySize, shouldInsertLifetime] : allocasToMove) {
if (shouldInsertLifetime)
builder.create<LLVM::LifetimeEndOp>(
allocaOp.getLoc(), arraySize.getValue().getLimitedValue(),
allocaOp.getResult());
}
}
}
/// Maps all alias scopes in the inlined operations to deep clones of the scopes
/// and domain. This is required for code such as `foo(a, b); foo(a2, b2);` to
/// not incorrectly return `noalias` for e.g. operations on `a` and `a2`.
static void
deepCloneAliasScopes(iterator_range<Region::iterator> inlinedBlocks) {
DenseMap<Attribute, Attribute> mapping;
// Register handles in the walker to create the deep clones.
// The walker ensures that an attribute is only ever walked once and does a
// post-order walk, ensuring the domain is visited prior to the scope.
AttrTypeWalker walker;
// Perform the deep clones while visiting. Builders create a distinct
// attribute to make sure that new instances are always created by the
// uniquer.
walker.addWalk([&](LLVM::AliasScopeDomainAttr domainAttr) {
mapping[domainAttr] = LLVM::AliasScopeDomainAttr::get(
domainAttr.getContext(), domainAttr.getDescription());
});
walker.addWalk([&](LLVM::AliasScopeAttr scopeAttr) {
mapping[scopeAttr] = LLVM::AliasScopeAttr::get(
cast<LLVM::AliasScopeDomainAttr>(mapping.lookup(scopeAttr.getDomain())),
scopeAttr.getDescription());
});
// Map an array of scopes to an array of deep clones.
auto convertScopeList = [&](ArrayAttr arrayAttr) -> ArrayAttr {
if (!arrayAttr)
return nullptr;
// Create the deep clones if necessary.
walker.walk(arrayAttr);
return ArrayAttr::get(arrayAttr.getContext(),
llvm::map_to_vector(arrayAttr, [&](Attribute attr) {
return mapping.lookup(attr);
}));
};
for (Block &block : inlinedBlocks) {
for (Operation &op : block) {
if (auto aliasInterface = dyn_cast<LLVM::AliasAnalysisOpInterface>(op)) {
aliasInterface.setAliasScopes(
convertScopeList(aliasInterface.getAliasScopesOrNull()));
aliasInterface.setNoAliasScopes(
convertScopeList(aliasInterface.getNoAliasScopesOrNull()));
}
if (auto noAliasScope = dyn_cast<LLVM::NoAliasScopeDeclOp>(op)) {
// Create the deep clones if necessary.
walker.walk(noAliasScope.getScopeAttr());
noAliasScope.setScopeAttr(cast<LLVM::AliasScopeAttr>(
mapping.lookup(noAliasScope.getScopeAttr())));
}
}
}
}
/// Creates a new ArrayAttr by concatenating `lhs` with `rhs`.
/// Returns null if both parameters are null. If only one attribute is null,
/// return the other.
static ArrayAttr concatArrayAttr(ArrayAttr lhs, ArrayAttr rhs) {
if (!lhs)
return rhs;
if (!rhs)
return lhs;
SmallVector<Attribute> result;
llvm::append_range(result, lhs);
llvm::append_range(result, rhs);
return ArrayAttr::get(lhs.getContext(), result);
}
/// Attempts to return the underlying pointer value that `pointerValue` is based
/// on. This traverses down the chain of operations to the last operation
/// producing the base pointer and returns it. If it encounters an operation it
/// cannot further traverse through, returns the operation's result.
static Value getUnderlyingObject(Value pointerValue) {
while (true) {
if (auto gepOp = pointerValue.getDefiningOp<LLVM::GEPOp>()) {
pointerValue = gepOp.getBase();
continue;
}
if (auto addrCast = pointerValue.getDefiningOp<LLVM::AddrSpaceCastOp>()) {
pointerValue = addrCast.getOperand();
continue;
}
break;
}
return pointerValue;
}
/// Attempts to return the set of all underlying pointer values that
/// `pointerValue` is based on. This function traverses through select
/// operations and block arguments unlike getUnderlyingObject.
static SmallVector<Value> getUnderlyingObjectSet(Value pointerValue) {
SmallVector<Value> result;
SmallVector<Value> workList{pointerValue};
// Avoid dataflow loops.
SmallPtrSet<Value, 4> seen;
do {
Value current = workList.pop_back_val();
current = getUnderlyingObject(current);
if (!seen.insert(current).second)
continue;
if (auto selectOp = current.getDefiningOp<LLVM::SelectOp>()) {
workList.push_back(selectOp.getTrueValue());
workList.push_back(selectOp.getFalseValue());
continue;
}
if (auto blockArg = dyn_cast<BlockArgument>(current)) {
Block *parentBlock = blockArg.getParentBlock();
// Attempt to find all block argument operands for every predecessor.
// If any operand to the block argument wasn't found in a predecessor,
// conservatively add the block argument to the result set.
SmallVector<Value> operands;
bool anyUnknown = false;
for (auto iter = parentBlock->pred_begin();
iter != parentBlock->pred_end(); iter++) {
auto branch = dyn_cast<BranchOpInterface>((*iter)->getTerminator());
if (!branch) {
result.push_back(blockArg);
anyUnknown = true;
break;
}
Value operand = branch.getSuccessorOperands(
iter.getSuccessorIndex())[blockArg.getArgNumber()];
if (!operand) {
result.push_back(blockArg);
anyUnknown = true;
break;
}
operands.push_back(operand);
}
if (!anyUnknown)
llvm::append_range(workList, operands);
continue;
}
result.push_back(current);
} while (!workList.empty());
return result;
}
/// Creates a new AliasScopeAttr for every noalias parameter and attaches it to
/// the appropriate inlined memory operations in an attempt to preserve the
/// original semantics of the parameter attribute.
static void createNewAliasScopesFromNoAliasParameter(
Operation *call, iterator_range<Region::iterator> inlinedBlocks) {
// First collect all noalias parameters. These have been specially marked by
// the `handleArgument` implementation by using the `ssa.copy` intrinsic and
// attaching a `noalias` attribute to it.
// These are only meant to be temporary and should therefore be deleted after
// we're done using them here.
SetVector<LLVM::SSACopyOp> noAliasParams;
for (Value argument : cast<LLVM::CallOp>(call).getArgOperands()) {
for (Operation *user : argument.getUsers()) {
auto ssaCopy = llvm::dyn_cast<LLVM::SSACopyOp>(user);
if (!ssaCopy)
continue;
if (!ssaCopy->hasAttr(LLVM::LLVMDialect::getNoAliasAttrName()))
continue;
noAliasParams.insert(ssaCopy);
}
}
// If there were none, we have nothing to do here.
if (noAliasParams.empty())
return;
// Scope exit block to make it impossible to forget to get rid of the
// intrinsics.
auto exit = llvm::make_scope_exit([&] {
for (LLVM::SSACopyOp ssaCopyOp : noAliasParams) {
ssaCopyOp.replaceAllUsesWith(ssaCopyOp.getOperand());
ssaCopyOp->erase();
}
});
// Create a new domain for this specific inlining and a new scope for every
// noalias parameter.
auto functionDomain = LLVM::AliasScopeDomainAttr::get(
call->getContext(), cast<LLVM::CallOp>(call).getCalleeAttr().getAttr());
DenseMap<Value, LLVM::AliasScopeAttr> pointerScopes;
for (LLVM::SSACopyOp copyOp : noAliasParams) {
auto scope = LLVM::AliasScopeAttr::get(functionDomain);
pointerScopes[copyOp] = scope;
OpBuilder(call).create<LLVM::NoAliasScopeDeclOp>(call->getLoc(), scope);
}
// Go through every instruction and attempt to find which noalias parameters
// it is definitely based on and definitely not based on.
for (Block &inlinedBlock : inlinedBlocks) {
for (auto aliasInterface :
inlinedBlock.getOps<LLVM::AliasAnalysisOpInterface>()) {
// Collect the pointer arguments affected by the alias scopes.
SmallVector<Value> pointerArgs = aliasInterface.getAccessedOperands();
// Find the set of underlying pointers that this pointer is based on.
SmallPtrSet<Value, 4> basedOnPointers;
for (Value pointer : pointerArgs)
llvm::copy(getUnderlyingObjectSet(pointer),
std::inserter(basedOnPointers, basedOnPointers.begin()));
bool aliasesOtherKnownObject = false;
// Go through the based on pointers and check that they are either:
// * Constants that can be ignored (undef, poison, null pointer).
// * Based on a noalias parameter.
// * Other pointers that we know can't alias with our noalias parameter.
//
// Any other value might be a pointer based on any noalias parameter that
// hasn't been identified. In that case conservatively don't add any
// scopes to this operation indicating either aliasing or not aliasing
// with any parameter.
if (llvm::any_of(basedOnPointers, [&](Value object) {
if (matchPattern(object, m_Constant()))
return false;
if (noAliasParams.contains(object.getDefiningOp<LLVM::SSACopyOp>()))
return false;
// TODO: This should include other arguments from the inlined
// callable.
if (isa_and_nonnull<LLVM::AllocaOp, LLVM::AddressOfOp>(
object.getDefiningOp())) {
aliasesOtherKnownObject = true;
return false;
}
return true;
}))
continue;
// Add all noalias parameter scopes to the noalias scope list that we are
// not based on.
SmallVector<Attribute> noAliasScopes;
for (LLVM::SSACopyOp noAlias : noAliasParams) {
if (basedOnPointers.contains(noAlias))
continue;
noAliasScopes.push_back(pointerScopes[noAlias]);
}
if (!noAliasScopes.empty())
aliasInterface.setNoAliasScopes(
concatArrayAttr(aliasInterface.getNoAliasScopesOrNull(),
ArrayAttr::get(call->getContext(), noAliasScopes)));
// Don't add alias scopes to call operations or operations that might
// operate on pointers not based on any noalias parameter.
// Since we add all scopes to an operation's noalias list that it
// definitely doesn't alias, we mustn't do the same for the alias.scope
// list if other objects are involved.
//
// Consider the following case:
// %0 = llvm.alloca
// %1 = select %magic, %0, %noalias_param
// store 5, %1 (1) noalias=[scope(...)]
// ...
// store 3, %0 (2) noalias=[scope(noalias_param), scope(...)]
//
// We can add the scopes of any noalias parameters that aren't
// noalias_param's scope to (1) and add all of them to (2). We mustn't add
// the scope of noalias_param to the alias.scope list of (1) since
// that would mean (2) cannot alias with (1) which is wrong since both may
// store to %0.
//
// In conclusion, only add scopes to the alias.scope list if all pointers
// have a corresponding scope.
// Call operations are included in this list since we do not know whether
// the callee accesses any memory besides the ones passed as its
// arguments.
if (aliasesOtherKnownObject ||
isa<LLVM::CallOp>(aliasInterface.getOperation()))
continue;
SmallVector<Attribute> aliasScopes;
for (LLVM::SSACopyOp noAlias : noAliasParams)
if (basedOnPointers.contains(noAlias))
aliasScopes.push_back(pointerScopes[noAlias]);
if (!aliasScopes.empty())
aliasInterface.setAliasScopes(
concatArrayAttr(aliasInterface.getAliasScopesOrNull(),
ArrayAttr::get(call->getContext(), aliasScopes)));
}
}
}
/// Appends any alias scopes of the call operation to any inlined memory
/// operation.
static void
appendCallOpAliasScopes(Operation *call,
iterator_range<Region::iterator> inlinedBlocks) {
auto callAliasInterface = dyn_cast<LLVM::AliasAnalysisOpInterface>(call);
if (!callAliasInterface)
return;
ArrayAttr aliasScopes = callAliasInterface.getAliasScopesOrNull();
ArrayAttr noAliasScopes = callAliasInterface.getNoAliasScopesOrNull();
// If the call has neither alias scopes or noalias scopes we have nothing to
// do here.
if (!aliasScopes && !noAliasScopes)
return;
// Simply append the call op's alias and noalias scopes to any operation
// implementing AliasAnalysisOpInterface.
for (Block &block : inlinedBlocks) {
for (auto aliasInterface : block.getOps<LLVM::AliasAnalysisOpInterface>()) {
if (aliasScopes)
aliasInterface.setAliasScopes(concatArrayAttr(
aliasInterface.getAliasScopesOrNull(), aliasScopes));
if (noAliasScopes)
aliasInterface.setNoAliasScopes(concatArrayAttr(
aliasInterface.getNoAliasScopesOrNull(), noAliasScopes));
}
}
}
/// Handles all interactions with alias scopes during inlining.
static void handleAliasScopes(Operation *call,
iterator_range<Region::iterator> inlinedBlocks) {
deepCloneAliasScopes(inlinedBlocks);
createNewAliasScopesFromNoAliasParameter(call, inlinedBlocks);
appendCallOpAliasScopes(call, inlinedBlocks);
}
/// Appends any access groups of the call operation to any inlined memory
/// operation.
static void handleAccessGroups(Operation *call,
iterator_range<Region::iterator> inlinedBlocks) {
auto callAccessGroupInterface = dyn_cast<LLVM::AccessGroupOpInterface>(call);
if (!callAccessGroupInterface)
return;
auto accessGroups = callAccessGroupInterface.getAccessGroupsOrNull();
if (!accessGroups)
return;
// Simply append the call op's access groups to any operation implementing
// AccessGroupOpInterface.
for (Block &block : inlinedBlocks)
for (auto accessGroupOpInterface :
block.getOps<LLVM::AccessGroupOpInterface>())
accessGroupOpInterface.setAccessGroups(concatArrayAttr(
accessGroupOpInterface.getAccessGroupsOrNull(), accessGroups));
}
/// If `requestedAlignment` is higher than the alignment specified on `alloca`,
/// realigns `alloca` if this does not exceed the natural stack alignment.
/// Returns the post-alignment of `alloca`, whether it was realigned or not.
static unsigned tryToEnforceAllocaAlignment(LLVM::AllocaOp alloca,
unsigned requestedAlignment,
DataLayout const &dataLayout) {
unsigned allocaAlignment = alloca.getAlignment().value_or(1);
if (requestedAlignment <= allocaAlignment)
// No realignment necessary.
return allocaAlignment;
unsigned naturalStackAlignmentBits = dataLayout.getStackAlignment();
// If the natural stack alignment is not specified, the data layout returns
// zero. Optimistically allow realignment in this case.
if (naturalStackAlignmentBits == 0 ||
// If the requested alignment exceeds the natural stack alignment, this
// will trigger a dynamic stack realignment, so we prefer to copy...
8 * requestedAlignment <= naturalStackAlignmentBits ||
// ...unless the alloca already triggers dynamic stack realignment. Then
// we might as well further increase the alignment to avoid a copy.
8 * allocaAlignment > naturalStackAlignmentBits) {
alloca.setAlignment(requestedAlignment);
allocaAlignment = requestedAlignment;
}
return allocaAlignment;
}
/// Tries to find and return the alignment of the pointer `value` by looking for
/// an alignment attribute on the defining allocation op or function argument.
/// If the found alignment is lower than `requestedAlignment`, tries to realign
/// the pointer, then returns the resulting post-alignment, regardless of
/// whether it was realigned or not. If no existing alignment attribute is
/// found, returns 1 (i.e., assume that no alignment is guaranteed).
static unsigned tryToEnforceAlignment(Value value, unsigned requestedAlignment,
DataLayout const &dataLayout) {
if (Operation *definingOp = value.getDefiningOp()) {
if (auto alloca = dyn_cast<LLVM::AllocaOp>(definingOp))
return tryToEnforceAllocaAlignment(alloca, requestedAlignment,
dataLayout);
if (auto addressOf = dyn_cast<LLVM::AddressOfOp>(definingOp))
if (auto global = SymbolTable::lookupNearestSymbolFrom<LLVM::GlobalOp>(
definingOp, addressOf.getGlobalNameAttr()))
return global.getAlignment().value_or(1);
// We don't currently handle this operation; assume no alignment.
return 1;
}
// Since there is no defining op, this is a block argument. Probably this
// comes directly from a function argument, so check that this is the case.
Operation *parentOp = value.getParentBlock()->getParentOp();
if (auto func = dyn_cast<LLVM::LLVMFuncOp>(parentOp)) {
// Use the alignment attribute set for this argument in the parent function
// if it has been set.
auto blockArg = llvm::cast<BlockArgument>(value);
if (Attribute alignAttr = func.getArgAttr(
blockArg.getArgNumber(), LLVM::LLVMDialect::getAlignAttrName()))
return cast<IntegerAttr>(alignAttr).getValue().getLimitedValue();
}
// We didn't find anything useful; assume no alignment.
return 1;
}
/// Introduces a new alloca and copies the memory pointed to by `argument` to
/// the address of the new alloca, then returns the value of the new alloca.
static Value handleByValArgumentInit(OpBuilder &builder, Location loc,
Value argument, Type elementType,
unsigned elementTypeSize,
unsigned targetAlignment) {
// Allocate the new value on the stack.
Value allocaOp;
{
// Since this is a static alloca, we can put it directly in the entry block,
// so they can be absorbed into the prologue/epilogue at code generation.
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = &(*argument.getParentRegion()->begin());
builder.setInsertionPointToStart(entryBlock);
Value one = builder.create<LLVM::ConstantOp>(loc, builder.getI64Type(),
builder.getI64IntegerAttr(1));
allocaOp = builder.create<LLVM::AllocaOp>(
loc, argument.getType(), elementType, one, targetAlignment);
}
// Copy the pointee to the newly allocated value.
Value copySize = builder.create<LLVM::ConstantOp>(
loc, builder.getI64Type(), builder.getI64IntegerAttr(elementTypeSize));
builder.create<LLVM::MemcpyOp>(loc, allocaOp, argument, copySize,
/*isVolatile=*/false);
return allocaOp;
}
/// Handles a function argument marked with the byval attribute by introducing a
/// memcpy or realigning the defining operation, if required either due to the
/// pointee being writeable in the callee, and/or due to an alignment mismatch.
/// `requestedAlignment` specifies the alignment set in the "align" argument
/// attribute (or 1 if no align attribute was set).
static Value handleByValArgument(OpBuilder &builder, Operation *callable,
Value argument, Type elementType,
unsigned requestedAlignment) {
auto func = cast<LLVM::LLVMFuncOp>(callable);
LLVM::MemoryEffectsAttr memoryEffects = func.getMemoryAttr();
// If there is no memory effects attribute, assume that the function is
// not read-only.
bool isReadOnly = memoryEffects &&
memoryEffects.getArgMem() != LLVM::ModRefInfo::ModRef &&
memoryEffects.getArgMem() != LLVM::ModRefInfo::Mod;
// Check if there's an alignment mismatch requiring us to copy.
DataLayout dataLayout = DataLayout::closest(callable);
unsigned minimumAlignment = dataLayout.getTypeABIAlignment(elementType);
if (isReadOnly) {
if (requestedAlignment <= minimumAlignment)
return argument;
unsigned currentAlignment =
tryToEnforceAlignment(argument, requestedAlignment, dataLayout);
if (currentAlignment >= requestedAlignment)
return argument;
}
unsigned targetAlignment = std::max(requestedAlignment, minimumAlignment);
return handleByValArgumentInit(builder, func.getLoc(), argument, elementType,
dataLayout.getTypeSize(elementType),
targetAlignment);
}
namespace {
struct LLVMInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
LLVMInlinerInterface(Dialect *dialect)
: DialectInlinerInterface(dialect),
// Cache set of StringAttrs for fast lookup in `isLegalToInline`.
disallowedFunctionAttrs({
StringAttr::get(dialect->getContext(), "noduplicate"),
StringAttr::get(dialect->getContext(), "noinline"),
StringAttr::get(dialect->getContext(), "optnone"),
StringAttr::get(dialect->getContext(), "presplitcoroutine"),
StringAttr::get(dialect->getContext(), "returns_twice"),
StringAttr::get(dialect->getContext(), "strictfp"),
}) {}
bool isLegalToInline(Operation *call, Operation *callable,
bool wouldBeCloned) const final {
if (!wouldBeCloned)
return false;
auto callOp = dyn_cast<LLVM::CallOp>(call);
if (!callOp) {
LLVM_DEBUG(llvm::dbgs()
<< "Cannot inline: call is not an LLVM::CallOp\n");
return false;
}
auto funcOp = dyn_cast<LLVM::LLVMFuncOp>(callable);
if (!funcOp) {
LLVM_DEBUG(llvm::dbgs()
<< "Cannot inline: callable is not an LLVM::LLVMFuncOp\n");
return false;
}
// TODO: Generate aliasing metadata from noalias argument/result attributes.
if (auto attrs = funcOp.getArgAttrs()) {
for (DictionaryAttr attrDict : attrs->getAsRange<DictionaryAttr>()) {
if (attrDict.contains(LLVM::LLVMDialect::getInAllocaAttrName())) {
LLVM_DEBUG(llvm::dbgs() << "Cannot inline " << funcOp.getSymName()
<< ": inalloca arguments not supported\n");
return false;
}
}
}
// TODO: Handle exceptions.
if (funcOp.getPersonality()) {
LLVM_DEBUG(llvm::dbgs() << "Cannot inline " << funcOp.getSymName()
<< ": unhandled function personality\n");
return false;
}
if (funcOp.getPassthrough()) {
// TODO: Used attributes should not be passthrough.
if (llvm::any_of(*funcOp.getPassthrough(), [&](Attribute attr) {
auto stringAttr = dyn_cast<StringAttr>(attr);
if (!stringAttr)
return false;
if (disallowedFunctionAttrs.contains(stringAttr)) {
LLVM_DEBUG(llvm::dbgs()
<< "Cannot inline " << funcOp.getSymName()
<< ": found disallowed function attribute "
<< stringAttr << "\n");
return true;
}
return false;
}))
return false;
}
return true;
}
bool isLegalToInline(Region *, Region *, bool, IRMapping &) const final {
return true;
}
/// Conservative allowlist of operations supported so far.
bool isLegalToInline(Operation *op, Region *, bool, IRMapping &) const final {
if (isPure(op))
return true;
// clang-format off
if (isa<LLVM::AllocaOp,
LLVM::AssumeOp,
LLVM::AtomicRMWOp,
LLVM::AtomicCmpXchgOp,
LLVM::CallOp,
LLVM::DbgDeclareOp,
LLVM::DbgValueOp,
LLVM::FenceOp,
LLVM::InlineAsmOp,
LLVM::LifetimeEndOp,
LLVM::LifetimeStartOp,
LLVM::LoadOp,
LLVM::MemcpyOp,
LLVM::MemcpyInlineOp,
LLVM::MemmoveOp,
LLVM::MemsetOp,
LLVM::NoAliasScopeDeclOp,
LLVM::StackRestoreOp,
LLVM::StackSaveOp,
LLVM::StoreOp,
LLVM::UnreachableOp>(op))
return true;
// clang-format on
LLVM_DEBUG(llvm::dbgs()
<< "Cannot inline: unhandled side effecting operation \""
<< op->getName() << "\"\n");
return false;
}
/// Handle the given inlined return by replacing it with a branch. This
/// overload is called when the inlined region has more than one block.
void handleTerminator(Operation *op, Block *newDest) const final {
// Only return needs to be handled here.
auto returnOp = dyn_cast<LLVM::ReturnOp>(op);
if (!returnOp)
return;
// Replace the return with a branch to the dest.
OpBuilder builder(op);
builder.create<LLVM::BrOp>(op->getLoc(), returnOp.getOperands(), newDest);
op->erase();
}
/// Handle the given inlined return by replacing the uses of the call with the
/// operands of the return. This overload is called when the inlined region
/// only contains one block.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
// Return will be the only terminator present.
auto returnOp = cast<LLVM::ReturnOp>(op);
// Replace the values directly with the return operands.
assert(returnOp.getNumOperands() == valuesToRepl.size());
for (const auto &[dst, src] :
llvm::zip(valuesToRepl, returnOp.getOperands()))
dst.replaceAllUsesWith(src);
}
Value handleArgument(OpBuilder &builder, Operation *call, Operation *callable,
Value argument,
DictionaryAttr argumentAttrs) const final {
if (std::optional<NamedAttribute> attr =
argumentAttrs.getNamed(LLVM::LLVMDialect::getByValAttrName())) {
Type elementType = cast<TypeAttr>(attr->getValue()).getValue();
unsigned requestedAlignment = 1;
if (std::optional<NamedAttribute> alignAttr =
argumentAttrs.getNamed(LLVM::LLVMDialect::getAlignAttrName())) {
requestedAlignment = cast<IntegerAttr>(alignAttr->getValue())
.getValue()
.getLimitedValue();
}
return handleByValArgument(builder, callable, argument, elementType,
requestedAlignment);
}
if (std::optional<NamedAttribute> attr =
argumentAttrs.getNamed(LLVM::LLVMDialect::getNoAliasAttrName())) {
if (argument.use_empty())
return argument;
// This code is essentially a workaround for deficiencies in the
// inliner interface: We need to transform operations *after* inlined
// based on the argument attributes of the parameters *before* inlining.
// This method runs prior to actual inlining and thus cannot transform the
// post-inlining code, while `processInlinedCallBlocks` does not have
// access to pre-inlining function arguments. Additionally, it is required
// to distinguish which parameter an SSA value originally came from.
// As a workaround until this is changed: Create an ssa.copy intrinsic
// with the noalias attribute that can easily be found, and is extremely
// unlikely to exist in the code prior to inlining, using this to
// communicate between this method and `processInlinedCallBlocks`.
// TODO: Fix this by refactoring the inliner interface.
auto copyOp = builder.create<LLVM::SSACopyOp>(call->getLoc(), argument);
copyOp->setDiscardableAttr(
builder.getStringAttr(LLVM::LLVMDialect::getNoAliasAttrName()),
builder.getUnitAttr());
return copyOp;
}
return argument;
}
void processInlinedCallBlocks(
Operation *call,
iterator_range<Region::iterator> inlinedBlocks) const override {
handleInlinedAllocas(call, inlinedBlocks);
handleAliasScopes(call, inlinedBlocks);
handleAccessGroups(call, inlinedBlocks);
}
// Keeping this (immutable) state on the interface allows us to look up
// StringAttrs instead of looking up strings, since StringAttrs are bound to
// the current context and thus cannot be initialized as static fields.
const DenseSet<StringAttr> disallowedFunctionAttrs;
};
} // end anonymous namespace
void LLVM::detail::addLLVMInlinerInterface(LLVM::LLVMDialect *dialect) {
dialect->addInterfaces<LLVMInlinerInterface>();
}
|