1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
|
//===- LinalgOps.cpp - Implementation of the linalg operations ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Linalg operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/AsmParser/AsmParser.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace mlir;
using namespace mlir::linalg;
/// Return a `memref.dim` or `tensor.dim` for the shape of `v` at `dim`.
static OpFoldResult getDimValue(OpBuilder &builder, Location loc, Value v,
int64_t dim) {
auto type = cast<ShapedType>(v.getType());
if (!type.isDynamicDim(dim))
return builder.getIndexAttr(type.getDimSize(dim));
return getAsOpFoldResult(
TypeSwitch<Type, Value>(v.getType())
.Case<RankedTensorType>([&](RankedTensorType t) -> Value {
return builder.create<tensor::DimOp>(loc, v, dim);
})
.Case<MemRefType>([&](MemRefType t) -> Value {
return builder.create<memref::DimOp>(loc, v, dim);
}));
}
/// Returns a memref.subview or a tensor.extract_slice based on the type of the
/// `source`.
static Value getSlice(OpBuilder &b, Location loc, Value source,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides) {
return TypeSwitch<Type, Value>(source.getType())
.Case<RankedTensorType>([&](RankedTensorType t) -> Value {
return b.create<tensor::ExtractSliceOp>(loc, source, offsets, sizes,
strides);
})
.Case<MemRefType>([&](MemRefType type) -> Value {
return b.create<memref::SubViewOp>(loc, source, offsets, sizes,
strides);
})
.Default([&](Type t) { return nullptr; });
}
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
Value linalg::createOrFoldDimOp(OpBuilder &b, Location loc, Value source,
int64_t dim) {
if (llvm::isa<UnrankedMemRefType, MemRefType>(source.getType()))
return b.createOrFold<memref::DimOp>(loc, source, dim);
if (llvm::isa<UnrankedTensorType, RankedTensorType>(source.getType()))
return b.createOrFold<tensor::DimOp>(loc, source, dim);
llvm_unreachable("Expected MemRefType or TensorType");
}
OpFoldResult linalg::createFoldedDimOp(OpBuilder &b, Location loc, Value source,
int64_t dim) {
auto shapedType = llvm::cast<ShapedType>(source.getType());
if (!shapedType.hasRank() || shapedType.isDynamicDim(dim))
return createOrFoldDimOp(b, loc, source, dim);
return b.getIndexAttr(shapedType.getDimSize(dim));
}
//===----------------------------------------------------------------------===//
// Support for named Linalg ops defined in ods-gen.
//===----------------------------------------------------------------------===//
using RegionBuilderFn = llvm::function_ref<void(ImplicitLocOpBuilder &, Block &,
ArrayRef<NamedAttribute>)>;
/// Fills the region of a structured operation using the provided
/// `regionBuilder`. The method is used by both named structured ops created by
/// ods-gen and by manually defined C++ ops. It is called by both builders and
/// parsers and creates a block with arguments corresponding to the elemental
/// types of `inputTypes` and `outputTypes`. All output types are asserted to be
/// ShapedType.
static void fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion,
TypeRange inputTypes, TypeRange outputTypes,
ArrayRef<NamedAttribute> attrs,
RegionBuilderFn regionBuilder) {
assert(llvm::all_of(outputTypes,
[](Type t) { return llvm::isa<ShapedType>(t); }));
// TODO: atm all operands go through getElementTypeOrSelf,
// reconsider when we have evidence we need to.
SmallVector<Type, 8> argTypes;
SmallVector<Location, 8> argLocs;
for (auto containers : {inputTypes, outputTypes}) {
for (auto t : containers) {
argTypes.push_back(getElementTypeOrSelf(t));
// TODO: Pass in a proper location here.
argLocs.push_back(opBuilder.getUnknownLoc());
}
}
// RAII.
OpBuilder::InsertionGuard guard(opBuilder);
Block *body =
opBuilder.createBlock(®ion, /*insertPt=*/{}, argTypes, argLocs);
opBuilder.setInsertionPointToStart(body);
ImplicitLocOpBuilder b(opBuilder.getUnknownLoc(), opBuilder);
regionBuilder(b, *body, attrs);
// indexing_maps is an auto-generated method.
// iterator_types is an auto-generated method.
}
/// Creates a structured operation given `inputs`, `outputs`, and `attributes`.
/// The result types are derived automatically if `resultTensorTypes` is none.
/// The body of the operation is filled using `regionBuilder`. All ods-gen
/// created structured operations use the method to implement their builders.
static void buildStructuredOp(OpBuilder &b, OperationState &state,
std::optional<TypeRange> resultTensorTypes,
ValueRange inputs, ValueRange outputs,
ArrayRef<NamedAttribute> attributes,
RegionBuilderFn regionBuilder) {
// Derive the result types if needed.
SmallVector<Type> derivedResultTypes =
resultTensorTypes.value_or(TypeRange());
if (!resultTensorTypes)
copy_if(outputs.getTypes(), std::back_inserter(derivedResultTypes),
[](Type type) { return llvm::isa<RankedTensorType>(type); });
state.addOperands(inputs);
state.addOperands(outputs);
state.addTypes(derivedResultTypes);
state.addAttributes(attributes);
state.addAttribute(
"operandSegmentSizes",
b.getDenseI32ArrayAttr({static_cast<int32_t>(inputs.size()),
static_cast<int32_t>(outputs.size())}));
// Create and fill the region of the structured operation.
Region ®ion = *state.addRegion();
fillStructuredOpRegion(b, region, TypeRange(inputs), TypeRange(outputs),
state.attributes.getAttrs(), regionBuilder);
}
/// Common parsing used for both named structured ops created by ods-gen and by
/// manually defined C++ ops. Does not handle regions.
static ParseResult
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
SmallVectorImpl<Type> &inputTypes,
SmallVectorImpl<Type> &outputTypes,
bool addOperandSegmentSizes = true) {
SMLoc attrsLoc, inputsOperandsLoc, outputsOperandsLoc;
SmallVector<OpAsmParser::UnresolvedOperand, 4> inputsOperands,
outputsOperands;
if (succeeded(parser.parseOptionalLess())) {
if (parser.parseAttribute(result.propertiesAttr) || parser.parseGreater())
return failure();
}
attrsLoc = parser.getCurrentLocation();
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
if (succeeded(parser.parseOptionalKeyword("ins"))) {
if (parser.parseLParen())
return failure();
inputsOperandsLoc = parser.getCurrentLocation();
if (parser.parseOperandList(inputsOperands) ||
parser.parseColonTypeList(inputTypes) || parser.parseRParen())
return failure();
}
if (succeeded(parser.parseOptionalKeyword("outs"))) {
outputsOperandsLoc = parser.getCurrentLocation();
if (parser.parseLParen() || parser.parseOperandList(outputsOperands) ||
parser.parseColonTypeList(outputTypes) || parser.parseRParen())
return failure();
}
if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
result.operands) ||
parser.resolveOperands(outputsOperands, outputTypes, outputsOperandsLoc,
result.operands))
return failure();
if (addOperandSegmentSizes) {
// This is a bit complex because we're trying to be backward compatible with
// operation syntax that mix the inherent attributes and the discardable
// ones in the same dictionary. If the properties are used, we append the
// operandSegmentSizes there directly. Otherwise we append it to the
// discardable attributes dictionary where it is handled by the generic
// Operation::create(...) method.
if (result.propertiesAttr) {
NamedAttrList attrs = llvm::cast<DictionaryAttr>(result.propertiesAttr);
attrs.append("operandSegmentSizes",
parser.getBuilder().getDenseI32ArrayAttr(
{static_cast<int32_t>(inputsOperands.size()),
static_cast<int32_t>(outputsOperands.size())}));
result.propertiesAttr = attrs.getDictionary(parser.getContext());
} else {
result.addAttribute("operandSegmentSizes",
parser.getBuilder().getDenseI32ArrayAttr(
{static_cast<int32_t>(inputsOperands.size()),
static_cast<int32_t>(outputsOperands.size())}));
}
}
if (!result.propertiesAttr) {
std::optional<RegisteredOperationName> info =
result.name.getRegisteredInfo();
if (info) {
if (failed(info->verifyInherentAttrs(result.attributes, [&]() {
return parser.emitError(attrsLoc)
<< "'" << result.name.getStringRef() << "' op ";
})))
return failure();
}
}
return success();
}
static void printCommonStructuredOpParts(OpAsmPrinter &p, ValueRange inputs,
ValueRange outputs) {
if (!inputs.empty())
p << " ins(" << inputs << " : " << inputs.getTypes() << ")";
if (!outputs.empty())
p << " outs(" << outputs << " : " << outputs.getTypes() << ")";
}
//===----------------------------------------------------------------------===//
// Specific parsing and printing for named structured ops created by ods-gen.
//===----------------------------------------------------------------------===//
static ParseResult parseNamedStructuredOpRegion(
OpAsmParser &parser, Region ®ion, unsigned numRegionArgs,
TypeRange inputTypes, TypeRange outputTypes, ArrayRef<NamedAttribute> attrs,
RegionBuilderFn regionBuilder) {
if (numRegionArgs != inputTypes.size() + outputTypes.size()) {
return parser.emitError(
parser.getCurrentLocation(),
llvm::formatv("[parseNamedStructuredOpRegion] ods-gen generated "
"region expects {0} args, got {1}",
numRegionArgs, inputTypes.size() + outputTypes.size()));
}
OpBuilder opBuilder(parser.getContext());
fillStructuredOpRegion(opBuilder, region, inputTypes, outputTypes, attrs,
regionBuilder);
return success();
}
static ParseResult
parseNamedStructuredOpResults(OpAsmParser &parser,
SmallVectorImpl<Type> &resultTypes) {
if (parser.parseOptionalArrowTypeList(resultTypes))
return failure();
return success();
}
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
OperationState &result,
unsigned numRegionArgs,
RegionBuilderFn regionBuilder) {
// TODO: Enable when ods-gen supports captures.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
// TODO: consider merging results parsing into region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
return failure();
result.addTypes(outputTensorsTypes);
std::unique_ptr<Region> region = std::make_unique<Region>();
if (parseNamedStructuredOpRegion(parser, *region, numRegionArgs, inputTypes,
outputTypes, result.attributes.getAttrs(),
regionBuilder))
return failure();
result.addRegion(std::move(region));
return success();
}
static void printNamedStructuredOpResults(OpAsmPrinter &p,
TypeRange resultTypes) {
if (resultTypes.empty())
return;
p.printOptionalArrowTypeList(resultTypes);
}
static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op,
ValueRange inputs, ValueRange outputs) {
p.printOptionalAttrDict(
op->getAttrs(),
/*elidedAttrs=*/{"operandSegmentSizes",
// See generated code in
// LinalgNamedStructuredOps.yamlgen.cpp.inc
"linalg.memoized_indexing_maps"});
// Printing is shared with generic ops, except for the region and
// attributes.
printCommonStructuredOpParts(p, inputs, outputs);
// Results printing.
printNamedStructuredOpResults(p, op->getResultTypes());
// Region is elided.
}
//===----------------------------------------------------------------------===//
// Region builder helper.
// TODO: Move this to a utility library.
// The public methods on this class are referenced directly from generated code.
// Helper build the unary, binary, and type conversion functions defined by the
// DSL. See LinalgNamedStructuredOps.yamlgen.cpp.inc for the code that uses this
// class.
//
// Implementations of the math functions must be polymorphic over numeric types,
// internally performing necessary casts. If the function application makes no
// sense, then the only recourse is to assert and return nullptr. This can be
// extended later if it becomes possible to fail construction of the region. The
// invariant should be enforced at a higher level.
//
// TODO: These helpers are currently type polymorphic over the class of integer
// and floating point types, but they will not internally cast within bit
// widths of a class (mixed precision such as i8->i32) or across classes
// (i.e. mixed float and integer). Many such combinations are ambiguous or need
// to be handled with care and work is being considered to extend the op
// language to make such cases explicit. In the mean-time, violating this will
// fail verification, which is deemed acceptable.
//===----------------------------------------------------------------------===//
namespace {
class RegionBuilderHelper {
public:
RegionBuilderHelper(MLIRContext *context, Block &block)
: context(context), block(block) {}
// Build the unary functions defined by OpDSL.
Value buildUnaryFn(UnaryFn unaryFn, Value arg) {
if (!isFloatingPoint(arg))
llvm_unreachable("unsupported non numeric type");
OpBuilder builder = getBuilder();
switch (unaryFn) {
case UnaryFn::exp:
return builder.create<math::ExpOp>(arg.getLoc(), arg);
case UnaryFn::log:
return builder.create<math::LogOp>(arg.getLoc(), arg);
case UnaryFn::abs:
return builder.create<math::AbsFOp>(arg.getLoc(), arg);
case UnaryFn::ceil:
return builder.create<math::CeilOp>(arg.getLoc(), arg);
case UnaryFn::floor:
return builder.create<math::FloorOp>(arg.getLoc(), arg);
case UnaryFn::negf:
return builder.create<arith::NegFOp>(arg.getLoc(), arg);
}
llvm_unreachable("unsupported unary function");
}
// Build the binary functions defined by OpDSL.
Value buildBinaryFn(BinaryFn binaryFn, Value arg0, Value arg1) {
bool allComplex = isComplex(arg0) && isComplex(arg1);
bool allFloatingPoint = isFloatingPoint(arg0) && isFloatingPoint(arg1);
bool allInteger = isInteger(arg0) && isInteger(arg1);
bool allBool = allInteger && arg0.getType().getIntOrFloatBitWidth() == 1 &&
arg1.getType().getIntOrFloatBitWidth() == 1;
if (!allComplex && !allFloatingPoint && !allInteger)
llvm_unreachable("unsupported non numeric type");
OpBuilder builder = getBuilder();
switch (binaryFn) {
case BinaryFn::add:
if (allComplex)
return builder.create<complex::AddOp>(arg0.getLoc(), arg0, arg1);
if (allFloatingPoint)
return builder.create<arith::AddFOp>(arg0.getLoc(), arg0, arg1);
if (allBool)
return builder.create<arith::OrIOp>(arg0.getLoc(), arg0, arg1);
return builder.create<arith::AddIOp>(arg0.getLoc(), arg0, arg1);
case BinaryFn::sub:
if (allComplex)
return builder.create<complex::SubOp>(arg0.getLoc(), arg0, arg1);
if (allFloatingPoint)
return builder.create<arith::SubFOp>(arg0.getLoc(), arg0, arg1);
if (allBool)
llvm_unreachable("unsupported operation: sub with bools");
return builder.create<arith::SubIOp>(arg0.getLoc(), arg0, arg1);
case BinaryFn::mul:
if (allComplex)
return builder.create<complex::MulOp>(arg0.getLoc(), arg0, arg1);
if (allFloatingPoint)
return builder.create<arith::MulFOp>(arg0.getLoc(), arg0, arg1);
if (allBool)
return builder.create<arith::AndIOp>(arg0.getLoc(), arg0, arg1);
return builder.create<arith::MulIOp>(arg0.getLoc(), arg0, arg1);
case BinaryFn::div:
if (allComplex)
return builder.create<complex::DivOp>(arg0.getLoc(), arg0, arg1);
if (allFloatingPoint)
return builder.create<arith::DivFOp>(arg0.getLoc(), arg0, arg1);
if (allBool)
llvm_unreachable("unsupported operation: div with bools");
return builder.create<arith::DivSIOp>(arg0.getLoc(), arg0, arg1);
case BinaryFn::div_unsigned:
if (!allInteger || allBool)
llvm_unreachable("unsupported operation: unsigned div not on uint");
return builder.create<arith::DivUIOp>(arg0.getLoc(), arg0, arg1);
case BinaryFn::max_signed:
assert(!allComplex);
if (allFloatingPoint)
return builder.create<arith::MaxFOp>(arg0.getLoc(), arg0, arg1);
return builder.create<arith::MaxSIOp>(arg0.getLoc(), arg0, arg1);
case BinaryFn::min_signed:
assert(!allComplex);
if (allFloatingPoint)
return builder.create<arith::MinFOp>(arg0.getLoc(), arg0, arg1);
return builder.create<arith::MinSIOp>(arg0.getLoc(), arg0, arg1);
case BinaryFn::max_unsigned:
assert(!allComplex);
if (allFloatingPoint)
return builder.create<arith::MaxFOp>(arg0.getLoc(), arg0, arg1);
return builder.create<arith::MaxUIOp>(arg0.getLoc(), arg0, arg1);
case BinaryFn::min_unsigned:
assert(!allComplex);
if (allFloatingPoint)
return builder.create<arith::MinFOp>(arg0.getLoc(), arg0, arg1);
return builder.create<arith::MinUIOp>(arg0.getLoc(), arg0, arg1);
}
llvm_unreachable("unsupported binary function");
}
// Build the type functions defined by OpDSL.
Value buildTypeFn(TypeFn typeFn, Type toType, Value operand) {
switch (typeFn) {
case TypeFn::cast_signed:
return cast(toType, operand, false);
case TypeFn::cast_unsigned:
return cast(toType, operand, true);
}
llvm_unreachable("unsupported type conversion function");
}
void yieldOutputs(ValueRange values) {
OpBuilder builder = getBuilder();
Location loc = builder.getUnknownLoc();
builder.create<YieldOp>(loc, values);
}
Value constant(const std::string &value) {
OpBuilder builder = getBuilder();
Location loc = builder.getUnknownLoc();
Attribute valueAttr = parseAttribute(value, builder.getContext());
return builder.create<arith::ConstantOp>(loc, ::cast<TypedAttr>(valueAttr));
}
Value index(int64_t dim) {
OpBuilder builder = getBuilder();
return builder.create<IndexOp>(builder.getUnknownLoc(), dim);
}
Type getIntegerType(unsigned width) {
return IntegerType::get(context, width);
}
Type getFloat32Type() { return Float32Type::get(context); }
Type getFloat64Type() { return Float64Type::get(context); }
private:
// Generates operations to cast the given operand to a specified type.
// If the cast cannot be performed, a warning will be issued and the
// operand returned as-is (which will presumably yield a verification
// issue downstream).
Value cast(Type toType, Value operand, bool isUnsignedCast) {
OpBuilder builder = getBuilder();
auto loc = operand.getLoc();
return convertScalarToDtype(builder, loc, operand, toType, isUnsignedCast);
}
bool isComplex(Value value) {
return llvm::isa<ComplexType>(value.getType());
}
bool isFloatingPoint(Value value) {
return llvm::isa<FloatType>(value.getType());
}
bool isInteger(Value value) {
return llvm::isa<IntegerType>(value.getType());
}
OpBuilder getBuilder() {
OpBuilder builder(context);
builder.setInsertionPointToEnd(&block);
return builder;
}
MLIRContext *context;
Block █
};
} // namespace
//===----------------------------------------------------------------------===//
// CopyOp
//===----------------------------------------------------------------------===//
namespace {
struct EraseSelfCopyOnBuffers : OpRewritePattern<CopyOp> {
using OpRewritePattern<CopyOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CopyOp copyOp,
PatternRewriter &rewriter) const override {
if (!copyOp.hasBufferSemantics())
return rewriter.notifyMatchFailure(copyOp,
"does not have buffer semantics");
if (copyOp.getInputs().front() != copyOp.getOutputs().front())
return rewriter.notifyMatchFailure(copyOp, "not a self copy");
rewriter.eraseOp(copyOp);
return success();
}
};
} // namespace
void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<EraseSelfCopyOnBuffers>(context);
}
//===----------------------------------------------------------------------===//
// FillOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold linalg.fill -> tensor.expand/collapse_shape chain.
///
/// For such op chains, we can create new linalg.fill ops with the result
/// type of the tensor.expand/collapse_shape op.
template <typename TensorReshapeOp>
struct FoldFillWithTensorReshape : OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
auto oldFill = reshapeOp.getSrc().template getDefiningOp<FillOp>();
if (!oldFill)
return failure();
Location loc = oldFill.getLoc();
auto newInit = rewriter.create<TensorReshapeOp>(
loc, reshapeOp.getResultType(), oldFill.output(),
reshapeOp.getReassociation());
rewriter.replaceOpWithNewOp<FillOp>(reshapeOp, ValueRange{oldFill.value()},
ValueRange{newInit});
return success();
}
};
/// Fold tensor.pad(linalg.fill) into linalg.fill if the padding value and the
/// filling value are the same.
struct FoldFillWithPad final : public OpRewritePattern<tensor::PadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const override {
auto fillOp = padOp.getSource().getDefiningOp<linalg::FillOp>();
if (!fillOp)
return failure();
// We can only fold if the padding value is the same as the original
// filling value.
Value padValue = padOp.getConstantPaddingValue();
if (!padValue || fillOp.value() != padValue)
return failure();
ReifiedRankedShapedTypeDims reifiedShape;
if (failed(reifyResultShapes(rewriter, padOp, reifiedShape)))
return rewriter.notifyMatchFailure(
padOp, "failed to reify tensor.pad op result shape");
auto emptyTensor = rewriter.create<tensor::EmptyOp>(
padOp.getLoc(), reifiedShape.front(),
padOp.getResultType().getElementType());
Value replacement =
rewriter
.create<FillOp>(fillOp.getLoc(), ValueRange{padValue},
ValueRange{emptyTensor})
.getResult(0);
if (replacement.getType() != padOp.getResultType()) {
replacement = rewriter.create<tensor::CastOp>(
fillOp.getLoc(), padOp.getResultType(), replacement);
}
rewriter.replaceOp(padOp, replacement);
return success();
}
};
/// Fold tensor.insert_slice(tensor.pad(<input>), linalg.fill) into
/// tensor.insert_slice(<input>, linalg.fill) if the padding value and the
/// filling value are the same.
struct FoldInsertPadIntoFill : public OpRewritePattern<tensor::InsertSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
PatternRewriter &rewriter) const override {
auto srcPadOp = insertOp.getSource().getDefiningOp<tensor::PadOp>();
if (!srcPadOp)
return failure();
if (insertOp.getType().getRank() != insertOp.getSourceType().getRank())
return failure();
// Walk back the tensor.insert_slice chain and find the first destination
// value at the start of the chain.
Value firstDest = insertOp.getDest();
while (auto prevOp = firstDest.getDefiningOp<tensor::InsertSliceOp>()) {
if (prevOp.getType().getRank() != prevOp.getSourceType().getRank())
return failure();
// Make sure the range of values accessed are disjoint. Without this, we
// cannot fold tensor.pad away.
bool disjoint = false;
for (int i = 0, e = prevOp.getType().getRank(); i < e; ++i) {
// If the dimension has dynamic offset/size, we cannot guarantee
// disjoint. So just skip it.
if (insertOp.isDynamicOffset(i) || insertOp.isDynamicSize(i) ||
insertOp.isDynamicStride(i) || prevOp.isDynamicOffset(i) ||
prevOp.isDynamicSize(i) || prevOp.isDynamicStride(i))
continue;
// Get the range start and end, inclusively for both.
int64_t prevStart = prevOp.getStaticOffset(i);
int64_t prevEnd = prevStart + (prevOp.getStaticSize(i) - 1) *
prevOp.getStaticStride(i);
int64_t nextStart = insertOp.getStaticOffset(i);
int64_t nextEnd = nextStart + (insertOp.getStaticSize(i) - 1) *
insertOp.getStaticStride(i);
if (prevEnd < nextStart || nextEnd < prevStart) {
disjoint = true;
break;
}
}
if (!disjoint)
break;
firstDest = prevOp.getDest();
}
// Check whether the first destination is a fill op. For overlapped cases,
// this also cannot be true.
auto dstFillOp = firstDest.getDefiningOp<linalg::FillOp>();
if (!dstFillOp)
return failure();
// We can only fold if the padding value is the same as the original
// filling value.
Value padValue = srcPadOp.getConstantPaddingValue();
if (!padValue || dstFillOp.value() != padValue)
return failure();
SmallVector<OpFoldResult> lowPads = srcPadOp.getMixedLowPad();
SmallVector<OpFoldResult> oldOffsets = insertOp.getMixedOffsets();
Location loc = insertOp.getLoc();
MLIRContext *context = getContext();
AffineExpr sym0, sym1;
bindSymbols(context, sym0, sym1);
auto addMap = AffineMap::get(0, 2, {sym0 + sym1}, context);
// Calculate the new offsets for the insert. It should be the old offsets
// plus low padding sizes.
SmallVector<OpFoldResult, 4> newOffsets;
for (const auto &p : llvm::zip(lowPads, oldOffsets)) {
newOffsets.push_back(affine::makeComposedFoldedAffineApply(
rewriter, loc, addMap, {std::get<0>(p), std::get<1>(p)}));
}
SmallVector<OpFoldResult, 4> newSizes;
for (int i = 0, e = srcPadOp.getSourceType().getRank(); i < e; ++i) {
newSizes.push_back(
rewriter.create<tensor::DimOp>(loc, srcPadOp.getSource(), i)
.getResult());
}
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
insertOp, srcPadOp.getSource(), insertOp.getDest(), newOffsets,
newSizes, insertOp.getMixedStrides());
return success();
}
};
} // namespace
void FillOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results
.add<FoldFillWithPad, FoldFillWithTensorReshape<tensor::CollapseShapeOp>,
FoldFillWithTensorReshape<tensor::ExpandShapeOp>,
FoldInsertPadIntoFill>(context);
}
//===----------------------------------------------------------------------===//
// GenericOp
//===----------------------------------------------------------------------===//
static void buildGenericRegion(
OpBuilder &builder, Location loc, Region ®ion, ValueRange inputs,
ValueRange outputs,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
SmallVector<Type, 4> blockArgTypes;
SmallVector<Location, 4> blockArgLocs;
for (ValueRange container : {inputs, outputs}) {
for (Value v : container) {
blockArgTypes.push_back(getElementTypeOrSelf(v));
blockArgLocs.push_back(v.getLoc());
}
}
OpBuilder::InsertionGuard guard(builder);
Block *bodyBlock =
builder.createBlock(®ion, region.end(), blockArgTypes, blockArgLocs);
bodyBuild(builder, loc, bodyBlock->getArguments());
}
void GenericOp::getAsmBlockArgumentNames(Region ®ion,
OpAsmSetValueNameFn setNameFn) {
for (Value v : getRegionInputArgs())
setNameFn(v, "in");
for (Value v : getRegionOutputArgs())
setNameFn(v, "out");
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
ValueRange inputs, ValueRange outputs, ArrayAttr indexingMaps,
ArrayAttr iteratorTypes, StringAttr doc, StringAttr libraryCall,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps,
iteratorTypes, doc, libraryCall);
result.addAttributes(attributes);
if (bodyBuild)
buildGenericRegion(builder, result.location, *result.regions.front(),
inputs, outputs, bodyBuild);
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
ArrayRef<utils::IteratorType> iteratorTypes, StringRef doc,
StringRef libraryCall,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, resultTensorTypes, inputs, outputs,
builder.getAffineMapArrayAttr(indexingMaps),
builder.getArrayAttr(llvm::to_vector(llvm::map_range(
iteratorTypes,
[&](utils::IteratorType iter) -> mlir::Attribute {
return IteratorTypeAttr::get(builder.getContext(), iter);
}))),
doc.empty() ? StringAttr() : builder.getStringAttr(doc),
libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall),
bodyBuild, attributes);
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
ArrayRef<utils::IteratorType> iteratorTypes, StringRef doc,
StringRef libraryCall,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, TypeRange{}, inputs, outputs, indexingMaps,
iteratorTypes, doc, libraryCall, bodyBuild, attributes);
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
ArrayRef<utils::IteratorType> iteratorTypes,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, inputs, outputs, indexingMaps, iteratorTypes,
/*doc=*/"",
/*libraryCall=*/"", bodyBuild, attributes);
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
ArrayRef<utils::IteratorType> iteratorTypes,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps,
iteratorTypes,
/*doc=*/"",
/*libraryCall=*/"", bodyBuild, attributes);
}
void GenericOp::print(OpAsmPrinter &p) {
p << " ";
// Print extra attributes.
auto genericAttrNames = linalgTraitAttrNames();
llvm::StringSet<> genericAttrNamesSet;
genericAttrNamesSet.insert(genericAttrNames.begin(), genericAttrNames.end());
SmallVector<NamedAttribute, 8> genericAttrs;
for (auto attr : (*this)->getAttrs()) {
if (attr.getName() == getIteratorTypesAttrName()) {
auto iteratorTypes =
llvm::cast<ArrayAttr>(attr.getValue())
.getAsValueRange<IteratorTypeAttr, utils::IteratorType>();
// Convert IteratorType enums into the string representation. This is
// needed, because tests still use the old format when 'iterator_types'
// attribute is represented as an array of strings.
// TODO: Remove this conversion once tests are fixed.
SmallVector<Attribute> iteratorTypeNames =
llvm::to_vector(llvm::map_range(
iteratorTypes, [&](utils::IteratorType t) -> Attribute {
return StringAttr::get(getContext(), stringifyIteratorType(t));
}));
genericAttrs.emplace_back(
getIteratorTypesAttrName(),
ArrayAttr::get(getContext(), iteratorTypeNames));
} else if (genericAttrNamesSet.count(attr.getName().strref()) > 0) {
genericAttrs.push_back(attr);
}
}
if (!genericAttrs.empty()) {
auto genericDictAttr = DictionaryAttr::get(getContext(), genericAttrs);
p << genericDictAttr;
}
// Printing is shared with named ops, except for the region and attributes
printCommonStructuredOpParts(p, SmallVector<Value>(getDpsInputOperands()),
SmallVector<Value>(getDpsInitOperands()));
genericAttrNames.push_back("operandSegmentSizes");
genericAttrNamesSet.insert(genericAttrNames.back());
bool hasExtraAttrs = false;
for (NamedAttribute n : (*this)->getAttrs()) {
if ((hasExtraAttrs = !genericAttrNamesSet.contains(n.getName().strref())))
break;
}
if (hasExtraAttrs) {
p << " attrs = ";
p.printOptionalAttrDict((*this)->getAttrs(),
/*elidedAttrs=*/genericAttrNames);
}
// Print region.
if (!getRegion().empty()) {
p << ' ';
p.printRegion(getRegion());
}
// Print results.
printNamedStructuredOpResults(p, getResultTensors().getTypes());
}
ParseResult GenericOp::parse(OpAsmParser &parser, OperationState &result) {
DictionaryAttr dictAttr;
// Parse the core linalg traits that must check into a dictAttr.
// The name is unimportant as we will overwrite result.attributes.
// The core linalg traits must contain the information necessary to pass the
// verifier.
llvm::SMLoc attributeLocation = parser.getCurrentLocation();
if (parser.parseAttribute(dictAttr, "_", result.attributes))
return failure();
result.attributes.assign(dictAttr.getValue().begin(),
dictAttr.getValue().end());
// Convert array of string into an array of IteratorType enums. This is
// needed, because tests still use the old format when 'iterator_types'
// attribute is represented as an array of strings.
// TODO: Remove this conversion once tests are fixed.
auto iteratorTypes = dyn_cast_or_null<ArrayAttr>(
result.attributes.get(getIteratorTypesAttrName(result.name)));
if (!iteratorTypes) {
return parser.emitError(attributeLocation)
<< "expected " << getIteratorTypesAttrName(result.name)
<< " array attribute";
}
SmallVector<Attribute> iteratorTypeAttrs;
for (StringRef s : iteratorTypes.getAsValueRange<StringAttr>()) {
auto maybeIteratorType = utils::symbolizeIteratorType(s);
if (!maybeIteratorType.has_value())
return parser.emitError(parser.getCurrentLocation())
<< "unexpected iterator_type (" << s << ")";
iteratorTypeAttrs.push_back(
IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value()));
}
result.attributes.set(getIteratorTypesAttrName(result.name),
parser.getBuilder().getArrayAttr(iteratorTypeAttrs));
// Parsing is shared with named ops, except for the region.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
// Optional attributes may be added.
if (succeeded(parser.parseOptionalKeyword("attrs")))
if (failed(parser.parseEqual()) ||
failed(parser.parseOptionalAttrDict(result.attributes)))
return failure();
std::unique_ptr<Region> region = std::make_unique<Region>();
if (parser.parseRegion(*region, {}))
return failure();
result.addRegion(std::move(region));
// Generic ops may specify that a subset of its outputs are tensors. Such
// outputs are specified in the result type.
// TODO: may need to move output parsing before region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
return failure();
result.addTypes(outputTensorsTypes);
return success();
}
static void getGenericEffectsImpl(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects,
ValueRange results, const OpOperandVector &inputOperands,
const OpOperandVector &outputOperands) {
for (auto *operand : inputOperands) {
if (!llvm::isa<MemRefType>(operand->get().getType()))
continue;
effects.emplace_back(MemoryEffects::Read::get(), operand->get(),
SideEffects::DefaultResource::get());
}
for (auto *operand : outputOperands) {
if (!llvm::isa<MemRefType>(operand->get().getType()))
continue;
effects.emplace_back(MemoryEffects::Read::get(), operand->get(),
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Write::get(), operand->get(),
SideEffects::DefaultResource::get());
}
}
void GenericOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
getGenericEffectsImpl(effects, getOperation()->getResults(),
getDpsInputOperands(), getDpsInitOperands());
}
LogicalResult GenericOp::verify() { return success(); }
namespace {
/// Remove generic operations (on tensors) that are just copying
/// the values from inputs to the results. Requirements are
/// 1) All iterator types are parallel
/// 2) The body contains just a yield operation with the yielded values being
/// the arguments corresponding to the operands.
struct EraseIdentityGenericOp : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
// Check all indexing maps are identity.
if (llvm::any_of(genericOp.getIndexingMapsArray(),
[](AffineMap map) { return !map.isIdentity(); }))
return failure();
// Check that the body of the linalg operation is just a linalg.yield
// operation.
Block &body = genericOp.getRegion().front();
if (!llvm::hasSingleElement(body))
return failure();
auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator());
if (!yieldOp)
return failure();
// In the buffer case, we need to check exact buffer equality.
if (genericOp.hasBufferSemantics()) {
if (genericOp.getNumDpsInputs() == 1 && genericOp.getNumDpsInits() == 1 &&
genericOp.getDpsInputOperand(0)->get() ==
genericOp.getDpsInitOperand(0)->get()) {
rewriter.eraseOp(genericOp);
return success();
}
return failure();
}
// Mixed semantics is not supported yet.
if (!genericOp.hasTensorSemantics())
return failure();
// Get the argument number of the returned values. That is the operand
// number to use for replacing uses of this operation.
SmallVector<Value> returnedArgs;
for (const auto &yieldVal : llvm::enumerate(yieldOp.getValues())) {
auto yieldArg = llvm::dyn_cast<BlockArgument>(yieldVal.value());
if (!yieldArg || yieldArg.getOwner() != &body)
return failure();
unsigned argumentNumber = yieldArg.getArgNumber();
Value returnedArg = genericOp->getOperand(argumentNumber);
Type resultType = genericOp->getResult(yieldVal.index()).getType();
// The input can have a different type than the result, e.g. a dynamic
// input dimension can be turned into a static output dimension.
Type returnType = returnedArg.getType();
if (returnType != resultType) {
// Distinguish between sparse conversion or dense tensor casting.
// TODO: unify the two ops?
if (sparse_tensor::getSparseTensorEncoding(returnType) ||
sparse_tensor::getSparseTensorEncoding(resultType))
returnedArg = rewriter.create<sparse_tensor::ConvertOp>(
genericOp.getLoc(), resultType, returnedArg);
else {
if (!tensor::CastOp::areCastCompatible(returnedArg.getType(),
resultType))
return failure();
returnedArg = rewriter.create<tensor::CastOp>(
genericOp.getLoc(), resultType, returnedArg);
}
}
returnedArgs.push_back(returnedArg);
}
if (returnedArgs.size() != genericOp->getNumResults())
return failure();
rewriter.replaceOp(genericOp, returnedArgs);
return success();
}
};
} // namespace
void GenericOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<EraseIdentityGenericOp>(context);
}
LogicalResult GenericOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) {
return memref::foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// MapOp
//===----------------------------------------------------------------------===//
static ParseResult parseDstStyleOp(
OpAsmParser &parser, OperationState &result,
function_ref<ParseResult(OpAsmParser &, NamedAttrList &)> parseAttrsFn =
nullptr) {
// Parse `ins` and `outs`.
SmallVector<Type, 4> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes,
/*addOperandSegmentSizes=*/false))
return failure();
// Add result types.
for (Type outputType : outputTypes) {
if (llvm::isa<RankedTensorType>(outputType))
result.addTypes(outputType);
}
// Parse required attributes.
if (parseAttrsFn && failed(parseAttrsFn(parser, result.attributes)))
return failure();
// Parse optional attributes.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
void MapOp::getAsmBlockArgumentNames(Region ®ion,
OpAsmSetValueNameFn setNameFn) {
for (Value v : getRegionInputArgs())
setNameFn(v, "in");
}
void MapOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
if (!getResults().empty())
setNameFn(getResults().front(), "mapped");
}
void MapOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs, Value init,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, TypeRange{}, inputs, init);
result.addAttributes(attributes);
// Add output types for `RankedTensorType` output arguments.
Type initType = init.getType();
if (llvm::isa<RankedTensorType>(initType))
result.addTypes(initType);
if (bodyBuild)
buildGenericRegion(builder, result.location, *result.regions.front(),
inputs, /*outputs=*/{}, bodyBuild);
}
static void addBodyWithPayloadOp(OpAsmParser &parser, OperationState &result,
const OperationName &payloadOpName,
const NamedAttrList &payloadOpAttrs,
ArrayRef<Value> operands,
bool initFirst = false) {
OpBuilder b(parser.getContext());
Region *body = result.addRegion();
Block &block = body->emplaceBlock();
b.setInsertionPointToStart(&block);
SmallVector<Value> bbArgs;
for (auto &operand : operands) {
block.addArgument(
llvm::cast<ShapedType>(operand.getType()).getElementType(),
b.getUnknownLoc());
}
SmallVector<Value> payloadOpOperands;
// If initFirst flag is enabled, we consider init as the first position of
// payload operands.
if (initFirst) {
payloadOpOperands.push_back(block.getArguments().back());
for (const auto &arg : block.getArguments().drop_back())
payloadOpOperands.push_back(arg);
} else {
payloadOpOperands = {block.getArguments().begin(),
block.getArguments().end()};
}
Operation *payloadOp = b.create(
result.location, b.getStringAttr(payloadOpName.getStringRef()),
payloadOpOperands,
TypeRange{llvm::cast<ShapedType>(result.operands.back().getType())
.getElementType()},
payloadOpAttrs);
b.create<YieldOp>(result.location, payloadOp->getResults());
}
ParseResult MapOp::parse(OpAsmParser &parser, OperationState &result) {
std::optional<OperationName> payloadOpName;
NamedAttrList payloadOpAttrs;
if (succeeded(parser.parseOptionalLBrace())) {
FailureOr<OperationName> operationName = parser.parseCustomOperationName();
if (failed(operationName))
return failure();
if (parser.parseOptionalAttrDict(payloadOpAttrs))
return failure();
payloadOpName = operationName.value();
if (parser.parseRBrace())
return failure();
}
if (parseDstStyleOp(parser, result))
return failure();
if (payloadOpName.has_value()) {
addBodyWithPayloadOp(parser, result, payloadOpName.value(), payloadOpAttrs,
ArrayRef(result.operands).drop_back());
} else {
SmallVector<OpAsmParser::Argument> regionArgs;
if (parser.parseArgumentList(regionArgs, OpAsmParser::Delimiter::Paren,
/*allowType=*/true, /*allowAttrs=*/true)) {
return failure();
}
Region *body = result.addRegion();
if (parser.parseRegion(*body, regionArgs))
return failure();
}
return success();
}
// Retrieve the operation from the body, if it is the only one (except
// yield) and if it gets the same amount of arguments as the body does.
// If initFirst flag is enabled, we check that init takes the first position in
// operands of payload.
static Operation *findPayloadOp(Block *body, bool initFirst = false) {
if (body->getOperations().size() != 2)
return nullptr;
Operation &payload = body->getOperations().front();
assert(isa<YieldOp>(body->getOperations().back()));
if (payload.getNumOperands() == 0 ||
payload.getNumOperands() != body->getNumArguments())
return nullptr;
if (initFirst) {
// check init
if (payload.getOperands().back() != body->getArgument(0))
return nullptr;
// check rest
for (const auto &[operand, bbArg] :
llvm::zip(payload.getOperands(), body->getArguments().drop_front())) {
if (bbArg != operand)
return nullptr;
}
} else {
for (const auto &[operand, bbArg] :
llvm::zip(payload.getOperands(), body->getArguments())) {
if (bbArg != operand)
return nullptr;
}
}
return &payload;
}
void printShortForm(OpAsmPrinter &p, Operation *payloadOp) {
SmallVector<StringRef> elidedAttrs;
std::string attrToElide;
p << " { " << payloadOp->getName().getStringRef();
for (const auto &attr : payloadOp->getAttrs()) {
auto fastAttr =
llvm::dyn_cast<mlir::arith::FastMathFlagsAttr>(attr.getValue());
if (fastAttr && fastAttr.getValue() == mlir::arith::FastMathFlags::none) {
attrToElide = attr.getName().str();
elidedAttrs.push_back(attrToElide);
break;
}
}
p.printOptionalAttrDict(payloadOp->getAttrs(), elidedAttrs);
p << " }";
}
void MapOp::print(OpAsmPrinter &p) {
Block *mapper = getBody();
Operation *payloadOp = findPayloadOp(mapper);
if (payloadOp) {
printShortForm(p, payloadOp);
}
printCommonStructuredOpParts(p, SmallVector<Value>(getDpsInputOperands()),
SmallVector<Value>(getDpsInitOperands()));
p.printOptionalAttrDict((*this)->getAttrs());
if (!payloadOp) {
// Print region if the payload op was not detected.
p.increaseIndent();
p.printNewline();
p << "(";
llvm::interleaveComma(mapper->getArguments(), p,
[&](auto arg) { p.printRegionArgument(arg); });
p << ") ";
p.printRegion(getMapper(), /*printEntryBlockArgs=*/false);
p.decreaseIndent();
}
}
LogicalResult MapOp::verify() {
auto *bodyBlock = getBody();
auto blockArgs = bodyBlock->getArguments();
// Checks if the number of `inputs` match the arity of the `mapper` region.
if (getInputs().size() != blockArgs.size())
return emitOpError() << "expects number of operands to match the arity of "
"mapper, but got: "
<< getInputs().size() << " and " << blockArgs.size();
// The parameters of mapper should all match the element type of inputs.
for (const auto &[bbArgType, inputArg] :
llvm::zip(bodyBlock->getArgumentTypes(), getInputs())) {
auto inputElemType =
llvm::cast<ShapedType>(inputArg.getType()).getElementType();
if (bbArgType != inputElemType) {
return emitOpError() << "expected element type of input " << inputElemType
<< " to match bbArg type " << bbArgType;
}
}
// The shape of each input must match the shape of the output.
auto outputShape = getInit().getType().getShape();
for (Type inputArgType : TypeRange{getInputs()}) {
auto inputElemShape = llvm::cast<ShapedType>(inputArgType).getShape();
if (inputElemShape != outputShape) {
return emitOpError() << "expected shape of input (" << inputElemShape
<< ") to match shape of output (" << outputShape
<< ")";
}
}
return success();
}
SmallVector<utils::IteratorType> MapOp::getIteratorTypesArray() {
int64_t rank = getInit().getType().getRank();
return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel);
}
ArrayAttr MapOp::getIndexingMaps() {
Builder builder(getContext());
int64_t rank = getInit().getType().getRank();
int64_t numIndexingMaps = getOperands().size();
return builder.getAffineMapArrayAttr(SmallVector<AffineMap>(
numIndexingMaps, builder.getMultiDimIdentityMap(rank)));
}
void MapOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
getGenericEffectsImpl(effects, getOperation()->getResults(),
getDpsInputOperands(), getDpsInitOperands());
}
//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//
void ReduceOp::getAsmBlockArgumentNames(Region ®ion,
OpAsmSetValueNameFn setNameFn) {
for (Value v : getRegionInputArgs())
setNameFn(v, "in");
for (Value v : getRegionOutputArgs())
setNameFn(v, "init");
}
void ReduceOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
if (!getResults().empty())
setNameFn(getResults().front(), "reduced");
}
void ReduceOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
ValueRange inits, ArrayRef<int64_t> dimensions,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, TypeRange{}, inputs, inits, dimensions);
result.addAttributes(attributes);
// Add output types for `RankedTensorType` output arguments.
for (Value init : inits) {
Type initType = init.getType();
if (llvm::isa<RankedTensorType>(initType))
result.addTypes(initType);
}
if (bodyBuild)
buildGenericRegion(builder, result.location, *result.regions.front(),
inputs, inits, bodyBuild);
}
SmallVector<utils::IteratorType> ReduceOp::getIteratorTypesArray() {
int64_t inputRank =
llvm::cast<ShapedType>(getInputs()[0].getType()).getRank();
SmallVector<utils::IteratorType> iteratorTypes(inputRank,
utils::IteratorType::parallel);
for (int64_t reductionDim : getDimensions())
iteratorTypes[reductionDim] = utils::IteratorType::reduction;
return iteratorTypes;
}
ArrayAttr ReduceOp::getIndexingMaps() {
int64_t inputRank =
llvm::cast<ShapedType>(getInputs()[0].getType()).getRank();
SmallVector<AffineMap> affineMaps(
getNumDpsInputs(),
AffineMap::getMultiDimIdentityMap(inputRank, getContext()));
AffineMap resultMap =
AffineMap::getMultiDimIdentityMap(inputRank, getContext())
.dropResults(getDimensions());
for (int64_t i = 0, e = getNumDpsInits(); i < e; ++i)
affineMaps.push_back(resultMap);
return Builder(getContext()).getAffineMapArrayAttr(affineMaps);
}
void ReduceOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
getGenericEffectsImpl(effects, getOperation()->getResults(),
getDpsInputOperands(), getDpsInitOperands());
}
static ParseResult parseDenseI64ArrayAttr(OpAsmParser &parser,
NamedAttrList &attributes,
StringRef attributeName) {
if (parser.parseKeyword(attributeName) || parser.parseEqual())
return failure();
attributes.set(attributeName, DenseI64ArrayAttr::parse(parser, Type{}));
return success();
}
ParseResult ReduceOp::parse(OpAsmParser &parser, OperationState &result) {
std::optional<OperationName> payloadOpName;
NamedAttrList payloadOpAttrs;
if (succeeded(parser.parseOptionalLBrace())) {
FailureOr<OperationName> operationName = parser.parseCustomOperationName();
if (failed(operationName))
return failure();
if (parser.parseOptionalAttrDict(payloadOpAttrs))
return failure();
payloadOpName = operationName.value();
if (parser.parseRBrace())
return failure();
}
if (parseDstStyleOp(
parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) {
return parseDenseI64ArrayAttr(parser, attributes, "dimensions");
}))
return failure();
if (payloadOpName.has_value()) {
addBodyWithPayloadOp(parser, result, payloadOpName.value(), payloadOpAttrs,
ArrayRef(result.operands), /*initFirst=*/true);
} else {
SmallVector<OpAsmParser::Argument> regionArgs;
if (parser.parseArgumentList(regionArgs, OpAsmParser::Delimiter::Paren,
/*allowType=*/true, /*allowAttrs=*/true)) {
return failure();
}
Region *body = result.addRegion();
if (parser.parseRegion(*body, regionArgs))
return failure();
}
return success();
}
static void printDenseI64ArrayAttr(OpAsmPrinter &p, StringRef attributeName,
ArrayRef<int64_t> attributeValue) {
p << ' ' << attributeName << " = [" << attributeValue << "] ";
}
void ReduceOp::print(OpAsmPrinter &p) {
Block *mapper = getBody();
Operation *payloadOp = findPayloadOp(mapper, /*initFirst=*/true);
if (payloadOp) {
printShortForm(p, payloadOp);
}
printCommonStructuredOpParts(p, SmallVector<Value>(getDpsInputOperands()),
SmallVector<Value>(getDpsInitOperands()));
printDenseI64ArrayAttr(p, getDimensionsAttrName(), getDimensions());
p.printOptionalAttrDict((*this)->getAttrs(), {getDimensionsAttrName()});
if (!payloadOp) {
// Print region if the payload op was not detected.
p.increaseIndent();
p.printNewline();
p << "(";
llvm::interleaveComma(mapper->getArguments(), p,
[&](auto arg) { p.printRegionArgument(arg); });
p << ") ";
p.printRegion(getCombiner(), /*printEntryBlockArgs=*/false);
p.decreaseIndent();
}
}
LogicalResult ReduceOp::verify() {
ArrayRef<int64_t> dimensionsRef = getDimensions();
for (int64_t i = 1; i < getNumDpsInputs(); ++i) {
if (llvm::cast<ShapedType>(getInputs()[i].getType()).getShape() !=
llvm::cast<ShapedType>(getInputs()[0].getType()).getShape()) {
return emitOpError() << "expects all inputs to have the same shapes. "
"Shape at input-index "
<< i
<< " is not equal to the shape at input-index 0.";
}
}
for (int64_t i = 1; i < getNumDpsInits(); ++i) {
if (llvm::cast<ShapedType>(getInits()[i].getType()).getShape() !=
llvm::cast<ShapedType>(getInits()[0].getType()).getShape()) {
return emitOpError() << "expects all outputs to have the same shapes. "
"Shape at output-index "
<< i
<< " is not equal to the shape at output-index 0.";
}
}
auto inputType = llvm::cast<ShapedType>(getInputs()[0].getType());
auto initType = llvm::cast<ShapedType>(getInits()[0].getType());
DenseSet<int64_t> dimensionsToReduce;
for (int64_t dimension : dimensionsRef) {
if (dimension < 0 || dimension >= inputType.getRank()) {
return emitOpError()
<< "dimensions for reduction should be in the range [0, "
<< inputType.getRank() - 1 << "].";
}
dimensionsToReduce.insert(dimension);
}
auto inputDims = inputType.getShape();
auto initDims = initType.getShape();
// Input dimensions that will be left after the reduction.
SmallVector<int64_t> reducedInputDims;
for (const auto &en : llvm::enumerate(inputDims)) {
if (!dimensionsToReduce.count(en.index()))
reducedInputDims.push_back(en.value());
}
if (reducedInputDims.size() != static_cast<size_t>(initType.getRank())) {
return emitOpError() << "number of dimensions after reduction "
<< reducedInputDims.size()
<< " doesn't match the init rank "
<< initType.getRank();
}
if (reducedInputDims != initDims)
return emitOpError() << "init dimensions [" << initDims
<< "] doesn't match input dimensions after reduction ["
<< reducedInputDims << "]";
Block *block = getBody();
if (block->getNumArguments() != this->getNumOperands())
return emitOpError()
<< "mismatching number of operands and block arguments";
// Check that the first block arguments match the element type of the inputs.
for (auto [input, bbArg] : llvm::zip(getInputs(), block->getArguments())) {
Type inputElementType =
llvm::cast<ShapedType>(input.getType()).getElementType();
if (inputElementType != bbArg.getType())
return emitOpError()
<< "input element type " << inputElementType
<< " does not match corresponding block argument type "
<< bbArg.getType();
}
// Check that the last block arguments match the element type of the outputs.
for (auto [output, bbArg] :
llvm::zip(getDpsInitOperands(),
block->getArguments().take_back(getNumDpsInits()))) {
auto outputElementType =
llvm::cast<ShapedType>(output->get().getType()).getElementType();
if (outputElementType != bbArg.getType())
return emitOpError()
<< "output element type " << outputElementType
<< " does not match corresponding block argument type "
<< bbArg.getType();
}
return success();
}
//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//
static void buildIdentityRegion(OpBuilder &builder, Location loc,
Region ®ion, ValueRange inputs,
ValueRange outputs) {
buildGenericRegion(builder, loc, region, inputs, outputs,
[](OpBuilder &b, Location loc, ValueRange args) {
b.create<linalg::YieldOp>(loc, args[0]);
});
}
void TransposeOp::build(::mlir::OpBuilder &builder,
::mlir::OperationState &result, Value input, Value init,
DenseI64ArrayAttr permutation,
ArrayRef<NamedAttribute> attributes) {
result.addOperands(input);
result.addOperands(init);
result.addAttribute(getPermutationAttrName(result.name), permutation);
result.addAttributes(attributes);
// Add output types for `RankedTensorType` output arguments.
Type initType = init.getType();
if (llvm::isa<RankedTensorType>(initType))
result.addTypes(initType);
buildIdentityRegion(builder, result.location, *result.addRegion(), input,
init);
}
void TransposeOp::build(::mlir::OpBuilder &builder,
::mlir::OperationState &result, Value input, Value init,
ArrayRef<int64_t> permutation,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, input, init, builder.getDenseI64ArrayAttr(permutation),
attributes);
}
ParseResult TransposeOp::parse(OpAsmParser &parser, OperationState &result) {
if (failed(parseDstStyleOp(
parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) {
return parseDenseI64ArrayAttr(parser, attributes, "permutation");
})))
return failure();
OpBuilder builder(parser.getContext());
buildIdentityRegion(builder, result.location, *result.addRegion(),
/*inputs=*/result.operands,
/*outputs=*/{});
return success();
}
void TransposeOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
if (!getResults().empty())
setNameFn(getResults().front(), "transposed");
}
void TransposeOp::print(OpAsmPrinter &p) {
printCommonStructuredOpParts(p, SmallVector<Value>(getDpsInputOperands()),
SmallVector<Value>(getDpsInitOperands()));
printDenseI64ArrayAttr(p, getPermutationAttrName(), getPermutation());
p.printOptionalAttrDict((*this)->getAttrs(), {getPermutationAttrName()});
}
LogicalResult TransposeOp::verify() {
ArrayRef<int64_t> permutationRef = getPermutation();
if (!isPermutationVector(permutationRef))
return emitOpError("permutation is not valid");
auto inputType = getInput().getType();
auto initType = getInit().getType();
int64_t rank = inputType.getRank();
if (rank != initType.getRank())
return emitOpError() << "input rank " << rank
<< " does not match init rank " << initType.getRank();
if (rank != static_cast<int64_t>(permutationRef.size()))
return emitOpError() << "size of permutation " << permutationRef.size()
<< " does not match the argument rank " << rank;
auto inputDims = inputType.getShape();
auto initDims = initType.getShape();
for (int64_t i = 0; i < rank; ++i) {
int64_t inputDim = inputDims[permutationRef[i]];
int64_t initDim = initDims[i];
if (inputDim != initDim) {
return emitOpError() << "dim(result, " << i << ") = " << initDim
<< " doesn't match dim(input, permutation[" << i
<< "]) = " << inputDim;
}
}
return success();
}
SmallVector<utils::IteratorType> TransposeOp::getIteratorTypesArray() {
int64_t rank = getInit().getType().getRank();
return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel);
}
ArrayAttr TransposeOp::getIndexingMaps() {
Builder builder(getContext());
int64_t rank = getInit().getType().getRank();
return builder.getAffineMapArrayAttr(
{builder.getMultiDimIdentityMap(rank),
AffineMap::getPermutationMap(
llvm::to_vector_of<unsigned>(getPermutation()), getContext())});
}
void TransposeOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
getGenericEffectsImpl(effects, getOperation()->getResults(),
getDpsInputOperands(), getDpsInitOperands());
}
//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//
void BroadcastOp::build(::mlir::OpBuilder &builder,
::mlir::OperationState &result, Value input, Value init,
DenseI64ArrayAttr dimensions,
ArrayRef<NamedAttribute> attributes) {
result.addOperands(input);
result.addOperands(init);
result.addAttribute(getDimensionsAttrName(result.name), dimensions);
result.addAttributes(attributes);
// Add output types for `RankedTensorType` output arguments.
Type initType = init.getType();
if (llvm::isa<RankedTensorType>(initType))
result.addTypes(initType);
buildIdentityRegion(builder, result.location, *result.addRegion(), input,
init);
}
void BroadcastOp::build(::mlir::OpBuilder &builder,
::mlir::OperationState &result, Value input, Value init,
ArrayRef<int64_t> dimensions,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, input, init, builder.getDenseI64ArrayAttr(dimensions),
attributes);
}
ParseResult BroadcastOp::parse(OpAsmParser &parser, OperationState &result) {
if (failed(parseDstStyleOp(
parser, result, [&](OpAsmParser &parser, NamedAttrList &attributes) {
return parseDenseI64ArrayAttr(parser, attributes, "dimensions");
})))
return failure();
OpBuilder builder(parser.getContext());
buildIdentityRegion(builder, result.location, *result.addRegion(),
/*inputs=*/result.operands,
/*outputs=*/{});
return success();
}
void BroadcastOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
if (!getResults().empty())
setNameFn(getResults().front(), "broadcasted");
}
void BroadcastOp::print(OpAsmPrinter &p) {
printCommonStructuredOpParts(p, SmallVector<Value>(getDpsInputOperands()),
SmallVector<Value>(getDpsInitOperands()));
printDenseI64ArrayAttr(p, getDimensionsAttrName(), getDimensions());
p.printOptionalAttrDict((*this)->getAttrs(), {getDimensionsAttrName()});
}
LogicalResult BroadcastOp::verify() {
ArrayRef<int64_t> dimensionsRef = getDimensions();
auto inputType = getInput().getType();
auto initType = getInit().getType();
int64_t inputRank = inputType.getRank();
int64_t initRank = initType.getRank();
auto inputShape = inputType.getShape();
auto initShape = initType.getShape();
if ((size_t)inputRank + dimensionsRef.size() != (size_t)initRank)
return emitOpError() << "input rank plus added dimensions does not "
"match init rank. input rank: "
<< inputRank
<< ", dimensions size: " << dimensionsRef.size()
<< ", init rank: " << initRank;
for (const auto &[idx, dim] : llvm::enumerate(dimensionsRef)) {
if (dim < 0 || dim >= initRank)
return emitOpError() << "dimension " << idx
<< " is out of range. expected range: [0, "
<< initRank - 1 << "], got: " << dim;
}
// Mapping from input dims to init dims.
SmallVector<int64_t> dimMap;
for (auto dim : llvm::seq<int64_t>(0, initRank)) {
if (!llvm::is_contained(dimensionsRef, dim))
dimMap.push_back(dim);
}
for (const auto &[inputDimIdx, initDimIdx] : llvm::enumerate(dimMap)) {
// This dimensions is mapped from the input. Init and input dims should
// match.
if (inputShape[inputDimIdx] != initShape[initDimIdx])
return emitOpError() << "input dim " << inputDimIdx
<< " should match init dim " << initDimIdx
<< ". input: " << inputShape[inputDimIdx]
<< ", init: " << initShape[initDimIdx];
}
return success();
}
SmallVector<utils::IteratorType> BroadcastOp::getIteratorTypesArray() {
int64_t rank = getInit().getType().getRank();
return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel);
}
ArrayAttr BroadcastOp::getIndexingMaps() {
Builder builder(getContext());
int64_t rank = getInit().getType().getRank();
return builder.getAffineMapArrayAttr(
{builder.getMultiDimIdentityMap(rank).dropResults(getDimensions()),
builder.getMultiDimIdentityMap(rank)});
}
void BroadcastOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
getGenericEffectsImpl(effects, getOperation()->getResults(),
getDpsInputOperands(), getDpsInitOperands());
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
void linalg::YieldOp::print(OpAsmPrinter &p) {
if (getNumOperands() > 0)
p << ' ' << getOperands();
p.printOptionalAttrDict((*this)->getAttrs());
if (getNumOperands() > 0)
p << " : " << getOperandTypes();
}
ParseResult YieldOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::UnresolvedOperand, 2> opInfo;
SmallVector<Type, 2> types;
SMLoc loc = parser.getCurrentLocation();
return failure(parser.parseOperandList(opInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
(!opInfo.empty() && parser.parseColonTypeList(types)) ||
parser.resolveOperands(opInfo, types, loc, result.operands));
}
// Check the operand number and types must match the element types of the
// LinalgOp interface's shaped operands.
static LogicalResult verifyYield(linalg::YieldOp op, LinalgOp linalgOp) {
if (op.getNumOperands() != linalgOp.getNumDpsInits())
return op.emitOpError("expected number of yield values (")
<< linalgOp.getNumDpsInits()
<< ") to match the number of operands of the enclosing "
<< "LinalgOp (" << op.getNumOperands() << ")";
for (OpOperand &opOperand : op->getOpOperands()) {
OpOperand *outputOperand =
linalgOp.getDpsInitOperand(opOperand.getOperandNumber());
Type elementType = getElementTypeOrSelf(outputOperand->get().getType());
if (opOperand.get().getType() != elementType)
return op.emitOpError("type of yield operand ")
<< (opOperand.getOperandNumber() + 1) << " ("
<< opOperand.get().getType() << ") doesn't match "
<< "the element type of the enclosing linalg.generic op ("
<< elementType << ")";
}
return success();
}
LogicalResult linalg::YieldOp::verify() {
auto *parentOp = (*this)->getParentOp();
if (parentOp->getNumRegions() != 1 || parentOp->getRegion(0).empty())
return emitOpError("expected single non-empty parent region");
if (auto linalgOp = dyn_cast<LinalgOp>(parentOp))
return verifyYield(*this, linalgOp);
return emitOpError("expected parent op with LinalgOp interface");
}
//===----------------------------------------------------------------------===//
// IndexOp
//===----------------------------------------------------------------------===//
LogicalResult IndexOp::verify() {
auto linalgOp = dyn_cast<LinalgOp>((*this)->getParentOp());
if (!linalgOp)
return emitOpError("expected parent op with LinalgOp interface");
if (linalgOp.getNumLoops() <= getDim())
return emitOpError("expected dim (")
<< getDim() << ") to be lower than the number of loops ("
<< linalgOp.getNumLoops() << ") of the enclosing LinalgOp";
return success();
}
/////// Operations corresponding to library calls defined with Tablegen ////////
#include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yamlgen.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgOps.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
AffineMap mlir::linalg::extractOrIdentityMap(std::optional<AffineMap> maybeMap,
unsigned rank,
MLIRContext *context) {
if (maybeMap)
return *maybeMap;
if (rank == 0)
return AffineMap::get(context);
return AffineMap::getMultiDimIdentityMap(rank, context);
}
SmallVector<AffineExpr, 4>
mlir::linalg::makeAffineDimExprs(unsigned num, unsigned &startIdx,
MLIRContext *context) {
SmallVector<AffineExpr, 4> res;
res.reserve(num);
for (unsigned i = 0; i < num; ++i)
res.push_back(getAffineDimExpr(startIdx++, context));
return res;
}
SmallVector<AffineExpr, 4> mlir::linalg::concat(ArrayRef<AffineExpr> a,
ArrayRef<AffineExpr> b) {
auto rangeA = llvm::make_range(a.begin(), a.end());
auto rangeB = llvm::make_range(b.begin(), b.end());
auto concatRanges = llvm::concat<const AffineExpr>(rangeA, rangeB);
return llvm::to_vector<4>(concatRanges);
}
static LogicalResult appendMangledType(llvm::raw_string_ostream &ss, Type t) {
if (auto memref = llvm::dyn_cast<MemRefType>(t)) {
ss << "view";
for (auto size : memref.getShape())
if (size < 0)
ss << "sx";
else
ss << size << "x";
if (failed(appendMangledType(ss, memref.getElementType())))
return failure();
if (auto as = memref.getMemorySpace()) {
if (auto attr = llvm::dyn_cast<IntegerAttr>(as))
ss << "as" << attr.getInt();
else
return failure();
}
return success();
}
if (auto vec = llvm::dyn_cast<VectorType>(t)) {
ss << "vector";
llvm::interleave(
vec.getShape(), [&](int64_t i) { ss << i; }, [&]() { ss << "x"; });
if (failed(appendMangledType(ss, vec.getElementType())))
return failure();
return success();
} else if (t.isSignlessIntOrIndexOrFloat()) {
ss << t;
return success();
}
return failure();
}
std::string mlir::linalg::generateLibraryCallName(Operation *op) {
assert(isa<LinalgOp>(op));
std::string name(op->getName().getStringRef().str());
std::string fun = "";
for (NamedAttribute kv : op->getAttrs()) {
if (UnaryFnAttr ufa = llvm::dyn_cast<UnaryFnAttr>(kv.getValue())) {
fun = stringifyEnum(ufa.getValue()).str() + "_";
} else if (BinaryFnAttr bfa = llvm::dyn_cast<BinaryFnAttr>(kv.getValue())) {
fun = stringifyEnum(bfa.getValue()).str() + "_";
}
}
name.reserve(128);
std::replace(name.begin(), name.end(), '.', '_');
llvm::raw_string_ostream ss(name);
ss << "_" << fun;
for (Type t : op->getOperandTypes()) {
if (failed(appendMangledType(ss, t)))
return std::string();
ss << "_";
}
std::string res = ss.str();
res.pop_back();
return res;
}
//===----------------------------------------------------------------------===//
// Canonicalizers and Folders.
//===----------------------------------------------------------------------===//
namespace {
struct EraseDeadLinalgOp : public OpInterfaceRewritePattern<LinalgOp> {
using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
for (OpOperand &opOperand : op->getOpOperands()) {
// Linalg "inputs" may be either tensor or memref type.
// tensor<0xelt_type> is a convention that may not always mean
// "0 iterations". Only erase in cases we see memref<...x0x...>.
auto mt = llvm::dyn_cast<MemRefType>(opOperand.get().getType());
if (!mt)
continue;
if (llvm::is_contained(op.getShape(&opOperand), 0)) {
rewriter.eraseOp(op);
return success();
}
}
return failure();
}
};
/// Fold LinalgOps with `tensor.cast` consumer if the `tensor.cast` has
/// result that is more static than the linalg op.
struct FoldTensorCastConsumerOp : public OpRewritePattern<tensor::CastOp> {
using OpRewritePattern<tensor::CastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::CastOp castOp,
PatternRewriter &rewriter) const override {
if (!tensor::canFoldIntoProducerOp(castOp))
return failure();
auto linalgOp = castOp.getSource().getDefiningOp<LinalgOp>();
if (!linalgOp)
return failure();
// Cast can be in conditionally reachable region, if which case folding will
// generate invalid code. Only conservatively fold ops in same block for
// now.
if (castOp->getBlock() != linalgOp->getBlock())
return failure();
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(linalgOp);
Location loc = linalgOp.getLoc();
OpResult resultValue = llvm::cast<OpResult>(castOp.getSource());
unsigned resultNumber = resultValue.getResultNumber();
auto resultType =
llvm::cast<RankedTensorType>(castOp->getResult(0).getType());
// Replace the `outs` for the result with a `tensor.cast`. This cast is now
// going from a more dynamic shape to a less dynamic shape. If the producer
// for this cast, i.e. producer of the out operand, is also an operation
// that folds with tensor.cast consumer (like this pattern), the cast will
// continue to propagate as far up the stack as it can go.
OpOperand *outOperand = linalgOp.getDpsInitOperand(resultNumber);
Value newOperand =
rewriter.create<tensor::CastOp>(loc, resultType, outOperand->get());
SmallVector<Value> newOperands{linalgOp.getDpsInputOperands()};
SmallVector<Value> outputOperands{linalgOp.getDpsInitOperands()};
outputOperands[resultNumber] = newOperand;
newOperands.append(outputOperands.begin(), outputOperands.end());
SmallVector<Type> resultTypes(linalgOp->result_type_begin(),
linalgOp->result_type_end());
resultTypes[resultNumber] = resultType;
Operation *newOp = clone(rewriter, linalgOp, resultTypes, newOperands);
// Create a tensor.cast operation back to the original type.
Value castBack = rewriter.create<tensor::CastOp>(
loc, resultValue.getType(), newOp->getResult(resultNumber));
SmallVector<Value> results(newOp->result_begin(), newOp->result_end());
results[resultNumber] = castBack;
rewriter.replaceOp(linalgOp, results);
rewriter.replaceOp(castOp, newOp->getResult(resultNumber));
return success();
}
};
/// For each of the operand in `operands` this function maps the static sizes of
/// dimensions to their affine dim expressions.
static void populateMap(LinalgOp linalgOp, MutableArrayRef<OpOperand> operands,
llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize) {
for (OpOperand &opOperand : operands) {
if (linalgOp.isScalar(&opOperand))
continue;
Value src = opOperand.get();
auto sourceType = llvm::cast<RankedTensorType>(src.getType());
auto sourceMap = linalgOp.getMatchingIndexingMap(&opOperand);
// Get the `sourceShape` of the `sourceType`. If the operand is a result of
// `tensor.cast` operation and source of the cast operation has a static
// shape, then assign it to the `sourceShape`.
auto *parentOp = src.getDefiningOp();
ArrayRef<int64_t> sourceShape = sourceType.getShape();
if (parentOp) {
if (auto castOp = dyn_cast<tensor::CastOp>(parentOp)) {
Value castSource = castOp.getSource();
auto castSourceType =
llvm::dyn_cast<RankedTensorType>(castSource.getType());
if (castSourceType && castSourceType.hasStaticShape())
sourceShape = castSourceType.getShape();
}
}
// If the source shape's dimension has a static shape, map the affine dim
// expression to the known static size.
for (unsigned i = 0; i < sourceShape.size(); i++) {
if (sourceType.isDynamicDim(i))
continue;
if (auto affineDimExpr = sourceMap.getResult(i).dyn_cast<AffineDimExpr>())
affineExprToSize.try_emplace(affineDimExpr, sourceShape[i]);
}
}
}
/// Creates new operand w.r.t 'opOperand' of `linalgOp` with static sizes
/// mapped in `affineExprToSize`. New operands are created in `newOperands` and
/// their result types is stored in `resultTypes`. If `opOperand` requires no
/// change then `changeNeeded` is false and same operand is added in the
/// `newOperands` list.
static void createNewOperandWithStaticSizes(
Location loc, PatternRewriter &rewriter, OpOperand *opOperand,
llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize, LinalgOp linalgOp,
SmallVector<Value> &newOperands, SmallVector<Type> &resultTypes,
bool &changeNeeded) {
Value src = opOperand->get();
newOperands.push_back(src);
if (linalgOp.isScalar(opOperand))
return;
auto sourceType = llvm::cast<RankedTensorType>(src.getType());
Type resultType = sourceType;
if (sourceType.hasStaticShape() && linalgOp.isDpsInit(opOperand)) {
resultTypes.push_back(resultType);
return;
}
ArrayRef<int64_t> sourceShape = sourceType.getShape();
AffineMap sourceMap = linalgOp.getMatchingIndexingMap(opOperand);
SmallVector<int64_t> newShape;
// If operand is updated with new shape, `newOperandNeeded` will be
// true.
bool newOperandNeeded = false;
for (unsigned i = 0; i < sourceShape.size(); i++) {
int64_t dimShape = sourceShape[i];
AffineExpr dimExpr = sourceMap.getResult(i);
if (!affineExprToSize.contains(dimExpr) || !sourceType.isDynamicDim(i)) {
newShape.push_back(dimShape);
continue;
}
// Dimension has a dynamic shape and corresponding affine dim
// expression is present in the map. So assign the size for the
// given affine dim expression to the dimension.
newShape.push_back(affineExprToSize[dimExpr]);
newOperandNeeded = true;
}
resultType = RankedTensorType::get(newShape, sourceType.getElementType());
if (newOperandNeeded) {
changeNeeded = true;
// Get the new operand value given its size and element type by
// casting it.
Value newOperand = rewriter.create<tensor::CastOp>(loc, resultType, src);
unsigned index = opOperand->getOperandNumber();
newOperands[index] = newOperand;
}
if (linalgOp.isDpsInit(opOperand))
resultTypes.push_back(resultType);
}
/// Static shapes for the operands can be inferred if any one of the operands
/// have a static shape. This can be done by referring to the affine dim
/// expressions for the operand.
struct InferStaticShapeOfOperands : public OpInterfaceRewritePattern<LinalgOp> {
using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(LinalgOp linalgOp,
PatternRewriter &rewriter) const override {
if (!linalgOp.hasTensorSemantics())
return failure();
// Maps must be projected permutations.
if (llvm::any_of(linalgOp.getIndexingMapsArray(), [](AffineMap map) {
return !map.isProjectedPermutation();
}))
return failure();
// Maps affine dim expressions to the static size of that dimension.
llvm::DenseMap<AffineExpr, int64_t> affineExprToSize;
Location loc = linalgOp.getLoc();
// For each of the affine dim expression, check if the size is known. If
// known add that in the map.
populateMap(linalgOp, linalgOp->getOpOperands(), affineExprToSize);
SmallVector<Value> newOperands;
SmallVector<Type> resultTypes;
// `changeNeeded` is `false` if the operands of `linalgOp` require no
// change in their types.
bool changeNeeded = false;
newOperands.reserve(linalgOp->getNumOperands());
resultTypes.reserve(linalgOp.getNumDpsInits());
// Iterate over all the operands and update the static sizes.
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
createNewOperandWithStaticSizes(loc, rewriter, &opOperand,
affineExprToSize, linalgOp, newOperands,
resultTypes, changeNeeded);
}
// If the generic op has all the required static information, no
// canonicalization needed.
if (!changeNeeded)
return failure();
// Clone op.
Operation *newOp = clone(rewriter, linalgOp, resultTypes, newOperands);
SmallVector<Value> replacements;
replacements.reserve(newOp->getNumResults());
for (auto it : llvm::zip(linalgOp->getResults(), newOp->getResults())) {
Value newResult = std::get<1>(it);
Value oldResult = std::get<0>(it);
Type newType = newResult.getType();
Type oldType = oldResult.getType();
replacements.push_back(
(newType != oldType)
? rewriter.create<tensor::CastOp>(loc, oldType, newResult)
: newResult);
}
rewriter.replaceOp(linalgOp, replacements);
return success();
}
};
} // namespace
// All named ops canonicalizers and folders are auto-generated in the
// .cpp.inc.
//===----------------------------------------------------------------------===//
// SoftmaxOp
//===----------------------------------------------------------------------===//
LogicalResult SoftmaxOp::verify() {
ShapedType inputType = getInputOperandType();
ShapedType outputType = getOutputOperandType();
ArrayRef<int64_t> inputShape = inputType.getShape();
ArrayRef<int64_t> outputShape = outputType.getShape();
if (failed(verifyCompatibleShape(inputShape, outputShape)))
return emitOpError("incompatible output shape");
int64_t inputRank = getInputOperandRank();
int64_t dimension = getDimension();
if ((dimension < 0) || (dimension >= inputRank))
return emitOpError("incorrect dimension specified");
return success();
}
SmallVector<Range> SoftmaxOp::getIterationDomain(OpBuilder &builder) {
int64_t operandRank = getInputOperandRank();
SmallVector<Range> loopBounds(operandRank);
Location loc = getLoc();
Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
Value one = builder.create<arith::ConstantIndexOp>(loc, 1);
Value source = getInput();
for (auto dim : llvm::seq<int64_t>(0, operandRank)) {
loopBounds[dim].offset = zero;
loopBounds[dim].size = getDimValue(builder, loc, source, dim);
loopBounds[dim].stride = one;
}
return loopBounds;
}
SmallVector<utils::IteratorType> SoftmaxOp::getLoopIteratorTypes() {
SmallVector<utils::IteratorType> iteratorTypes(getInputOperandRank(),
utils::IteratorType::parallel);
iteratorTypes[getDimension()] = utils::IteratorType::reduction;
return iteratorTypes;
}
FailureOr<TilingResult>
SoftmaxOp::getTiledImplementation(OpBuilder &builder,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) {
int64_t rank = getInputOperandRank();
auto oneAttr = builder.getI64IntegerAttr(1);
SmallVector<OpFoldResult> strides(rank, oneAttr);
SmallVector<Value> tiledOperands;
tiledOperands.emplace_back(
getSlice(builder, getLoc(), getInput(), offsets, sizes, strides));
tiledOperands.emplace_back(
getSlice(builder, getLoc(), getOutput(), offsets, sizes, strides));
SmallVector<Type, 4> resultTypes;
if (hasTensorSemantics())
resultTypes.push_back(tiledOperands[1].getType());
Operation *tiledOp =
mlir::clone(builder, getOperation(), resultTypes, tiledOperands);
return TilingResult{{tiledOp}, SmallVector<Value>(tiledOp->getResults())};
}
LogicalResult SoftmaxOp::getResultTilePosition(
OpBuilder &builder, unsigned resultNumber, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes, SmallVector<OpFoldResult> &resultOffsets,
SmallVector<OpFoldResult> &resultSizes) {
if (resultNumber == 0) {
resultOffsets.assign(offsets.begin(), offsets.end());
resultSizes.assign(sizes.begin(), sizes.end());
return success();
}
return failure();
}
// cast(dynamic) -> static.
LogicalResult SoftmaxOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) {
return memref::foldMemRefCast(*this);
}
LogicalResult
SoftmaxOp::reifyResultShapes(OpBuilder &b,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
return cast<LinalgOp>(getOperation())
.reifyResultShapes(b, reifiedReturnShapes);
}
// Helper functions for softmax decomposition.
// @{
// Helper function to produce the iterator types (reduction or parallel) and
// affine maps for the iterators used in the decomposition of softmax.
// This method creates:
// If allParallel == true:
// - iterator type: {parallel, ..., parallel}
// - affine maps:
// -- identity with inputRank dimensions.
// -- (d0, ..., dN) -> (d0, ..., d_dim-1, d_dim+1, ..., dN),
// where N == inputRank.
//
// If allParallel == false:
// - iterator type at dim(i) == parallel for i != \p dim and
// dim(dim) == reduction.
// - affine map:
// -- identity with inputRank dimensions.
// -- (d0, ..., dN) -> (d0, ..., d_dim-1, d_dim+1, ..., dN),
// where N == inputRank.
static std::tuple<SmallVector<utils::IteratorType>, SmallVector<AffineMap>>
computeIteratorTypesAndIndexingMaps(OpBuilder &builder, int64_t inputRank,
int64_t dim, bool allParallel = false) {
SmallVector<utils::IteratorType> iteratorTypes(inputRank,
utils::IteratorType::parallel);
if (!allParallel)
iteratorTypes[dim] = utils::IteratorType::reduction;
MLIRContext *ctxt = builder.getContext();
auto identityMap = AffineMap::getMultiDimIdentityMap(inputRank, ctxt);
SmallVector<AffineExpr, 2> affineExprs;
for (int i = 0; i < inputRank; i++) {
if (i != dim)
affineExprs.push_back(mlir::getAffineDimExpr(i, ctxt));
}
auto reductionMap =
AffineMap::get(inputRank, /*symbols=*/0, affineExprs, ctxt);
SmallVector<AffineMap> indexingMaps{identityMap, reductionMap};
return std::make_tuple(iteratorTypes, indexingMaps);
}
// Helper function to produce a linalg.generic that computes a reduction on
// dimension \p dim with the operation type \p T.
template <typename T>
static Value reduce(OpBuilder &builder, Location loc, Value input, Value output,
int64_t dim) {
auto inputType = cast<ShapedType>(input.getType());
ArrayRef<int64_t> inputShape = inputType.getShape();
int64_t inputRank = inputShape.size();
auto [iteratorTypes, indexingMaps] =
computeIteratorTypesAndIndexingMaps(builder, inputRank, dim);
assert(indexingMaps.size() == 2 &&
"We should have two maps: 1 for the input, 1 for the output");
assert(indexingMaps[0].isIdentity() && "input map should be identity");
auto genericOp = builder.create<linalg::GenericOp>(
loc, output.getType(), input, output, indexingMaps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value result = b.create<T>(loc, args[0], args[1]);
b.create<linalg::YieldOp>(loc, result);
});
return genericOp.getResult(0);
}
/// Produce a linalg generic that computes the second step of the softmax
/// decomposition: res = exp(input - max), where \p max is the max of \p input
/// on dimension \p dim.
static Value buildSubAndExpOp(OpBuilder &builder, Location loc, Value input,
Value max, Value output, int64_t dim) {
auto inputType = cast<ShapedType>(input.getType());
ArrayRef<int64_t> inputShape = inputType.getShape();
int64_t inputRank = inputShape.size();
auto [iteratorTypes, indexingMaps] = computeIteratorTypesAndIndexingMaps(
builder, inputRank, dim, /*allParallel=*/true);
assert(indexingMaps.size() == 2 && "We should have one map for each input");
assert(indexingMaps[0].isIdentity() && "input map should be identity");
// Add the affine map for the output argument.
indexingMaps.push_back(indexingMaps[0]);
auto genericOp = builder.create<linalg::GenericOp>(
loc, input.getType(), ValueRange{input, max}, output, indexingMaps,
iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) {
Value diff = b.create<arith::SubFOp>(loc, args[0], args[1]);
Value result = b.create<math::ExpOp>(loc, diff);
b.create<linalg::YieldOp>(loc, result);
});
return genericOp.getResult(0);
}
/// Produce a linalg generic that computes the final step of the softmax
/// decomposition.
/// \returns linalg.generic ins(\p numerator, \p denominator) outs(\p output) {
/// yield n / d
/// }
static Value buildDivOp(OpBuilder &builder, Location loc, Value numerator,
Value denominator, Value output, int64_t dim) {
auto inputType = cast<ShapedType>(numerator.getType());
ArrayRef<int64_t> inputShape = inputType.getShape();
int64_t inputRank = inputShape.size();
auto [iteratorTypes, indexingMaps] = computeIteratorTypesAndIndexingMaps(
builder, inputRank, dim, /*allParallel=*/true);
assert(indexingMaps.size() == 2 &&
"We should have one map for each input (2)");
assert(indexingMaps[0].isIdentity() && "Numerator map should be identity");
// Add the affine map for the output tensor.
indexingMaps.push_back(indexingMaps[0]);
auto genericOp = builder.create<linalg::GenericOp>(
loc, numerator.getType(), ValueRange{numerator, denominator}, output,
indexingMaps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value result = b.create<arith::DivFOp>(loc, args[0], args[1]);
b.create<linalg::YieldOp>(loc, result);
});
return genericOp.getResult(0);
}
// @} End helper functions for softmax decomposition.
/// Given an N-dimensional tensor x, this method converts
/// softmax(x) to the following sequence of operations:
///
/// 1. Compute the max of x along dimension d. This results
/// in a N-1 dimensional tensor m.
/// m = max(x, dim = d)
///
/// 2. Subtract a broadcasted m from x and exponentiate. This results in
/// a N dimensional tensor z.
/// z = exp(x - m)
///
/// 3. Compute the sum of z along dimension d. This results in
/// a N-1 dimensional tensor l.
/// l = sum(z, dim = d)
///
/// 4. Divide z and l. This gives the N-dimensional softmax.
/// softmax = z / l
///
FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPoint(*this);
Location loc = getLoc();
Value input = getInput();
ShapedType inputType = getInputOperandType();
Type elementType = inputType.getElementType();
int64_t reductionDim = getDimension();
SmallVector<OpFoldResult> dims = tensor::getMixedSizes(b, loc, input);
Value output = getOutput();
dims.erase(dims.begin() + reductionDim);
// Step 1: Compute max along dim.
Value outputReduce = b.create<tensor::EmptyOp>(loc, dims, elementType);
Value neutralForMaxF =
arith::getIdentityValue(arith::AtomicRMWKind::maxf, elementType, b, loc);
Value neutralForMaxFInit =
b.create<linalg::FillOp>(loc, Value{neutralForMaxF}, outputReduce)
.result();
Value max =
reduce<arith::MaxFOp>(b, loc, input, neutralForMaxFInit, reductionDim);
// Step 2: Subtract max from input and exponentiate.
Value numerator = buildSubAndExpOp(b, loc, input, max, output, reductionDim);
// Step 3: Compute sum along dim.
Value zero =
arith::getIdentityValue(arith::AtomicRMWKind::addf, elementType, b, loc);
Value zeroInit =
b.create<linalg::FillOp>(loc, Value{zero}, outputReduce).result();
Value denominator =
reduce<arith::AddFOp>(b, loc, numerator, zeroInit, reductionDim);
// Step 4: Compute softmax.
Value result =
buildDivOp(b, loc, numerator, denominator, output, reductionDim);
return SmallVector<Value>{result};
}
//===----------------------------------------------------------------------===//
// LinalgDialect
//===----------------------------------------------------------------------===//
void LinalgDialect::getCanonicalizationPatterns(
RewritePatternSet &results) const {
results.add<EraseDeadLinalgOp, FoldTensorCastConsumerOp,
InferStaticShapeOfOperands>(getContext());
}
Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return arith::ConstantOp::materialize(builder, value, type, loc);
}
|