1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
|
//===- LinalgInterfaces.cpp - Linalg interfaces implementation ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
using namespace mlir;
using namespace mlir::linalg;
/// Include the definitions of the copy operation interface.
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.cpp.inc"
//===----------------------------------------------------------------------===//
// Interface utility functions
//===----------------------------------------------------------------------===//
bool linalg::detail::canOpOperandsBeDroppedImpl(
linalg::LinalgOp linalgOp, ArrayRef<OpOperand *> droppedOperands) {
SmallVector<AffineMap> indexingMaps;
for (auto &opOperand : linalgOp->getOpOperands()) {
if (llvm::is_contained(droppedOperands, &opOperand))
continue;
indexingMaps.push_back(linalgOp.getMatchingIndexingMap(&opOperand));
}
if (indexingMaps.empty()) {
// If there are no indexing maps, the operand can only be dropped
// if the op has no loops.
return linalgOp.getNumLoops() == 0;
}
return inversePermutation(concatAffineMaps(indexingMaps)) != AffineMap();
}
//===----------------------------------------------------------------------===//
// ContractionOpInterface implementation
//===----------------------------------------------------------------------===//
/// If the value is defined by a chain of unary side effect-free, go up the
/// use-def chain until the first value that isn't defined by such an op.
// TODO: relax to multi-operands with constants, which are technically unary ops
// as needed (e.g. add5).
static Value getSourceSkipUnary(Value value) {
Operation *op = value.getDefiningOp();
while (op && op->getNumOperands() == 1) {
auto iface = dyn_cast<MemoryEffectOpInterface>(op);
if (!iface || !iface.hasNoEffect())
break;
value = op->getOperand(0);
op = value.getDefiningOp();
}
return value;
}
bool mlir::linalg::detail::isContractionBody(
Block &block, function_ref<bool(Operation *, Operation *)> isaPair,
llvm::raw_ostream &errs) {
if (block.empty() || !block.back().mightHaveTrait<OpTrait::IsTerminator>()) {
errs << "no terminator in the block";
return false;
}
if (block.getNumArguments() != 3) {
errs << "expected block with 3 arguments";
return false;
}
Operation *terminator = block.getTerminator();
if (terminator->getNumOperands() != 1) {
errs << "expected terminator with 1 operand";
return false;
}
Value yielded = getSourceSkipUnary(terminator->getOperand(0));
Operation *reductionOp = yielded.getDefiningOp();
if (reductionOp->getNumResults() != 1 || reductionOp->getNumOperands() != 2) {
errs << "expected reduction op to be binary";
return false;
}
Value reductionLHS = getSourceSkipUnary(reductionOp->getOperand(0));
Value reductionRHS = getSourceSkipUnary(reductionOp->getOperand(1));
if (reductionLHS != block.getArgument(2) &&
reductionRHS != block.getArgument(2)) {
errs << "expected reduction to take block argument #2 as one of the "
"operands (modulo unary casts)";
return false;
}
Value contributed = getSourceSkipUnary(
isa<BlockArgument>(reductionLHS) ? reductionRHS : reductionLHS);
Operation *elementwiseOp = contributed.getDefiningOp();
if (elementwiseOp->getNumResults() != 1 ||
elementwiseOp->getNumOperands() != 2) {
errs << "expected elementwise op to be binary";
return false;
}
if (!isaPair(elementwiseOp, reductionOp)) {
errs << "expected reduction/elementwise op kind not satisfied";
return false;
}
Value elementwiseLHS = getSourceSkipUnary(elementwiseOp->getOperand(0));
Value elementwiseRHS = getSourceSkipUnary(elementwiseOp->getOperand(1));
if ((elementwiseLHS == block.getArgument(0) &&
elementwiseRHS == block.getArgument(1)) ||
(elementwiseLHS == block.getArgument(1) &&
elementwiseRHS == block.getArgument(0))) {
return true;
}
errs << "expected elementwise op to apply to block arguments (modulo unary "
"casts)";
return false;
}
/// Returns true if the two operations are of the kinds specified by a pair of
/// consecutive template arguments.
template <typename AddOpTy, typename MulOpTy, typename... Args>
static bool isPairTemplateImpl(Operation *add, Operation *mul) {
static_assert(sizeof...(Args) % 2 == 0,
"expected an even number of template arguments");
if (isa<AddOpTy>(add) && isa<MulOpTy>(mul))
return true;
if constexpr (sizeof...(Args) > 0)
return isPairTemplateImpl<Args...>(add, mul);
else
return false;
}
/// Returns true if the block is a body of a contraction with the kinds of
/// operations given pairwise by template arguments.
template <typename... Args>
static bool isContractionBody(Block &block) {
return linalg::detail::isContractionBody(block, &isPairTemplateImpl<Args...>);
}
/// Given a `linalgOp` and one of its `opOperand`, returns the positions of the
/// iterators of type `iter` that index the `opOperand` as a permutation.
/// This is useful to infer various subcomputations on a given `linalgOp`.
/// This is performed by looking up each result in the matching indexing map and
/// determining whether:
/// - It is a single AffineDimExpr.
/// - It is the only result involving this AffineDimExpr.
static DenseSet<int64_t>
findPermutationsIndexingOperand(LinalgOp linalgOp, OpOperand *opOperand,
utils::IteratorType iter) {
DenseSet<int64_t> res;
assert(linalgOp == opOperand->getOwner() && "expected linalgOp owner");
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand);
for (AffineExpr e : indexingMap.getResults()) {
if (auto d = e.dyn_cast<AffineDimExpr>()) {
if (linalgOp.getIteratorTypesArray()[d.getPosition()] == iter &&
llvm::count_if(indexingMap.getResults(), [d](AffineExpr e) {
return e.isFunctionOfDim(d.getPosition());
}) == 1)
res.insert(d.getPosition());
}
}
return res;
}
namespace {
auto par = utils::IteratorType::parallel;
auto red = utils::IteratorType::reduction;
} // namespace
/// Find 2 parallel (m and n) and 1 reduction (k) dimension candidates that form
/// a matmul subcomputation within `linalgOp`. These dimensions are such that:
/// 1. The m dimension is involved in an outer-product along LHS
/// (i.e. it is a permutation on RES and LHS and does not appear in RHS).
/// 2. The n dimension is involved in an outer-product along RHS
/// (i.e. it is a permutation on RES and RHS and does not appear in LHS).
/// 3. The k dimension appears as a permutation on LHS and RHS.
/// 4. m, n and k appear only once in any given indexing.
/// 5. Optional batch dimensions that appear in all operands are captured.
/// This allows e.g. detecting that some contraction is embedded within
/// `linalgOp` with some orthogonal heuristic.
FailureOr<ContractionDimensions>
mlir::linalg::inferContractionDims(LinalgOp linalgOp) {
if (linalgOp.getNumDpsInits() != 1 || linalgOp.getNumDpsInputs() != 2)
return failure();
DenseSet<int64_t> a = findPermutationsIndexingOperand(
linalgOp, linalgOp.getDpsInputOperand(0), par);
DenseSet<int64_t> b = findPermutationsIndexingOperand(
linalgOp, linalgOp.getDpsInputOperand(1), par);
DenseSet<int64_t> c = findPermutationsIndexingOperand(
linalgOp, linalgOp.getDpsInitOperand(0), par);
// A & C - B are the iterators involved in an outer-product along A (the LHS).
DenseSet<int64_t> ac = a;
llvm::set_intersect(ac, c);
llvm::set_subtract(ac, b);
// B & C - A are the iterators involved in an outer-product along B (the RHS).
DenseSet<int64_t> bc = b;
llvm::set_intersect(bc, c);
llvm::set_subtract(bc, a);
// A & B & C are the "batch" dimensions.
DenseSet<int64_t> batches = a;
llvm::set_intersect(batches, b);
llvm::set_intersect(batches, c);
// A & B red are the reduction dimensions.
DenseSet<int64_t> ra = findPermutationsIndexingOperand(
linalgOp, linalgOp.getDpsInputOperand(0), red);
DenseSet<int64_t> rb = findPermutationsIndexingOperand(
linalgOp, linalgOp.getDpsInputOperand(1), red);
llvm::set_intersect(ra, rb);
if (ac.empty() || bc.empty() || ra.empty())
return failure();
// Return each set in sorted order.
ContractionDimensions dimensions{
SmallVector<unsigned, 2>(batches.begin(), batches.end()),
SmallVector<unsigned, 2>(ac.begin(), ac.end()),
SmallVector<unsigned, 2>(bc.begin(), bc.end()),
SmallVector<unsigned, 2>(ra.begin(), ra.end())};
std::sort(dimensions.batch.begin(), dimensions.batch.end());
std::sort(dimensions.m.begin(), dimensions.m.end());
std::sort(dimensions.n.begin(), dimensions.n.end());
std::sort(dimensions.k.begin(), dimensions.k.end());
return dimensions;
}
namespace mlir::linalg::detail {
enum class MatchContractionResult {
Success = 0,
NotLinalgOp,
WrongNumOperands,
NoReduction,
NotProjectedPermutations,
NotAddMul
};
} // namespace mlir::linalg::detail
mlir::linalg::detail::MatchContractionResult
mlir::linalg::detail::isContractionInterfaceImpl(
Operation *op, mlir::linalg::ContractionDimensions *dimensions) {
auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
if (!linalgOp)
return MatchContractionResult::NotLinalgOp;
if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1)
return MatchContractionResult::WrongNumOperands;
auto mapRange = linalgOp.getIndexingMapsArray();
if (linalgOp.getNumReductionLoops() == 0)
return MatchContractionResult::NoReduction;
if (llvm::any_of(mapRange,
[](AffineMap m) { return !m.isProjectedPermutation(); }))
return MatchContractionResult::NotProjectedPermutations;
// TODO: more fields than add/mul.
// clang-format off
if (!::isContractionBody<
arith::MulFOp, arith::AddFOp,
arith::MulIOp, arith::AddIOp,
complex::MulOp, complex::AddOp,
arith::AndIOp, arith::OrIOp>(
*linalgOp.getBlock())) {
return MatchContractionResult::NotAddMul;
}
// clang-format on
if (dimensions) {
FailureOr<ContractionDimensions> res = inferContractionDims(linalgOp);
assert(succeeded(res) && "unexpected failure to infer contraction dims");
*dimensions = *res;
}
return MatchContractionResult::Success;
}
StringRef
mlir::linalg::detail::getMatchContractionMessage(MatchContractionResult res) {
switch (res) {
case MatchContractionResult::NotLinalgOp:
return "expected a LinalgOp";
case MatchContractionResult::WrongNumOperands:
return "expected op with 2 inputs and 1 output";
case MatchContractionResult::NoReduction:
return "expected at least 1 reduction";
case MatchContractionResult::NotProjectedPermutations:
return "expected indexing maps to be projected permutations";
case MatchContractionResult::NotAddMul:
return "expected add/mul op in the body";
case MatchContractionResult::Success:
return "";
}
llvm_unreachable("unhandled MatchContractionResult case");
}
bool mlir::linalg::isaContractionOpInterface(LinalgOp linalgOp) {
if (!linalgOp)
return false;
Operation *op = linalgOp.getOperation();
return isa<ContractionOpInterface>(op) ||
(mlir::linalg::detail::isContractionInterfaceImpl(op) ==
mlir::linalg::detail::MatchContractionResult::Success);
}
/// Verify that a LinalgOp `op` is a contraction.
/// A Linalg contraction is defined in general terms:
/// 1. Has 2 input and 1 output shapes.
/// 2. Has at least one reduction dimension.
/// 3. Has only projected permutation indexing maps.
/// 4. its body computes `u5(u1(c) + u2(u3(a) * u4(b)))` on some field
/// (AddOpType, MulOpType), where u1, u2, u3, u4 and u5 represent scalar unary
/// operations that may change the type (e.g. for mixed-precision).
/// As a consequence, when vectorization of such an op occurs, the only special
/// behavior is that the (unique) MulOpType is vectorized into a
/// `vector.contract`. All other ops are handled in a generic fashion.
/// In the future, we may wish to allow more input arguments and elementwise and
/// constant operations that do not involve the reduction dimension(s).
LogicalResult mlir::linalg::detail::verifyContractionInterface(Operation *op) {
auto res = isContractionInterfaceImpl(op);
if (res != MatchContractionResult::Success)
return op->emitError(getMatchContractionMessage(res));
return success();
}
//===----------------------------------------------------------------------===//
// ConvolutionOpInterface implementation
//===----------------------------------------------------------------------===//
/// Of the given two expressions returns one that is of type T (`lhs` gets
/// preference over `rhs`)
template <typename T>
static T getAffineExprOfType(AffineExpr lhs, AffineExpr rhs) {
return lhs.isa<T>() ? lhs.cast<T>()
: (rhs.isa<T>() ? rhs.cast<T>() : nullptr);
}
namespace {
/// Walk the indexing expressions for input of a convolution operation to verify
/// its of the right form, either
/// - AffineDimExpr
/// - AffineDimExpr (`*` (AffineSymbolExpr | AffineConstantExpr))?
/// (`+` AffineDimExpr (`*` (AffineSymbolExpr | AffineConstantExpr))?)*
///
/// classifies the AffineDimExpr as convolved dimensions or unconvolved
/// dimensions and verifies each dimension occurs only once.
struct ConvAccessExprWalker
: public AffineExprVisitor<ConvAccessExprWalker, LogicalResult> {
llvm::SmallDenseSet<unsigned> convolvedDims;
llvm::SmallDenseSet<unsigned> unConvolvedDims;
LogicalResult visitDimExpr(AffineDimExpr dimExpr) {
unsigned position = dimExpr.getPosition();
if (unConvolvedDims.count(position) || convolvedDims.count(position)) {
return failure();
}
unConvolvedDims.insert(position);
return success();
}
LogicalResult visitSymbolExpr(AffineSymbolExpr expr) { return failure(); }
LogicalResult visitConstantExpr(AffineConstantExpr expr) { return failure(); }
LogicalResult visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryExpr) {
// In pre-order visit, top level op has to be an add op.
if (binaryExpr.getKind() != AffineExprKind::Add)
return failure();
return success(succeeded(isDimExprOrMulExpr(binaryExpr.getLHS())) &&
succeeded(isDimExprOrMulExpr(binaryExpr.getRHS())));
}
LogicalResult isDimExprOrMulExpr(AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
unsigned dim = dimExpr.getPosition();
if (convolvedDims.count(dim) || unConvolvedDims.count(dim))
return failure();
convolvedDims.insert(dim);
return success();
}
if (auto symbolMulExpr = expr.dyn_cast<AffineBinaryOpExpr>()) {
if (symbolMulExpr.getKind() != AffineExprKind::Mul)
return failure();
auto lhsExpr = symbolMulExpr.getLHS();
auto rhsExpr = symbolMulExpr.getRHS();
// Check for symbol expression.
AffineExpr mulExpr =
getAffineExprOfType<AffineSymbolExpr>(lhsExpr, rhsExpr);
// If there was no symbol expr, check for constant expression.
if (!mulExpr) {
mulExpr = getAffineExprOfType<AffineConstantExpr>(lhsExpr, rhsExpr);
}
auto dimExpr = getAffineExprOfType<AffineDimExpr>(lhsExpr, rhsExpr);
if (!mulExpr || !dimExpr)
return failure();
unsigned dim = dimExpr.getPosition();
if (convolvedDims.count(dim) || unConvolvedDims.count(dim))
return failure();
convolvedDims.insert(dim);
return success();
}
return failure();
}
};
} // namespace
static llvm::SmallDenseSet<unsigned> getPreservedDims(AffineMap map) {
assert(map.isProjectedPermutation() &&
"expected map to have projected permutations");
llvm::SmallDenseSet<unsigned> preservedDims;
for (auto expr : map.getResults())
preservedDims.insert(expr.cast<AffineDimExpr>().getPosition());
return preservedDims;
}
namespace mlir::linalg::detail {
enum class MatchConvolutionResult {
Success = 0,
NotLinalgOp,
WrongNumOperands,
WrongInputIndexingMap,
NotProjectedPermutations,
NonConvolutionLoop,
OutputDimsNotParallel,
NonOutputDimNotReduction
};
} // namespace mlir::linalg::detail
mlir::linalg::detail::MatchConvolutionResult
mlir::linalg::detail::isConvolutionInterfaceImpl(
Operation *op, ConvolutionDimensions *dimensions) {
auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
if (!linalgOp)
return MatchConvolutionResult::NotLinalgOp;
if (linalgOp.getNumDpsInputs() < 2 || linalgOp.getNumDpsInits() != 1)
return MatchConvolutionResult::WrongNumOperands;
auto indexingMaps = linalgOp.getIndexingMapsArray();
// Check the input indexing map has the right form.
ConvAccessExprWalker inputExprWalker;
if (llvm::any_of(indexingMaps[0].getResults(),
[&inputExprWalker](AffineExpr expr) {
return failed(inputExprWalker.visit(expr));
})) {
return MatchConvolutionResult::WrongInputIndexingMap;
}
// Filter and output maps must be projected permutation.
if (!indexingMaps[1].isProjectedPermutation() ||
!indexingMaps.back().isProjectedPermutation())
return MatchConvolutionResult::NotProjectedPermutations;
auto iteratorTypes = linalgOp.getIteratorTypesArray();
llvm::SmallDenseSet<unsigned> outputDims =
getPreservedDims(indexingMaps.back());
llvm::SmallDenseSet<unsigned> filterDims = getPreservedDims(indexingMaps[1]);
// Make sure all loops are characterized as one of:
// - Batch loop : present in output, as non-convolved in input, not present in
// filter.
// - Output image dimension : present in output, convolved dims in input, not
// present in filter.
// - Output channel dimension : present in output, not present in input,
// present in filter.
// - Filter loop dimension : present in filter, convolved in input, not
// present in output.
// - Input channel dimension : unconvolved in input, not present in output,
// present in filter.
// - Depth multiplier : unconvolved in input, present in output, present in
// filter.
llvm::SmallDenseSet<unsigned> allLoopDims;
for (auto outputExpr : indexingMaps.back().getResults()) {
unsigned outputDim = outputExpr.cast<AffineDimExpr>().getPosition();
if (inputExprWalker.unConvolvedDims.count(outputDim) &&
!filterDims.count(outputDim)) {
// Batch dimension.
if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
return MatchConvolutionResult::OutputDimsNotParallel;
allLoopDims.insert(outputDim);
if (dimensions)
dimensions->batch.push_back(outputDim);
continue;
}
if (inputExprWalker.convolvedDims.count(outputDim) &&
!filterDims.count(outputDim)) {
// Output image Loop dimension.
if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
return MatchConvolutionResult::OutputDimsNotParallel;
allLoopDims.insert(outputDim);
if (dimensions)
dimensions->outputImage.push_back(outputDim);
continue;
}
if (!inputExprWalker.convolvedDims.count(outputDim) &&
!inputExprWalker.unConvolvedDims.count(outputDim) &&
filterDims.count(outputDim)) {
// Output channel dimension.
if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
return MatchConvolutionResult::OutputDimsNotParallel;
allLoopDims.insert(outputDim);
if (dimensions)
dimensions->outputChannel.push_back(outputDim);
continue;
}
if (inputExprWalker.unConvolvedDims.count(outputDim) &&
filterDims.count(outputDim)) {
// Depth multiplier.
if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
return MatchConvolutionResult::OutputDimsNotParallel;
allLoopDims.insert(outputDim);
if (dimensions)
dimensions->depth.push_back(outputDim);
continue;
}
return MatchConvolutionResult::NonConvolutionLoop;
}
for (auto filterExpr : indexingMaps[1].getResults()) {
unsigned filterDim = filterExpr.cast<AffineDimExpr>().getPosition();
if (outputDims.count(filterDim) &&
!inputExprWalker.unConvolvedDims.count(filterDim) &&
!inputExprWalker.convolvedDims.count(filterDim)) {
// Output channel dimension. This is already seen, continue;
assert((!dimensions ||
llvm::is_contained(dimensions->outputChannel, filterDim)) &&
"expected output channel to have been found from output dims");
continue;
}
if (inputExprWalker.convolvedDims.count(filterDim) &&
!outputDims.count(filterDim)) {
// Filter loop dimension.
if (iteratorTypes[filterDim] != utils::IteratorType::reduction)
return MatchConvolutionResult::NonOutputDimNotReduction;
if (allLoopDims.count(filterDim))
return MatchConvolutionResult::NonConvolutionLoop;
allLoopDims.insert(filterDim);
if (dimensions)
dimensions->filterLoop.push_back(filterDim);
continue;
}
if (inputExprWalker.unConvolvedDims.count(filterDim) &&
!outputDims.count(filterDim)) {
// Input channel dimension.
if (iteratorTypes[filterDim] != utils::IteratorType::reduction)
return MatchConvolutionResult::NonOutputDimNotReduction;
if (allLoopDims.count(filterDim))
return MatchConvolutionResult::NonConvolutionLoop;
allLoopDims.insert(filterDim);
if (dimensions)
dimensions->inputChannel.push_back(filterDim);
continue;
}
if (inputExprWalker.unConvolvedDims.count(filterDim) &&
outputDims.count(filterDim)) {
// Depthwise loop. Already seen.
assert(
(!dimensions || llvm::is_contained(dimensions->depth, filterDim)) &&
"expected depthwise dimension to have been found from output dims");
continue;
}
return MatchConvolutionResult::NonConvolutionLoop;
}
// All loops must be covered now.
if (allLoopDims.size() != linalgOp.getNumLoops())
return MatchConvolutionResult::NonConvolutionLoop;
if (dimensions) {
assert(dimensions->batch.size() + dimensions->outputImage.size() +
dimensions->outputChannel.size() +
dimensions->filterLoop.size() +
dimensions->inputChannel.size() + dimensions->depth.size() ==
linalgOp.getNumLoops() &&
"expected all loops to be classified");
}
return MatchConvolutionResult::Success;
}
StringRef
mlir::linalg::detail::getMatchConvolutionMessage(MatchConvolutionResult res) {
switch (res) {
case MatchConvolutionResult::NotLinalgOp:
return "expected a LinalgOp";
case MatchConvolutionResult::WrongNumOperands:
return "expected op with 2 inputs and 1 output";
case MatchConvolutionResult::WrongInputIndexingMap:
return "unexpected input index map for convolutions";
case MatchConvolutionResult::NotProjectedPermutations:
return "expected output/filter indexing maps to be projected permutations";
case MatchConvolutionResult::NonConvolutionLoop:
return "unexpected loop dimension for convolution op";
case MatchConvolutionResult::OutputDimsNotParallel:
return "expected all iterators used to access outputs to be parallel";
case MatchConvolutionResult::NonOutputDimNotReduction:
return "expected all iterators not used to access outputs to be reduction";
case MatchConvolutionResult::Success:
return "";
}
llvm_unreachable("unhandled MatchConvolutionResult case");
}
bool mlir::linalg::isaConvolutionOpInterface(LinalgOp linalgOp) {
return linalg::detail::isConvolutionInterfaceImpl(linalgOp.getOperation()) ==
linalg::detail::MatchConvolutionResult::Success;
}
LogicalResult mlir::linalg::detail::verifyConvolutionInterface(Operation *op) {
MatchConvolutionResult res = isConvolutionInterfaceImpl(op);
if (res != MatchConvolutionResult::Success)
return op->emitError(getMatchConvolutionMessage(res));
return success();
}
//===----------------------------------------------------------------------===//
// FillOpInterface implementation
//===----------------------------------------------------------------------===//
enum class MatchFillResult {
Success = 0,
NotLinalgOp,
WrongNumOperands,
NotScalarInput
};
static MatchFillResult isFillInterfaceImpl(Operation *op) {
auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
if (!linalgOp)
return MatchFillResult::NotLinalgOp;
if (linalgOp.getNumDpsInputs() != 1 || linalgOp.getNumDpsInits() != 1)
return MatchFillResult::WrongNumOperands;
OpOperand *value = linalgOp.getDpsInputOperand(0);
if (!linalgOp.isScalar(value))
return MatchFillResult::NotScalarInput;
return MatchFillResult::Success;
}
LogicalResult mlir::linalg::detail::verifyFillInterface(Operation *op) {
auto res = isFillInterfaceImpl(op);
if (res == MatchFillResult::NotLinalgOp)
return op->emitError("expected a LinalgOp");
if (res == MatchFillResult::WrongNumOperands)
return op->emitError("expected op with 1 input and 1 output");
if (res == MatchFillResult::NotScalarInput)
return op->emitError("expected op with scalar input");
return success();
}
//===----------------------------------------------------------------------===//
// StructuredOpInterface implementation
//===----------------------------------------------------------------------===//
SmallVector<OpFoldResult> LinalgOp::createFlatListOfOperandDims(OpBuilder &b,
Location loc) {
SmallVector<OpFoldResult> res;
for (OpOperand &opOperand : getOperation()->getOpOperands()) {
for (int64_t i = 0, e = getRank(&opOperand); i < e; ++i)
res.push_back(createFoldedDimOp(b, loc, opOperand.get(), i));
}
return res;
}
SmallVector<int64_t, 4> LinalgOp::createFlatListOfOperandStaticDims() {
SmallVector<int64_t, 4> res;
assert(!hasDynamicShape() && "expected operands to have static shapes");
for (OpOperand &opOperand : getOperation()->getOpOperands())
llvm::append_range(res, getShape(&opOperand));
return res;
}
SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
AffineMap map = getLoopsToShapesMap();
unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
auto viewSizes = createFlatListOfOperandDims(b, loc);
SmallVector<Range, 4> res(numDims);
for (unsigned idx = 0; idx < numRes; ++idx) {
auto result = map.getResult(idx);
if (auto d = result.dyn_cast<AffineDimExpr>()) {
if (res[d.getPosition()].offset)
continue;
res[d.getPosition()] =
Range{b.getIndexAttr(0), viewSizes[idx], b.getIndexAttr(1)};
}
}
return res;
}
SmallVector<int64_t, 4> LinalgOp::computeStaticLoopSizes() {
AffineMap map = getLoopsToShapesMap();
unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
SmallVector<int64_t, 4> allShapeSizes = createFlatListOfOperandStaticDims();
SmallVector<int64_t, 4> res(numDims, 0);
for (unsigned idx = 0; idx < numRes; ++idx) {
auto result = map.getResult(idx);
if (auto d = result.dyn_cast<AffineDimExpr>())
res[d.getPosition()] = allShapeSizes[idx];
}
return res;
}
/// Visitor to check if any of the given set of positions from AffineDimExprs
/// are used within an AffineExpr.
struct HasAffineDimExprVisitor
: public AffineExprVisitor<HasAffineDimExprVisitor, bool> {
HasAffineDimExprVisitor(llvm::SmallBitVector positions)
: positions(std::move(positions)) {}
bool visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryOpExpr) {
return visit(binaryOpExpr.getLHS()) || visit(binaryOpExpr.getRHS());
}
bool visitDimExpr(AffineDimExpr dimExpr) {
return positions.test(dimExpr.getPosition());
}
bool visitConstantExpr(AffineConstantExpr constExpr) { return false; }
bool visitSymbolExpr(AffineSymbolExpr symbolExpr) { return false; }
private:
llvm::SmallBitVector positions;
};
static std::pair<int64_t, int64_t>
getResultsPositionInLoopsToShapeMap(LinalgOp &op) {
int64_t inputRankSum = 0;
int64_t outputRankSum = 0;
for (OpOperand *input : op.getDpsInputOperands())
inputRankSum += op.getRank(input);
for (OpOperand *output : op.getDpsInitOperands())
outputRankSum += op.getRank(output);
return {inputRankSum, inputRankSum + outputRankSum};
}
LogicalResult
LinalgOp::reifyResultShapes(OpBuilder &b,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
// An example that helps understand the logic below.
// Consider the following expression O(i+j, j) += A(i,k) * B(k, j)
// We want to express the shape of dim 0 of O in terms of shape of the inputs.
// This is achieved as follows.
// loopsToShapesMap = (d0, d1, d2) -> (d0, d2, d2, d1, d0 + d1, d1)
// subMapOfResultShapes = (d0, d1, d2) -> (d0 + d1, d1)
// shapesToLoopsMap = (d0, d2, d2, d3, d4, d5) -> (d0, d3, d2)
// resultShapesFromInputShapes = subMapOfResultDim.compose(shapesToLoopMap)
// = (d0, d1, d2, d3, d4, d5) -> (d0 + d1, d1)
AffineMap loopsToShapesMap = getLoopsToShapesMap();
// Find the position in the above map that represents the shape of the
// result:dim being inferred.
auto resultShapesSubMapPos = getResultsPositionInLoopsToShapeMap(*this);
/// From loopsToShapesMap extract the submap that represents the shape of the
/// (resultIdx, dim) needed.
AffineMap loopToResultsShapeMap = loopsToShapesMap.getSliceMap(
resultShapesSubMapPos.first,
resultShapesSubMapPos.second - resultShapesSubMapPos.first);
AffineMap resultShapesFromInputShapesMap =
loopToResultsShapeMap.compose(getShapesToLoopsMap());
// Check that the result dim map does not contain the positions corresponding
// to the outputs.
llvm::SmallBitVector outputDims(resultShapesFromInputShapesMap.getNumDims());
outputDims.set(resultShapesSubMapPos.first, resultShapesSubMapPos.second);
HasAffineDimExprVisitor checkDimExpr(std::move(outputDims));
Location loc = getOperation()->getLoc();
IRRewriter rewriter(b);
SmallVector<OpFoldResult> allResultDimValues =
affine::makeComposedFoldedMultiResultAffineApply(
rewriter, loc, resultShapesFromInputShapesMap,
createFlatListOfOperandDims(b, loc));
int64_t pos = 0;
ArrayRef<AffineExpr> shapeExprs = resultShapesFromInputShapesMap.getResults();
for (OpOperand *opOperand : getDpsInitOperands()) {
SmallVector<OpFoldResult> shapes;
for (int64_t dim : llvm::seq<int64_t>(0, getRank(opOperand))) {
auto shapedType = llvm::cast<ShapedType>(opOperand->get().getType());
if (!shapedType.isDynamicDim(dim)) {
// Static dim: Return IntegerAttr.
shapes.push_back(b.getIndexAttr(shapedType.getDimSize(dim)));
} else {
// Dynamic dim: Return Value.
OpFoldResult ofr =
checkDimExpr.visit(shapeExprs[pos])
? createOrFoldDimOp(b, loc, opOperand->get(), dim)
: allResultDimValues[pos];
shapes.push_back(getValueOrCreateConstantIndexOp(b, loc, ofr));
}
pos++;
}
reifiedReturnShapes.emplace_back(std::move(shapes));
}
return success();
}
/// Return the index in the indexingMaps vector that corresponds to this
/// `opOperand`.
int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
auto operandNumber = opOperand->getOperandNumber();
auto dpsIface = cast<DestinationStyleOpInterface>(*this->getOperation());
if (!dpsIface.isDpsInput(opOperand))
return operandNumber;
auto [start, end] = dpsIface.getDpsInitsPositionRange();
assert(!dpsIface.isDpsInit(opOperand));
// Account for potential inputs that are not DPS and may not appear in
// `indexingMaps`.
return cast<DestinationStyleOpInterface>(*this->getOperation())
.getNumDpsInputs() +
operandNumber - start;
}
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
// Before checking indexing maps, we need to make sure the attributes
// referenced by it are valid.
if (linalgOp.hasDynamicIndexingMaps())
if (failed(linalgOp.verifyIndexingMapRequiredAttributes()))
return failure();
// All input/output operands must be indexed.
if (static_cast<int64_t>(linalgOp.getIndexingMapsArray().size()) !=
linalgOp->getNumOperands())
return op->emitOpError("expected the number of indexing_map (")
<< linalgOp.getIndexingMapsArray().size()
<< ") to be equal to the number of input/output operands ("
<< linalgOp->getNumOperands() << ")";
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
// Symbols disallowed.
if (indexingMap.getNumSymbols() != 0)
return op->emitOpError("unexpected symbols in indexing_map #")
<< opOperand.getOperandNumber();
// Domain must be consistent.
unsigned numLoops = linalgOp.getNumLoops();
if (indexingMap.getNumDims() != numLoops)
return op->emitOpError("expected indexing_map #")
<< opOperand.getOperandNumber() << " to have " << numLoops
<< " dim(s) to match the number of loops";
int64_t rank = linalgOp.getRank(&opOperand);
if (indexingMap.getNumResults() != rank)
return op->emitOpError("expected operand rank (")
<< rank << ") to match the result rank of indexing_map #"
<< opOperand.getOperandNumber() << " ("
<< indexingMap.getNumResults() << ")";
}
SmallVector<unsigned> redDims;
linalgOp.getReductionDims(redDims);
if (!linalgOp.getShapesToLoopsMap())
return op->emitOpError("expected the shape-to-loops map to be non-null");
// Check if given shapes match to inferred shapes.
SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
// Verify only static cases since we can't get exact dimension sizes and loop
// ranges for dynamic cases in this stage.
if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
for (int64_t &range : endLoopRangeValues)
range -= 1;
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
SmallVector<int64_t, 4> startIndices =
indexingMap.compose(startLoopRangeValues);
SmallVector<int64_t, 4> endIndices =
indexingMap.compose(endLoopRangeValues);
ArrayRef<int64_t> shape = linalgOp.getShape(&opOperand);
for (auto dim : llvm::seq<int64_t>(0, shape.size())) {
// Ignore dynamic dimension or the case that the dimension size is 0
if (ShapedType::isDynamic(shape[dim]) || shape[dim] == 0)
continue;
// The first index or last index should be the maximum or the minimum in
// the inferred index ranges since the range is increasing or
// decreasing. The size of dimensions of input/output operands and the
// maximum value + 1 in the inferred range should be the same. But, for
// now we check if the inferred ranges are in boundary of input/output
// operands' size or not in case that Affine Expressions are complicated
// such as d0 * 3
// + d1 since it is not easy to handle the issues.
// Found the case that this solution can't check, for example, (d0, d1)
// -> (d1 - d0)
int64_t inferredDimSize =
std::max(startIndices[dim], endIndices[dim]) + 1;
if (std::min(startIndices[dim], endIndices[dim]) < 0) {
std::string mapStr;
{
llvm::raw_string_ostream os(mapStr);
os << indexingMap;
}
return op->emitOpError(
"unexpected result less than 0 at expression #")
<< dim << " in " << mapStr;
}
if (indexingMap.getResult(dim).dyn_cast<AffineDimExpr>()) {
if (inferredDimSize != shape[dim]) {
return op->emitOpError("inferred input/output operand #")
<< opOperand.getOperandNumber() << " has shape's dimension #"
<< dim << " to be " << inferredDimSize << ", but found "
<< shape[dim];
}
} else {
if (inferredDimSize > shape[dim]) {
return op->emitOpError("inferred input/output operand #")
<< opOperand.getOperandNumber() << " has shape's dimension #"
<< dim << " to be greater than or equal to "
<< inferredDimSize << ", but found " << shape[dim];
}
}
}
}
}
// Check the region has exactly one block.
if (linalgOp->getNumRegions() != 1 ||
!llvm::hasSingleElement(linalgOp->getRegion(0)))
return op->emitOpError("expects to have 1 region with 1 block");
// Simplifying assumption: bbargs match 1-1 with shape operands elemental
// types.
// TODO: once ranked shape types are plugged in, we may want to drop the
// corresponding bbargs, that can never be read from. This will be subject to
// consistency discussions (i.e. what to do with output tensors whose bbarg is
// not used).
Block &block = linalgOp->getRegion(0).front();
if (linalgOp.getOpOperandsMatchingBBargs().size() != block.getNumArguments())
return op->emitOpError("expected as many non-induction variable region "
"arguments as the number of input/output operands");
for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) {
Type elementType = getElementTypeOrSelf(opOperand->get());
Type argType = block.getArgument(opOperand->getOperandNumber()).getType();
if (elementType != argType)
return op->emitOpError("expected type of bb argument #")
<< opOperand->getOperandNumber() << " (" << argType << ")"
<< " to match element or self type of the corresponding operand ("
<< elementType << ")";
}
return success();
}
|