File: NVVMDialect.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (766 lines) | stat: -rw-r--r-- 29,665 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
//===- NVVMDialect.cpp - NVVM IR Ops and Dialect registration -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the types and operation details for the NVVM IR dialect in
// MLIR, and the LLVM IR dialect.  It also registers the dialect.
//
// The NVVM dialect only contains GPU specific additions on top of the general
// LLVM dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/LLVMIR/NVVMDialect.h"

#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/SourceMgr.h"
#include <optional>
#include <string>

using namespace mlir;
using namespace NVVM;

#include "mlir/Dialect/LLVMIR/NVVMOpsDialect.cpp.inc"
#include "mlir/Dialect/LLVMIR/NVVMOpsEnums.cpp.inc"

//===----------------------------------------------------------------------===//
// Printing/parsing for NVVM ops
//===----------------------------------------------------------------------===//

static void printNVVMIntrinsicOp(OpAsmPrinter &p, Operation *op) {
  p << " " << op->getOperands();
  if (op->getNumResults() > 0)
    p << " : " << op->getResultTypes();
}

// <operation> ::= `llvm.nvvm.vote.ballot.sync %mask, %pred` : result_type
ParseResult VoteBallotOp::parse(OpAsmParser &parser, OperationState &result) {
  MLIRContext *context = parser.getContext();
  auto int32Ty = IntegerType::get(context, 32);
  auto int1Ty = IntegerType::get(context, 1);

  SmallVector<OpAsmParser::UnresolvedOperand, 8> ops;
  Type type;
  return failure(parser.parseOperandList(ops) ||
                 parser.parseOptionalAttrDict(result.attributes) ||
                 parser.parseColonType(type) ||
                 parser.addTypeToList(type, result.types) ||
                 parser.resolveOperands(ops, {int32Ty, int1Ty},
                                        parser.getNameLoc(), result.operands));
}

void VoteBallotOp::print(OpAsmPrinter &p) { printNVVMIntrinsicOp(p, *this); }

LogicalResult CpAsyncBulkTensorGlobalToSharedClusterOp::verify() {
  if (getCoordinates().size() > 5)
    return emitError("Maximum 5 coordinates and dimension is supported.");
  return success();
}

LogicalResult CpAsyncOp::verify() {
  if (getModifier() != LoadCacheModifierKind::CG &&
      getModifier() != LoadCacheModifierKind::CA)
    return emitError("Only CG and CA cache modifiers are supported.");
  if (getSize() != 4 && getSize() != 8 && getSize() != 16)
    return emitError("expected byte size to be either 4, 8 or 16.");
  if (getModifier() == LoadCacheModifierKind::CG && getSize() != 16)
    return emitError("CG cache modifier is only support for 16 bytes copy.");
  return success();
}

// Given the element type of an operand and whether or not it is an accumulator,
// this function returns the PTX type (`NVVM::MMATypes`) that corresponds to the
// operand's element type.
std::optional<mlir::NVVM::MMATypes>
MmaOp::inferOperandMMAType(Type operandElType, bool isAccumulator) {
  auto half2Type =
      LLVM::getFixedVectorType(Float16Type::get(operandElType.getContext()), 2);
  if (operandElType.isF64())
    return NVVM::MMATypes::f64;
  if (operandElType.isF16() || operandElType == half2Type)
    return NVVM::MMATypes::f16;
  if (operandElType.isF32() && isAccumulator)
    return NVVM::MMATypes::f32;
  if (operandElType.isF32() && !isAccumulator)
    return NVVM::MMATypes::tf32;
  if (llvm::isa<IntegerType>(operandElType)) {
    if (isAccumulator)
      return NVVM::MMATypes::s32;
    return std::nullopt;
  }

  if (auto structType = llvm::dyn_cast<LLVM::LLVMStructType>(operandElType)) {
    if (structType.getBody().empty())
      return std::nullopt;
    return inferOperandMMAType(structType.getBody()[0], isAccumulator);
  }

  return std::nullopt;
}

static bool isInt4PtxType(MMATypes type) {
  return (type == MMATypes::u4 || type == MMATypes::s4);
}

static bool isInt8PtxType(MMATypes type) {
  return (type == MMATypes::u8 || type == MMATypes::s8);
}

static bool isIntegerPtxType(MMATypes type) {
  return isInt4PtxType(type) || isInt8PtxType(type) || type == MMATypes::b1 ||
         type == MMATypes::s32;
}

MMATypes MmaOp::accumPtxType() {
  std::optional<mlir::NVVM::MMATypes> val = inferOperandMMAType(
      getODSOperands(2).getTypes().front(), /*isAccum=*/true);
  assert(val.has_value() && "accumulator PTX type should always be inferrable");
  return val.value();
}

MMATypes MmaOp::resultPtxType() {
  std::optional<mlir::NVVM::MMATypes> val =
      inferOperandMMAType(getResult().getType(), /*isAccum=*/true);
  assert(val.has_value() && "result PTX type should always be inferrable");
  return val.value();
}

void MmaOp::print(OpAsmPrinter &p) {
  SmallVector<Type, 4> regTypes;
  struct OperandFragment {
    StringRef operandName;
    StringRef ptxTypeAttr;
    SmallVector<Value, 4> regs;
    explicit OperandFragment(StringRef name, StringRef ptxTypeName)
        : operandName(name), ptxTypeAttr(ptxTypeName) {}
  };

  std::array<OperandFragment, 3> frags{
      OperandFragment("A", getMultiplicandAPtxTypeAttrName()),
      OperandFragment("B", getMultiplicandBPtxTypeAttrName()),
      OperandFragment("C", "")};
  SmallVector<StringRef, 4> ignoreAttrNames{
      mlir::NVVM::MmaOp::getOperandSegmentSizeAttr()};

  for (unsigned fragIdx = 0; fragIdx < frags.size(); fragIdx++) {
    auto &frag = frags[fragIdx];
    auto varOperandSpec = getODSOperandIndexAndLength(fragIdx);
    for (auto operandIdx = varOperandSpec.first;
         operandIdx < varOperandSpec.first + varOperandSpec.second;
         operandIdx++) {
      frag.regs.push_back(this->getOperand(operandIdx));
      if (operandIdx == 0) {
        regTypes.push_back(this->getOperand(operandIdx).getType());
      }
    }
    std::optional<MMATypes> inferredType =
        inferOperandMMAType(regTypes.back(), /*isAccum=*/fragIdx >= 2);
    if (inferredType)
      ignoreAttrNames.push_back(frag.ptxTypeAttr);
  }

  auto printMmaOperand = [&](const OperandFragment &frag) -> void {
    p << " " << frag.operandName;
    p << "[";
    p.printOperands(frag.regs);
    p << "] ";
  };

  for (const auto &frag : frags) {
    printMmaOperand(frag);
  }

  p.printOptionalAttrDict(this->getOperation()->getAttrs(), ignoreAttrNames);

  // Print the types of the operands and result.
  p << " : "
    << "(";
  llvm::interleaveComma(SmallVector<Type, 3>{frags[0].regs[0].getType(),
                                             frags[1].regs[0].getType(),
                                             frags[2].regs[0].getType()},
                        p);
  p << ")";
  p.printArrowTypeList(TypeRange{this->getRes().getType()});
}

void MmaOp::build(OpBuilder &builder, OperationState &result, Type resultType,
                  ValueRange operandA, ValueRange operandB, ValueRange operandC,
                  ArrayRef<int64_t> shape, std::optional<MMAB1Op> b1Op,
                  std::optional<MMAIntOverflow> intOverflow,
                  std::optional<std::array<MMATypes, 2>> multiplicandPtxTypes,
                  std::optional<std::array<MMALayout, 2>> multiplicandLayouts) {

  assert(shape.size() == 3 && "expected shape to have size 3 (m, n, k)");
  MLIRContext *ctx = builder.getContext();
  result.addAttribute(
      "shape", builder.getAttr<MMAShapeAttr>(shape[0], shape[1], shape[2]));

  result.addOperands(operandA);
  result.addOperands(operandB);
  result.addOperands(operandC);

  if (multiplicandPtxTypes) {
    result.addAttribute("multiplicandAPtxType",
                        MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[0]));
    result.addAttribute("multiplicandBPtxType",
                        MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[1]));
  } else {
    if (auto res = inferOperandMMAType(operandA[0].getType(), false))
      result.addAttribute("multiplicandAPtxType", MMATypesAttr::get(ctx, *res));
    if (auto res = inferOperandMMAType(operandB[0].getType(), false))
      result.addAttribute("multiplicandBPtxType", MMATypesAttr::get(ctx, *res));
  }

  if (multiplicandLayouts) {
    result.addAttribute("layoutA",
                        MMALayoutAttr::get(ctx, (*multiplicandLayouts)[0]));
    result.addAttribute("layoutB",
                        MMALayoutAttr::get(ctx, (*multiplicandLayouts)[1]));
  } else {
    result.addAttribute("layoutA", MMALayoutAttr::get(ctx, MMALayout::row));
    result.addAttribute("layoutB", MMALayoutAttr::get(ctx, MMALayout::col));
  }

  if (intOverflow.has_value())
    result.addAttribute("intOverflowBehavior",
                        MMAIntOverflowAttr::get(ctx, *intOverflow));
  if (b1Op.has_value())
    result.addAttribute("b1Op", MMAB1OpAttr::get(ctx, *b1Op));

  result.addTypes(resultType);
  result.addAttribute(
      MmaOp::getOperandSegmentSizeAttr(),
      builder.getDenseI32ArrayAttr({static_cast<int32_t>(operandA.size()),
                                    static_cast<int32_t>(operandB.size()),
                                    static_cast<int32_t>(operandC.size())}));
}

// <operation> :=
//   A `[` $operandA `]` B `[` $operandB `]` C `[` $operandC `]`
//   attr-dict : (type($operandA[0]), type($operandB[0]), type($operandC[0]))
//     `->` type($res)
ParseResult MmaOp::parse(OpAsmParser &parser, OperationState &result) {
  struct OperandFragment {
    std::optional<MMATypes> elemtype;
    SmallVector<OpAsmParser::UnresolvedOperand, 4> regs;
    SmallVector<Type> regTypes;
  };

  Builder &builder = parser.getBuilder();
  std::array<OperandFragment, 4> frags;

  NamedAttrList namedAttributes;

  // A helper to parse the operand segments.
  auto parseMmaOperand = [&](StringRef operandName,
                             OperandFragment &frag) -> LogicalResult {
    if (parser.parseKeyword(operandName).failed())
      return failure();
    if (parser
            .parseOperandList(frag.regs, OpAsmParser::Delimiter::OptionalSquare)
            .failed())
      return failure();
    return success();
  };

  // Parse the operand segments.
  if (parseMmaOperand("A", frags[0]).failed())
    return failure();
  if (parseMmaOperand("B", frags[1]).failed())
    return failure();
  if (parseMmaOperand("C", frags[2]).failed())
    return failure();

  if (parser.parseOptionalAttrDict(namedAttributes).failed())
    return failure();

  // Parse the type specification and resolve operands.
  SmallVector<Type, 3> operandTypes;
  if (failed(parser.parseColon()))
    return failure();
  if (failed(parser.parseLParen()))
    return failure();
  if (failed(parser.parseTypeList(operandTypes)))
    return failure();
  if (failed(parser.parseRParen()))
    if (operandTypes.size() != 3)
      return parser.emitError(
          parser.getNameLoc(),
          "expected one type for each operand segment but got " +
              Twine(operandTypes.size()) + " types");
  for (const auto &iter : llvm::enumerate(operandTypes)) {
    auto &frag = frags[iter.index()];
    frag.regTypes.resize(frag.regs.size(), iter.value());
    if (failed(parser.resolveOperands(frag.regs, frag.regTypes,
                                      parser.getNameLoc(), result.operands)))
      return failure();
    frag.elemtype =
        inferOperandMMAType(frag.regTypes[0], /*isAccum=*/iter.index() < 2);
  }

  Type resultType;
  if (parser.parseArrow() || parser.parseType(resultType))
    return failure();
  frags[3].elemtype = inferOperandMMAType(resultType, /*isAccum=*/true);

  std::array<StringRef, 2> names{"multiplicandAPtxType",
                                 "multiplicandBPtxType"};
  for (unsigned idx = 0; idx < names.size(); idx++) {
    const auto &frag = frags[idx];
    std::optional<NamedAttribute> attr = namedAttributes.getNamed(names[idx]);
    if (!frag.elemtype.has_value() && !attr.has_value()) {
      return parser.emitError(
          parser.getNameLoc(),
          "attribute " + names[idx] +
              " is not provided explicitly and cannot be inferred");
    }
    if (!attr.has_value())
      result.addAttribute(
          names[idx], MMATypesAttr::get(parser.getContext(), *frag.elemtype));
  }

  result.addTypes(resultType);
  if (!namedAttributes.empty())
    result.addAttributes(namedAttributes);
  result.addAttribute(MmaOp::getOperandSegmentSizeAttr(),
                      builder.getDenseI32ArrayAttr({
                          static_cast<int32_t>(frags[0].regs.size()),
                          static_cast<int32_t>(frags[1].regs.size()),
                          static_cast<int32_t>(frags[2].regs.size()),
                      }));
  return success();
}

LogicalResult MmaOp::verify() {
  MLIRContext *context = getContext();
  auto f16Ty = Float16Type::get(context);
  auto i32Ty = IntegerType::get(context, 32);
  auto f16x2Ty = LLVM::getFixedVectorType(f16Ty, 2);
  auto f32Ty = Float32Type::get(context);
  auto f16x2x4StructTy = LLVM::LLVMStructType::getLiteral(
      context, {f16x2Ty, f16x2Ty, f16x2Ty, f16x2Ty});

  auto s32x4StructTy =
      LLVM::LLVMStructType::getLiteral(context, {i32Ty, i32Ty, i32Ty, i32Ty});
  auto f32x8StructTy =
      LLVM::LLVMStructType::getLiteral(context, SmallVector<Type>(8, f32Ty));
  auto f16x2x2StructTy =
      LLVM::LLVMStructType::getLiteral(context, {f16x2Ty, f16x2Ty});
  auto f32x4StructTy =
      LLVM::LLVMStructType::getLiteral(context, {f32Ty, f32Ty, f32Ty, f32Ty});
  auto s32x2StructTy =
      LLVM::LLVMStructType::getLiteral(context, {i32Ty, i32Ty});

  std::array<int64_t, 3> mmaShape{getShapeAttr().getM(), getShapeAttr().getN(),
                                  getShapeAttr().getK()};

  // These variables define the set of allowed data types for matrices A, B, C,
  // and result.
  using AllowedShapes = SmallVector<std::array<int64_t, 3>, 2>;
  using AllowedTypes = SmallVector<SmallVector<Type, 4>, 2>;
  AllowedShapes allowedShapes;
  AllowedTypes expectedA;
  AllowedTypes expectedB;
  AllowedTypes expectedC;
  SmallVector<Type> expectedResult;

  // When M = 16, we just need to calculate the number of 8xk tiles, where
  // k is a factor that depends on the data type.
  if (mmaShape[0] == 16) {
    int64_t kFactor;
    Type multiplicandFragType;
    switch (*getMultiplicandAPtxType()) {
    case MMATypes::tf32:
      kFactor = 4;
      multiplicandFragType = i32Ty;
      expectedResult.push_back(LLVM::LLVMStructType::getLiteral(
          context, {f32Ty, f32Ty, f32Ty, f32Ty}));
      break;
    case MMATypes::f16:
    case MMATypes::bf16:
      kFactor = 8;
      multiplicandFragType = f16x2Ty;
      expectedResult.push_back(f16x2x2StructTy);
      expectedResult.push_back(f32x4StructTy);
      break;
    case MMATypes::s4:
    case MMATypes::u4:
      kFactor = 32;
      break;
    case MMATypes::b1:
      kFactor = 128;
      break;
    case MMATypes::s8:
    case MMATypes::u8:
      kFactor = 16;
      break;
    default:
      return emitError("invalid shape or multiplicand type: " +
                       stringifyEnum(getMultiplicandAPtxType().value()));
    }

    if (isIntegerPtxType(getMultiplicandAPtxType().value())) {
      expectedResult.push_back(s32x4StructTy);
      expectedC.emplace_back(4, i32Ty);
      multiplicandFragType = i32Ty;
    } else {
      expectedC.emplace_back(2, f16x2Ty);
      expectedC.emplace_back(4, f32Ty);
    }

    int64_t unitA = (mmaShape[0] / 8) * (mmaShape[2] / kFactor);
    int64_t unitB = (mmaShape[1] / 8) * (mmaShape[2] / kFactor);
    expectedA.emplace_back(unitA, multiplicandFragType);
    expectedB.emplace_back(unitB, multiplicandFragType);
    allowedShapes.push_back({16, 8, kFactor});
    allowedShapes.push_back({16, 8, kFactor * 2});
  }

  // In the M=8 case, there is only 1 possible case per data type.
  if (mmaShape[0] == 8) {
    if (*getMultiplicandAPtxType() == MMATypes::f16) {
      expectedA.emplace_back(2, f16x2Ty);
      expectedB.emplace_back(2, f16x2Ty);
      expectedResult.push_back(f16x2x4StructTy);
      expectedResult.push_back(f32x8StructTy);
      expectedC.emplace_back(4, f16x2Ty);
      expectedC.emplace_back(8, f32Ty);
      allowedShapes.push_back({8, 8, 4});
    }
    if (*getMultiplicandAPtxType() == MMATypes::f64) {
      Type f64Ty = Float64Type::get(context);
      expectedA.emplace_back(1, f64Ty);
      expectedB.emplace_back(1, f64Ty);
      expectedC.emplace_back(2, f64Ty);
      // expectedC.emplace_back(1, LLVM::getFixedVectorType(f64Ty, 2));
      expectedResult.emplace_back(LLVM::LLVMStructType::getLiteral(
          context, SmallVector<Type>(2, f64Ty)));
      allowedShapes.push_back({8, 8, 4});
    }
    if (isIntegerPtxType(getMultiplicandAPtxType().value())) {
      expectedA.push_back({i32Ty});
      expectedB.push_back({i32Ty});
      expectedC.push_back({i32Ty, i32Ty});
      expectedResult.push_back(s32x2StructTy);
      if (isInt4PtxType(getMultiplicandAPtxType().value()))
        allowedShapes.push_back({8, 8, 32});
      if (isInt8PtxType(getMultiplicandAPtxType().value()))
        allowedShapes.push_back({8, 8, 16});
      if (getMultiplicandAPtxType().value() == MMATypes::b1)
        allowedShapes.push_back({8, 8, 128});
    }
  }

  std::string errorMessage;
  llvm::raw_string_ostream errorStream(errorMessage);

  // Check that we matched an existing shape/dtype combination.
  if (expectedA.empty() || expectedB.empty() || expectedC.empty() ||
      !llvm::is_contained(allowedShapes, mmaShape)) {
    errorStream << "unimplemented variant for MMA shape <";
    llvm::interleaveComma(mmaShape, errorStream);
    errorStream << ">";
    return emitOpError(errorMessage);
  }

  // Verify the operand types for segments of A, B, and C operands.
  std::array<StringRef, 3> operandNames{"A", "B", "C"};
  for (const auto &iter : llvm::enumerate(
           SmallVector<AllowedTypes, 3>{expectedA, expectedB, expectedC})) {
    auto spec = this->getODSOperandIndexAndLength(iter.index());
    SmallVector<Type, 4> operandTySeg(operand_type_begin() + spec.first,
                                      operand_type_begin() + spec.first +
                                          spec.second);
    bool match = llvm::is_contained(iter.value(), operandTySeg);

    if (!match) {
      errorStream << "Could not match types for the "
                  << operandNames[iter.index()]
                  << " operands; expected one of ";
      for (const auto &x : iter.value()) {
        errorStream << x.size() << "x" << x[0] << " ";
      }
      errorStream << "but got ";
      llvm::interleaveComma(operandTySeg, errorStream);
      return emitOpError(errorStream.str());
    }
  }

  // Check the result type
  if (!llvm::any_of(expectedResult, [&](Type expectedResultType) {
        return expectedResultType == getResult().getType();
      })) {
    errorStream
        << "Could not match allowed types for the result; expected one of ";
    llvm::interleaveComma(expectedResult, errorStream);
    errorStream << " but got " << getResult().getType();
    return emitOpError(errorStream.str());
  }

  // Ensure that binary MMA variants have a b1 MMA operation defined.
  if (getMultiplicandAPtxType() == MMATypes::b1 && !getB1Op()) {
    return emitOpError("op requires " + getB1OpAttrName().strref() +
                       " attribute");
  }

  // Ensure int4/int8 MMA variants specify the accum overflow behavior
  // attribute.
  if (isInt4PtxType(*getMultiplicandAPtxType()) ||
      isInt8PtxType(*getMultiplicandAPtxType())) {
    if (!getIntOverflowBehavior())
      return emitOpError("op requires " +
                         getIntOverflowBehaviorAttrName().strref() +
                         " attribute");
  }

  return success();
}

LogicalResult ShflOp::verify() {
  if (!(*this)->getAttrOfType<UnitAttr>("return_value_and_is_valid"))
    return success();
  auto type = llvm::dyn_cast<LLVM::LLVMStructType>(getType());
  auto elementType = (type && type.getBody().size() == 2)
                         ? llvm::dyn_cast<IntegerType>(type.getBody()[1])
                         : nullptr;
  if (!elementType || elementType.getWidth() != 1)
    return emitError("expected return type to be a two-element struct with "
                     "i1 as the second element");
  return success();
}

std::pair<mlir::Type, unsigned> NVVM::inferMMAType(NVVM::MMATypes type,
                                                   NVVM::MMAFrag frag, int nRow,
                                                   int nCol,
                                                   MLIRContext *context) {
  unsigned numberElements = 0;
  Type elementType;
  OpBuilder builder(context);
  Type f16x2 = VectorType::get(2, builder.getF16Type());
  if (type == NVVM::MMATypes::f16) {
    elementType = f16x2;
    if (frag == NVVM::MMAFrag::a || frag == NVVM::MMAFrag::b)
      numberElements = 8;
    else
      numberElements = 4;
  } else if (type == NVVM::MMATypes::f32) {
    elementType = builder.getF32Type();
    numberElements = 8;
  } else if (type == NVVM::MMATypes::tf32) {
    elementType = builder.getI32Type();
    numberElements = 4;
  } else if (type == NVVM::MMATypes::s8 || type == NVVM::MMATypes::u8) {
    elementType = builder.getI32Type();
    int parallelSize = 0;
    if (frag == NVVM::MMAFrag::a)
      parallelSize = nRow;
    if (frag == NVVM::MMAFrag::b)
      parallelSize = nCol;

    // m == 16 && n == 16 && k == 16
    if (parallelSize == 16)
      numberElements = 2;
    // m == 8 && n == 32 && k == 16 or m == 32 && n == 8 && k == 16
    else if (parallelSize == 8)
      numberElements = 1;
    else if (parallelSize == 32)
      numberElements = 4;
  } else if (type == NVVM::MMATypes::s32) {
    elementType = builder.getI32Type();
    numberElements = 8;
  }
  assert(numberElements != 0 && elementType != nullptr);
  return std::make_pair(elementType, numberElements);
}

static std::pair<mlir::Type, unsigned>
inferMMATypeFromMNK(NVVM::MMATypes type, NVVM::MMAFrag frag, int m, int n,
                    int k, MLIRContext *context) {
  int nRow, nCol;
  if (frag == NVVM::MMAFrag::a) {
    nRow = m;
    nCol = k;
  } else if (frag == NVVM::MMAFrag::b) {
    nRow = k;
    nCol = n;
  } else {
    nRow = m;
    nCol = n;
  }
  assert(nRow && nCol);
  return inferMMAType(type, frag, nRow, nCol, context);
}

LogicalResult NVVM::WMMALoadOp::verify() {
  unsigned addressSpace =
      llvm::cast<LLVM::LLVMPointerType>(getPtr().getType()).getAddressSpace();
  if (addressSpace != 0 && addressSpace != 1 && addressSpace != 3)
    return emitOpError("expected source pointer in memory "
                       "space 0, 1, 3");

  if (NVVM::WMMALoadOp::getIntrinsicID(getM(), getN(), getK(), getLayout(),
                                       getEltype(), getFrag()) == 0)
    return emitOpError() << "invalid attribute combination";
  std::pair<Type, unsigned> typeInfo = inferMMATypeFromMNK(
      getEltype(), getFrag(), getM(), getN(), getK(), getContext());
  Type dstType = LLVM::LLVMStructType::getLiteral(
      getContext(), SmallVector<Type, 8>(typeInfo.second, typeInfo.first));
  if (getType() != dstType)
    return emitOpError("expected destination type is a structure of ")
           << typeInfo.second << " elements of type " << typeInfo.first;
  return success();
}

LogicalResult NVVM::WMMAStoreOp::verify() {
  unsigned addressSpace =
      llvm::cast<LLVM::LLVMPointerType>(getPtr().getType()).getAddressSpace();
  if (addressSpace != 0 && addressSpace != 1 && addressSpace != 3)
    return emitOpError("expected operands to be a source pointer in memory "
                       "space 0, 1, 3");

  if (NVVM::WMMAStoreOp::getIntrinsicID(getM(), getN(), getK(), getLayout(),
                                        getEltype()) == 0)
    return emitOpError() << "invalid attribute combination";
  std::pair<Type, unsigned> typeInfo = inferMMATypeFromMNK(
      getEltype(), NVVM::MMAFrag::c, getM(), getN(), getK(), getContext());
  if (getArgs().size() != typeInfo.second)
    return emitOpError() << "expected " << typeInfo.second << " data operands";
  if (llvm::any_of(getArgs(), [&typeInfo](Value operands) {
        return operands.getType() != typeInfo.first;
      }))
    return emitOpError() << "expected data operands of type " << typeInfo.first;
  return success();
}

LogicalResult NVVM::WMMAMmaOp::verify() {
  if (NVVM::WMMAMmaOp::getIntrinsicID(getM(), getN(), getK(), getLayoutA(),
                                      getLayoutB(), getEltypeA(),
                                      getEltypeB()) == 0)
    return emitOpError() << "invalid attribute combination";
  std::pair<Type, unsigned> typeInfoA = inferMMATypeFromMNK(
      getEltypeA(), NVVM::MMAFrag::a, getM(), getN(), getK(), getContext());
  std::pair<Type, unsigned> typeInfoB = inferMMATypeFromMNK(
      getEltypeA(), NVVM::MMAFrag::b, getM(), getN(), getK(), getContext());
  std::pair<Type, unsigned> typeInfoC = inferMMATypeFromMNK(
      getEltypeB(), NVVM::MMAFrag::c, getM(), getN(), getK(), getContext());
  SmallVector<Type, 32> arguments;
  arguments.append(typeInfoA.second, typeInfoA.first);
  arguments.append(typeInfoB.second, typeInfoB.first);
  arguments.append(typeInfoC.second, typeInfoC.first);
  unsigned numArgs = arguments.size();
  if (getArgs().size() != numArgs)
    return emitOpError() << "expected " << numArgs << " arguments";
  for (unsigned i = 0; i < numArgs; i++) {
    if (getArgs()[i].getType() != arguments[i])
      return emitOpError() << "expected argument " << i << " to be of type "
                           << arguments[i];
  }
  Type dstType = LLVM::LLVMStructType::getLiteral(
      getContext(), SmallVector<Type, 8>(typeInfoC.second, typeInfoC.first));
  if (getType() != dstType)
    return emitOpError("expected destination type is a structure of ")
           << typeInfoC.second << " elements of type " << typeInfoC.first;
  return success();
}

LogicalResult NVVM::LdMatrixOp::verify() {
  unsigned addressSpace =
      llvm::cast<LLVM::LLVMPointerType>(getPtr().getType()).getAddressSpace();
  if (addressSpace != 3)
    return emitOpError("expected source pointer in memory space 3");

  if (getNum() != 1 && getNum() != 2 && getNum() != 4)
    return emitOpError("expected num attribute to be 1, 2 or 4");

  Type i32 = IntegerType::get(getContext(), 32);
  if (getNum() == 1 && getType() != i32)
    return emitOpError("expected destination type is i32");
  if (getNum() == 2 || getNum() == 4) {
    Type dstType = LLVM::LLVMStructType::getLiteral(
        getContext(), SmallVector<Type>(getNum(), i32));
    if (getType() != dstType)
      return emitOpError("expected destination type is a structure of ")
             << getNum() << " elements of type i32";
  }
  return success();
}

//===----------------------------------------------------------------------===//
// NVVMDialect initialization, type parsing, and registration.
//===----------------------------------------------------------------------===//

// TODO: This should be the llvm.nvvm dialect once this is supported.
void NVVMDialect::initialize() {
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/LLVMIR/NVVMOps.cpp.inc"
      >();
  addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/LLVMIR/NVVMOpsAttributes.cpp.inc"
      >();

  // Support unknown operations because not all NVVM operations are
  // registered.
  allowUnknownOperations();
}

LogicalResult NVVMDialect::verifyOperationAttribute(Operation *op,
                                                    NamedAttribute attr) {
  StringAttr attrName = attr.getName();
  // Kernel function attribute should be attached to functions.
  if (attrName == NVVMDialect::getKernelFuncAttrName()) {
    if (!isa<LLVM::LLVMFuncOp>(op)) {
      return op->emitError() << "'" << NVVMDialect::getKernelFuncAttrName()
                             << "' attribute attached to unexpected op";
    }
  }
  // If maxntid and reqntid exist, it must be an array with max 3 dim
  if (attrName == NVVMDialect::getMaxntidAttrName() ||
      attrName == NVVMDialect::getReqntidAttrName()) {
    auto values = llvm::dyn_cast<ArrayAttr>(attr.getValue());
    if (!values || values.empty() || values.size() > 3)
      return op->emitError()
             << "'" << attrName
             << "' attribute must be integer array with maximum 3 index";
    for (auto val : llvm::cast<ArrayAttr>(attr.getValue())) {
      if (!llvm::dyn_cast<IntegerAttr>(val))
        return op->emitError()
               << "'" << attrName
               << "' attribute must be integer array with maximum 3 index";
    }
  }
  // If minctasm and maxnreg exist, it must be an array with max 3 dim
  if (attrName == NVVMDialect::getMinctasmAttrName() ||
      attrName == NVVMDialect::getMaxnregAttrName()) {
    if (!llvm::dyn_cast<IntegerAttr>(attr.getValue()))
      return op->emitError()
             << "'" << attrName << "' attribute must be integer constant";
  }

  return success();
}

#define GET_OP_CLASSES
#include "mlir/Dialect/LLVMIR/NVVMOps.cpp.inc"

#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/LLVMIR/NVVMOpsAttributes.cpp.inc"