1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
|
//===- LLVMMemorySlot.cpp - MemorySlot interfaces ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements MemorySlot-related interfaces for LLVM dialect
// operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/Interfaces/DataLayoutInterfaces.h"
#include "mlir/Interfaces/MemorySlotInterfaces.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Interfaces for AllocaOp
//===----------------------------------------------------------------------===//
llvm::SmallVector<MemorySlot> LLVM::AllocaOp::getPromotableSlots() {
if (!getOperation()->getBlock()->isEntryBlock())
return {};
return {MemorySlot{getResult(), getResultPtrElementType()}};
}
Value LLVM::AllocaOp::getDefaultValue(const MemorySlot &slot,
RewriterBase &rewriter) {
return rewriter.create<LLVM::UndefOp>(getLoc(), slot.elemType);
}
void LLVM::AllocaOp::handleBlockArgument(const MemorySlot &slot,
BlockArgument argument,
RewriterBase &rewriter) {
for (Operation *user : getOperation()->getUsers())
if (auto declareOp = llvm::dyn_cast<LLVM::DbgDeclareOp>(user))
rewriter.create<LLVM::DbgValueOp>(declareOp.getLoc(), argument,
declareOp.getVarInfo());
}
void LLVM::AllocaOp::handlePromotionComplete(const MemorySlot &slot,
Value defaultValue,
RewriterBase &rewriter) {
if (defaultValue && defaultValue.use_empty())
rewriter.eraseOp(defaultValue.getDefiningOp());
rewriter.eraseOp(*this);
}
SmallVector<DestructurableMemorySlot> LLVM::AllocaOp::getDestructurableSlots() {
if (!mlir::matchPattern(getArraySize(), m_One()))
return {};
Type elemType = getResultPtrElementType();
auto destructurable = dyn_cast<DestructurableTypeInterface>(elemType);
if (!destructurable)
return {};
std::optional<DenseMap<Attribute, Type>> destructuredType =
destructurable.getSubelementIndexMap();
if (!destructuredType)
return {};
DenseMap<Attribute, Type> allocaTypeMap;
for (Attribute index : llvm::make_first_range(destructuredType.value()))
allocaTypeMap.insert({index, LLVM::LLVMPointerType::get(getContext())});
return {DestructurableMemorySlot{{getResult(), elemType}, {allocaTypeMap}}};
}
DenseMap<Attribute, MemorySlot>
LLVM::AllocaOp::destructure(const DestructurableMemorySlot &slot,
const SmallPtrSetImpl<Attribute> &usedIndices,
RewriterBase &rewriter) {
assert(slot.ptr == getResult());
Type elemType =
getElemType() ? *getElemType() : getResult().getType().getElementType();
rewriter.setInsertionPointAfter(*this);
auto destructurableType = cast<DestructurableTypeInterface>(elemType);
DenseMap<Attribute, MemorySlot> slotMap;
for (Attribute index : usedIndices) {
Type elemType = destructurableType.getTypeAtIndex(index);
assert(elemType && "used index must exist");
auto subAlloca = rewriter.create<LLVM::AllocaOp>(
getLoc(), LLVM::LLVMPointerType::get(getContext()), elemType,
getArraySize());
slotMap.try_emplace<MemorySlot>(index, {subAlloca.getResult(), elemType});
}
return slotMap;
}
void LLVM::AllocaOp::handleDestructuringComplete(
const DestructurableMemorySlot &slot, RewriterBase &rewriter) {
assert(slot.ptr == getResult());
rewriter.eraseOp(*this);
}
//===----------------------------------------------------------------------===//
// Interfaces for LoadOp/StoreOp
//===----------------------------------------------------------------------===//
bool LLVM::LoadOp::loadsFrom(const MemorySlot &slot) {
return getAddr() == slot.ptr;
}
bool LLVM::LoadOp::storesTo(const MemorySlot &slot) { return false; }
Value LLVM::LoadOp::getStored(const MemorySlot &slot, RewriterBase &rewriter) {
llvm_unreachable("getStored should not be called on LoadOp");
}
bool LLVM::StoreOp::loadsFrom(const MemorySlot &slot) { return false; }
bool LLVM::StoreOp::storesTo(const MemorySlot &slot) {
return getAddr() == slot.ptr;
}
Value LLVM::StoreOp::getStored(const MemorySlot &slot, RewriterBase &rewriter) {
return getValue();
}
bool LLVM::LoadOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
if (blockingUses.size() != 1)
return false;
Value blockingUse = (*blockingUses.begin())->get();
// If the blocking use is the slot ptr itself, there will be enough
// context to reconstruct the result of the load at removal time, so it can
// be removed (provided it loads the exact stored value and is not
// volatile).
return blockingUse == slot.ptr && getAddr() == slot.ptr &&
getResult().getType() == slot.elemType && !getVolatile_();
}
DeletionKind LLVM::LoadOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
// `canUsesBeRemoved` checked this blocking use must be the loaded slot
// pointer.
rewriter.replaceAllUsesWith(getResult(), reachingDefinition);
return DeletionKind::Delete;
}
bool LLVM::StoreOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
if (blockingUses.size() != 1)
return false;
Value blockingUse = (*blockingUses.begin())->get();
// If the blocking use is the slot ptr itself, dropping the store is
// fine, provided we are currently promoting its target value. Don't allow a
// store OF the slot pointer, only INTO the slot pointer.
return blockingUse == slot.ptr && getAddr() == slot.ptr &&
getValue() != slot.ptr && getValue().getType() == slot.elemType &&
!getVolatile_();
}
DeletionKind LLVM::StoreOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
// `canUsesBeRemoved` checked this blocking use must be the stored slot
// pointer.
for (Operation *user : slot.ptr.getUsers())
if (auto declareOp = dyn_cast<LLVM::DbgDeclareOp>(user))
rewriter.create<LLVM::DbgValueOp>(declareOp->getLoc(), getValue(),
declareOp.getVarInfo());
return DeletionKind::Delete;
}
LogicalResult LLVM::LoadOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return success(getAddr() != slot.ptr || getType() == slot.elemType);
}
LogicalResult LLVM::StoreOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return success(getAddr() != slot.ptr ||
getValue().getType() == slot.elemType);
}
//===----------------------------------------------------------------------===//
// Interfaces for discardable OPs
//===----------------------------------------------------------------------===//
/// Conditions the deletion of the operation to the removal of all its uses.
static bool forwardToUsers(Operation *op,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
for (Value result : op->getResults())
for (OpOperand &use : result.getUses())
newBlockingUses.push_back(&use);
return true;
}
bool LLVM::BitcastOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::BitcastOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::AddrSpaceCastOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::AddrSpaceCastOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::LifetimeStartOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return true;
}
DeletionKind LLVM::LifetimeStartOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::LifetimeEndOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return true;
}
DeletionKind LLVM::LifetimeEndOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::DbgDeclareOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return true;
}
DeletionKind LLVM::DbgDeclareOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::DbgValueOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
// There is only one operand that we can remove the use of.
if (blockingUses.size() != 1)
return false;
return (*blockingUses.begin())->get() == getValue();
}
DeletionKind LLVM::DbgValueOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
// Rewriter by default is after '*this', but we need it before '*this'.
rewriter.setInsertionPoint(*this);
// Rather than dropping the debug value, replace it with undef to preserve the
// debug local variable info. This allows the debugger to inform the user that
// the variable has been optimized out.
auto undef =
rewriter.create<UndefOp>(getValue().getLoc(), getValue().getType());
rewriter.updateRootInPlace(*this, [&] { getValueMutable().assign(undef); });
return DeletionKind::Keep;
}
//===----------------------------------------------------------------------===//
// Interfaces for GEPOp
//===----------------------------------------------------------------------===//
static bool hasAllZeroIndices(LLVM::GEPOp gepOp) {
return llvm::all_of(gepOp.getIndices(), [](auto index) {
auto indexAttr = llvm::dyn_cast_if_present<IntegerAttr>(index);
return indexAttr && indexAttr.getValue() == 0;
});
}
bool LLVM::GEPOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
// GEP can be removed as long as it is a no-op and its users can be removed.
if (!hasAllZeroIndices(*this))
return false;
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::GEPOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
static bool isFirstIndexZero(LLVM::GEPOp gep) {
IntegerAttr index =
llvm::dyn_cast_if_present<IntegerAttr>(gep.getIndices()[0]);
return index && index.getInt() == 0;
}
LogicalResult LLVM::GEPOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
if (getBase() != slot.ptr)
return success();
if (slot.elemType != getElemType())
return failure();
if (!isFirstIndexZero(*this))
return failure();
Type reachedType = getResultPtrElementType();
if (!reachedType)
return failure();
mustBeSafelyUsed.emplace_back<MemorySlot>({getResult(), reachedType});
return success();
}
bool LLVM::GEPOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
auto basePtrType = llvm::dyn_cast<LLVM::LLVMPointerType>(getBase().getType());
if (!basePtrType)
return false;
// Typed pointers are not supported. This should be removed once typed
// pointers are removed from the LLVM dialect.
if (!basePtrType.isOpaque())
return false;
if (getBase() != slot.ptr || slot.elemType != getElemType())
return false;
if (!isFirstIndexZero(*this))
return false;
Type reachedType = getResultPtrElementType();
if (!reachedType || getIndices().size() < 2)
return false;
auto firstLevelIndex = dyn_cast<IntegerAttr>(getIndices()[1]);
if (!firstLevelIndex)
return false;
assert(slot.elementPtrs.contains(firstLevelIndex));
if (!llvm::isa<LLVM::LLVMPointerType>(slot.elementPtrs.at(firstLevelIndex)))
return false;
mustBeSafelyUsed.emplace_back<MemorySlot>({getResult(), reachedType});
usedIndices.insert(firstLevelIndex);
return true;
}
DeletionKind LLVM::GEPOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
IntegerAttr firstLevelIndex =
llvm::dyn_cast_if_present<IntegerAttr>(getIndices()[1]);
const MemorySlot &newSlot = subslots.at(firstLevelIndex);
ArrayRef<int32_t> remainingIndices = getRawConstantIndices().slice(2);
// If the GEP would become trivial after this transformation, eliminate it.
// A GEP should only be eliminated if it has no indices (except the first
// pointer index), as simplifying GEPs with all-zero indices would eliminate
// structure information useful for further destruction.
if (remainingIndices.empty()) {
rewriter.replaceAllUsesWith(getResult(), newSlot.ptr);
return DeletionKind::Delete;
}
rewriter.updateRootInPlace(*this, [&]() {
// Rewire the indices by popping off the second index.
// Start with a single zero, then add the indices beyond the second.
SmallVector<int32_t> newIndices(1);
newIndices.append(remainingIndices.begin(), remainingIndices.end());
setRawConstantIndices(newIndices);
// Rewire the pointed type.
setElemType(newSlot.elemType);
// Rewire the pointer.
getBaseMutable().assign(newSlot.ptr);
});
return DeletionKind::Keep;
}
//===----------------------------------------------------------------------===//
// Utilities for memory intrinsics
//===----------------------------------------------------------------------===//
namespace {
/// Returns the length of the given memory intrinsic in bytes if it can be known
/// at compile-time on a best-effort basis, nothing otherwise.
template <class MemIntr>
std::optional<uint64_t> getStaticMemIntrLen(MemIntr op) {
APInt memIntrLen;
if (!matchPattern(op.getLen(), m_ConstantInt(&memIntrLen)))
return {};
if (memIntrLen.getBitWidth() > 64)
return {};
return memIntrLen.getZExtValue();
}
/// Returns the length of the given memory intrinsic in bytes if it can be known
/// at compile-time on a best-effort basis, nothing otherwise.
/// Because MemcpyInlineOp has its length encoded as an attribute, this requires
/// specialized handling.
template <>
std::optional<uint64_t> getStaticMemIntrLen(LLVM::MemcpyInlineOp op) {
APInt memIntrLen = op.getLen();
if (memIntrLen.getBitWidth() > 64)
return {};
return memIntrLen.getZExtValue();
}
} // namespace
/// Returns whether one can be sure the memory intrinsic does not write outside
/// of the bounds of the given slot, on a best-effort basis.
template <class MemIntr>
static bool definitelyWritesOnlyWithinSlot(MemIntr op, const MemorySlot &slot,
DataLayout &dataLayout) {
if (!isa<LLVM::LLVMPointerType>(slot.ptr.getType()) ||
op.getDst() != slot.ptr)
return false;
std::optional<uint64_t> memIntrLen = getStaticMemIntrLen(op);
return memIntrLen && *memIntrLen <= dataLayout.getTypeSize(slot.elemType);
}
/// Checks whether all indices are i32. This is used to check GEPs can index
/// into them.
static bool areAllIndicesI32(const DestructurableMemorySlot &slot) {
Type i32 = IntegerType::get(slot.ptr.getContext(), 32);
return llvm::all_of(llvm::make_first_range(slot.elementPtrs),
[&](Attribute index) {
auto intIndex = dyn_cast<IntegerAttr>(index);
return intIndex && intIndex.getType() == i32;
});
}
//===----------------------------------------------------------------------===//
// Interfaces for memset
//===----------------------------------------------------------------------===//
bool LLVM::MemsetOp::loadsFrom(const MemorySlot &slot) { return false; }
bool LLVM::MemsetOp::storesTo(const MemorySlot &slot) {
return getDst() == slot.ptr;
}
Value LLVM::MemsetOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
// TODO: Support non-integer types.
return TypeSwitch<Type, Value>(slot.elemType)
.Case([&](IntegerType intType) -> Value {
if (intType.getWidth() == 8)
return getVal();
assert(intType.getWidth() % 8 == 0);
// Build the memset integer by repeatedly shifting the value and
// or-ing it with the previous value.
uint64_t coveredBits = 8;
Value currentValue =
rewriter.create<LLVM::ZExtOp>(getLoc(), intType, getVal());
while (coveredBits < intType.getWidth()) {
Value shiftBy =
rewriter.create<LLVM::ConstantOp>(getLoc(), intType, coveredBits);
Value shifted =
rewriter.create<LLVM::ShlOp>(getLoc(), currentValue, shiftBy);
currentValue =
rewriter.create<LLVM::OrOp>(getLoc(), currentValue, shifted);
coveredBits *= 2;
}
return currentValue;
})
.Default([](Type) -> Value {
llvm_unreachable(
"getStored should not be called on memset to unsupported type");
});
}
bool LLVM::MemsetOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
// TODO: Support non-integer types.
bool canConvertType =
TypeSwitch<Type, bool>(slot.elemType)
.Case([](IntegerType intType) {
return intType.getWidth() % 8 == 0 && intType.getWidth() > 0;
})
.Default([](Type) { return false; });
if (!canConvertType)
return false;
if (getIsVolatile())
return false;
DataLayout layout = DataLayout::closest(*this);
return getStaticMemIntrLen(*this) == layout.getTypeSize(slot.elemType);
}
DeletionKind LLVM::MemsetOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return DeletionKind::Delete;
}
LogicalResult LLVM::MemsetOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
DataLayout dataLayout = DataLayout::closest(*this);
return success(definitelyWritesOnlyWithinSlot(*this, slot, dataLayout));
}
bool LLVM::MemsetOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
if (&slot.elemType.getDialect() != getOperation()->getDialect())
return false;
if (getIsVolatile())
return false;
if (!slot.elemType.cast<DestructurableTypeInterface>()
.getSubelementIndexMap())
return false;
if (!areAllIndicesI32(slot))
return false;
DataLayout dataLayout = DataLayout::closest(*this);
return definitelyWritesOnlyWithinSlot(*this, slot, dataLayout);
}
DeletionKind LLVM::MemsetOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
std::optional<DenseMap<Attribute, Type>> types =
slot.elemType.cast<DestructurableTypeInterface>().getSubelementIndexMap();
IntegerAttr memsetLenAttr;
bool successfulMatch =
matchPattern(getLen(), m_Constant<IntegerAttr>(&memsetLenAttr));
(void)successfulMatch;
assert(successfulMatch);
bool packed = false;
if (auto structType = dyn_cast<LLVM::LLVMStructType>(slot.elemType))
packed = structType.isPacked();
Type i32 = IntegerType::get(getContext(), 32);
DataLayout dataLayout = DataLayout::closest(*this);
uint64_t memsetLen = memsetLenAttr.getValue().getZExtValue();
uint64_t covered = 0;
for (size_t i = 0; i < types->size(); i++) {
// Create indices on the fly to get elements in the right order.
Attribute index = IntegerAttr::get(i32, i);
Type elemType = types->at(index);
uint64_t typeSize = dataLayout.getTypeSize(elemType);
if (!packed)
covered =
llvm::alignTo(covered, dataLayout.getTypeABIAlignment(elemType));
if (covered >= memsetLen)
break;
// If this subslot is used, apply a new memset to it.
// Otherwise, only compute its offset within the original memset.
if (subslots.contains(index)) {
uint64_t newMemsetSize = std::min(memsetLen - covered, typeSize);
Value newMemsetSizeValue =
rewriter
.create<LLVM::ConstantOp>(
getLen().getLoc(),
IntegerAttr::get(memsetLenAttr.getType(), newMemsetSize))
.getResult();
rewriter.create<LLVM::MemsetOp>(getLoc(), subslots.at(index).ptr,
getVal(), newMemsetSizeValue,
getIsVolatile());
}
covered += typeSize;
}
return DeletionKind::Delete;
}
//===----------------------------------------------------------------------===//
// Interfaces for memcpy/memmove
//===----------------------------------------------------------------------===//
template <class MemcpyLike>
static bool memcpyLoadsFrom(MemcpyLike op, const MemorySlot &slot) {
return op.getSrc() == slot.ptr;
}
template <class MemcpyLike>
static bool memcpyStoresTo(MemcpyLike op, const MemorySlot &slot) {
return op.getDst() == slot.ptr;
}
template <class MemcpyLike>
static Value memcpyGetStored(MemcpyLike op, const MemorySlot &slot,
RewriterBase &rewriter) {
return rewriter.create<LLVM::LoadOp>(op.getLoc(), slot.elemType, op.getSrc());
}
template <class MemcpyLike>
static bool
memcpyCanUsesBeRemoved(MemcpyLike op, const MemorySlot &slot,
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
// If source and destination are the same, memcpy behavior is undefined and
// memmove is a no-op. Because there is no memory change happening here,
// simplifying such operations is left to canonicalization.
if (op.getDst() == op.getSrc())
return false;
if (op.getIsVolatile())
return false;
DataLayout layout = DataLayout::closest(op);
return getStaticMemIntrLen(op) == layout.getTypeSize(slot.elemType);
}
template <class MemcpyLike>
static DeletionKind
memcpyRemoveBlockingUses(MemcpyLike op, const MemorySlot &slot,
const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
if (op.loadsFrom(slot))
rewriter.create<LLVM::StoreOp>(op.getLoc(), reachingDefinition,
op.getDst());
return DeletionKind::Delete;
}
template <class MemcpyLike>
static LogicalResult
memcpyEnsureOnlySafeAccesses(MemcpyLike op, const MemorySlot &slot,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
DataLayout dataLayout = DataLayout::closest(op);
// While rewiring memcpy-like intrinsics only supports full copies, partial
// copies are still safe accesses so it is enough to only check for writes
// within bounds.
return success(definitelyWritesOnlyWithinSlot(op, slot, dataLayout));
}
template <class MemcpyLike>
static bool memcpyCanRewire(MemcpyLike op, const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
if (op.getIsVolatile())
return false;
if (!slot.elemType.cast<DestructurableTypeInterface>()
.getSubelementIndexMap())
return false;
if (!areAllIndicesI32(slot))
return false;
// Only full copies are supported.
DataLayout dataLayout = DataLayout::closest(op);
if (getStaticMemIntrLen(op) != dataLayout.getTypeSize(slot.elemType))
return false;
if (op.getSrc() == slot.ptr)
for (Attribute index : llvm::make_first_range(slot.elementPtrs))
usedIndices.insert(index);
return true;
}
namespace {
template <class MemcpyLike>
void createMemcpyLikeToReplace(RewriterBase &rewriter, const DataLayout &layout,
MemcpyLike toReplace, Value dst, Value src,
Type toCpy, bool isVolatile) {
Value memcpySize = rewriter.create<LLVM::ConstantOp>(
toReplace.getLoc(), IntegerAttr::get(toReplace.getLen().getType(),
layout.getTypeSize(toCpy)));
rewriter.create<MemcpyLike>(toReplace.getLoc(), dst, src, memcpySize,
isVolatile);
}
template <>
void createMemcpyLikeToReplace(RewriterBase &rewriter, const DataLayout &layout,
LLVM::MemcpyInlineOp toReplace, Value dst,
Value src, Type toCpy, bool isVolatile) {
Type lenType = IntegerType::get(toReplace->getContext(),
toReplace.getLen().getBitWidth());
rewriter.create<LLVM::MemcpyInlineOp>(
toReplace.getLoc(), dst, src,
IntegerAttr::get(lenType, layout.getTypeSize(toCpy)), isVolatile);
}
} // namespace
/// Rewires a memcpy-like operation. Only copies to or from the full slot are
/// supported.
template <class MemcpyLike>
static DeletionKind memcpyRewire(MemcpyLike op,
const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
if (subslots.empty())
return DeletionKind::Delete;
DataLayout layout = DataLayout::closest(op);
assert((slot.ptr == op.getDst()) != (slot.ptr == op.getSrc()));
bool isDst = slot.ptr == op.getDst();
#ifndef NDEBUG
size_t slotsTreated = 0;
#endif
// It was previously checked that index types are consistent, so this type can
// be fetched now.
Type indexType = cast<IntegerAttr>(subslots.begin()->first).getType();
for (size_t i = 0, e = slot.elementPtrs.size(); i != e; i++) {
Attribute index = IntegerAttr::get(indexType, i);
if (!subslots.contains(index))
continue;
const MemorySlot &subslot = subslots.at(index);
#ifndef NDEBUG
slotsTreated++;
#endif
// First get a pointer to the equivalent of this subslot from the source
// pointer.
SmallVector<LLVM::GEPArg> gepIndices{
0, static_cast<int32_t>(
cast<IntegerAttr>(index).getValue().getZExtValue())};
Value subslotPtrInOther = rewriter.create<LLVM::GEPOp>(
op.getLoc(), LLVM::LLVMPointerType::get(op.getContext()), slot.elemType,
isDst ? op.getSrc() : op.getDst(), gepIndices);
// Then create a new memcpy out of this source pointer.
createMemcpyLikeToReplace(rewriter, layout, op,
isDst ? subslot.ptr : subslotPtrInOther,
isDst ? subslotPtrInOther : subslot.ptr,
subslot.elemType, op.getIsVolatile());
}
assert(subslots.size() == slotsTreated);
return DeletionKind::Delete;
}
bool LLVM::MemcpyOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemcpyOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemcpyOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
return memcpyGetStored(*this, slot, rewriter);
}
bool LLVM::MemcpyOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
}
DeletionKind LLVM::MemcpyOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
reachingDefinition);
}
LogicalResult LLVM::MemcpyOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemcpyOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
}
DeletionKind LLVM::MemcpyOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
return memcpyRewire(*this, slot, subslots, rewriter);
}
bool LLVM::MemcpyInlineOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemcpyInlineOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemcpyInlineOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
return memcpyGetStored(*this, slot, rewriter);
}
bool LLVM::MemcpyInlineOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
}
DeletionKind LLVM::MemcpyInlineOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
reachingDefinition);
}
LogicalResult LLVM::MemcpyInlineOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemcpyInlineOp::canRewire(
const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
}
DeletionKind
LLVM::MemcpyInlineOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
return memcpyRewire(*this, slot, subslots, rewriter);
}
bool LLVM::MemmoveOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemmoveOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemmoveOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
return memcpyGetStored(*this, slot, rewriter);
}
bool LLVM::MemmoveOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
}
DeletionKind LLVM::MemmoveOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
reachingDefinition);
}
LogicalResult LLVM::MemmoveOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemmoveOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
}
DeletionKind LLVM::MemmoveOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
return memcpyRewire(*this, slot, subslots, rewriter);
}
//===----------------------------------------------------------------------===//
// Interfaces for destructurable types
//===----------------------------------------------------------------------===//
std::optional<DenseMap<Attribute, Type>>
LLVM::LLVMStructType::getSubelementIndexMap() {
Type i32 = IntegerType::get(getContext(), 32);
DenseMap<Attribute, Type> destructured;
for (const auto &[index, elemType] : llvm::enumerate(getBody()))
destructured.insert({IntegerAttr::get(i32, index), elemType});
return destructured;
}
Type LLVM::LLVMStructType::getTypeAtIndex(Attribute index) {
auto indexAttr = llvm::dyn_cast<IntegerAttr>(index);
if (!indexAttr || !indexAttr.getType().isInteger(32))
return {};
int32_t indexInt = indexAttr.getInt();
ArrayRef<Type> body = getBody();
if (indexInt < 0 || body.size() <= static_cast<uint32_t>(indexInt))
return {};
return body[indexInt];
}
std::optional<DenseMap<Attribute, Type>>
LLVM::LLVMArrayType::getSubelementIndexMap() const {
constexpr size_t maxArraySizeForDestructuring = 16;
if (getNumElements() > maxArraySizeForDestructuring)
return {};
int32_t numElements = getNumElements();
Type i32 = IntegerType::get(getContext(), 32);
DenseMap<Attribute, Type> destructured;
for (int32_t index = 0; index < numElements; ++index)
destructured.insert({IntegerAttr::get(i32, index), getElementType()});
return destructured;
}
Type LLVM::LLVMArrayType::getTypeAtIndex(Attribute index) const {
auto indexAttr = llvm::dyn_cast<IntegerAttr>(index);
if (!indexAttr || !indexAttr.getType().isInteger(32))
return {};
int32_t indexInt = indexAttr.getInt();
if (indexInt < 0 || getNumElements() <= static_cast<uint32_t>(indexInt))
return {};
return getElementType();
}
|