1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
//===- ConstantFold.cpp - Implementation of constant folding on Linalg ops ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements constant folding on Linalg operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Base class for constant folding linalg.generic ops with N inputs, 1 output,
/// and permutation indexing maps.
///
/// `ConcreteType` should provide methods with signatures
///
/// ```c++
/// bool matchIndexingMaps(GenericOp genericOp) const;
/// RegionComputationFn getRegionComputeFn(GenericOp) const;
/// ```
///
/// The latter inspects the region and returns the computation inside as a
/// functor. The functor will be invoked with constant elements for all inputs
/// and should return the corresponding computed constant element for output.
template <typename ConcreteType>
class FoldConstantBase : public OpRewritePattern<GenericOp> {
public:
struct APIntOrFloat {
std::optional<APInt> apInt;
std::optional<APFloat> apFloat;
};
struct APIntOrFloatArray {
SmallVector<APInt> apInts;
SmallVector<APFloat> apFloats;
};
using RegionComputationFn =
std::function<APIntOrFloat(const APIntOrFloatArray &)>;
FoldConstantBase(MLIRContext *context, const ControlFusionFn &controlFn,
PatternBenefit benefit = 1)
: OpRewritePattern<GenericOp>(context, benefit), controlFn(controlFn) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
// Mixed and buffer sematics aren't supported.
if (!genericOp.hasTensorSemantics())
return failure();
// Only support ops generating one output for now.
if (genericOp.getNumDpsInits() != 1)
return failure();
auto outputType = dyn_cast<ShapedType>(genericOp.getResultTypes().front());
// Require the output types to be static given that we are generating
// constants.
if (!outputType || !outputType.hasStaticShape())
return failure();
if (!llvm::all_of(genericOp.getInputs(), [](Value input) {
return isa<ShapedType>(input.getType());
}))
return failure();
// Make sure all element types are the same.
auto getOperandElementType = [](Value value) {
return cast<ShapedType>(value.getType()).getElementType();
};
if (!llvm::all_equal(
llvm::map_range(genericOp->getOperands(), getOperandElementType)))
return failure();
// We can only handle the case where we have int/float elements.
auto elementType = outputType.getElementType();
if (!elementType.isIntOrFloat())
return failure();
// Require all indexing maps to be permutations for now. This is common and
// it simplifies input/output access greatly: we can do the data shuffling
// entirely in the compiler, without needing to turn all indices into
// Values, and then do affine apply on them, and then match back the
// constant again.
if (!llvm::all_of(genericOp.getIndexingMapsArray(),
[](AffineMap map) { return map.isPermutation(); }))
return failure();
for (OpOperand *operand : genericOp.getDpsInitOperands()) {
if (genericOp.payloadUsesValueFromOperand(operand))
return failure();
}
// Further check the indexing maps are okay for the ConcreteType.
if (!static_cast<const ConcreteType *>(this)->matchIndexingMaps(genericOp))
return failure();
// Defer to the concrete type to check the region and discover the
// computation inside.
RegionComputationFn computeFn =
static_cast<const ConcreteType *>(this)->getRegionComputeFn(genericOp);
if (!computeFn)
return failure();
// All inputs should be constants.
int numInputs = genericOp.getNumDpsInputs();
SmallVector<DenseIntOrFPElementsAttr> inputValues(numInputs);
for (const auto &en : llvm::enumerate(genericOp.getDpsInputOperands())) {
if (!matchPattern(en.value()->get(),
m_Constant(&inputValues[en.index()])))
return failure();
}
// Identified this as a potential candidate for folding. Now check the
// policy to see whether we are allowed to proceed.
for (OpOperand *operand : genericOp.getDpsInputOperands()) {
if (!controlFn(operand))
return failure();
}
auto linalgOp = cast<LinalgOp>(genericOp.getOperation());
SmallVector<int64_t, 4> loopBounds = linalgOp.computeStaticLoopSizes();
int64_t numElements = outputType.getNumElements();
// Use APInt/APFloat instead of Attribute here for constructing the output.
// This helps to avoid blowing up compiler memory usage: Attributes would
// unify the following cases but they have lifetime as the MLIRContext.
SmallVector<APInt> intOutputValues;
SmallVector<APFloat> fpOutputValues;
if (isa<FloatType>(elementType))
fpOutputValues.resize(numElements, APFloat(0.f));
else
intOutputValues.resize(numElements);
// Return the constant dim positions from the given permutation map.
auto getDimPositions = [](AffineMap map) {
SmallVector<unsigned> dims;
dims.reserve(map.getNumResults());
for (AffineExpr result : map.getResults()) {
dims.push_back(result.cast<AffineDimExpr>().getPosition());
}
return dims;
};
SmallVector<SmallVector<unsigned>> inputDims;
for (int i = 0; i < numInputs; ++i)
inputDims.push_back(getDimPositions(genericOp.getIndexingMapsArray()[i]));
auto outputDims = getDimPositions(genericOp.getIndexingMapsArray().back());
auto outputShape = outputType.getShape();
// Allocate small vectors for index delinearization. Initial values do not
// matter here as they will be overwritten later.
SmallVector<uint64_t> indices(loopBounds.size(), 0);
SmallVector<uint64_t> dstIndices(loopBounds.size(), 0);
SmallVector<SmallVector<uint64_t>> srcIndices(
numInputs, SmallVector<uint64_t>(loopBounds.size(), 0));
SmallVector<uint64_t> srcLinearIndices(numInputs, 0);
uint64_t dstLinearIndex = 0;
// Allocate spaces for compute function inputs. Initial values do not matter
// here as they will be overwritten later.
APIntOrFloatArray computeFnInputs;
auto inputShapes = llvm::to_vector<4>(
llvm::map_range(genericOp.getInputs(), [](Value value) {
return cast<ShapedType>(value.getType()).getShape();
}));
// Given a `linearIndex`, remap it to a linear index to access linalg op
// inputs/ouputs. This mutates `indices`, `srcIndices`, `dstIndices`,
// `srcLinearIndices`, `dstLinearIndex` in place.
auto computeRemappedLinearIndex = [&](int linearIndex) {
int totalCount = linearIndex;
for (int dim = loopBounds.size() - 1; dim >= 0; --dim) {
indices[dim] = totalCount % loopBounds[dim];
totalCount /= loopBounds[dim];
}
for (int dim = loopBounds.size() - 1; dim >= 0; --dim) {
for (int i = 0; i < numInputs; ++i)
srcIndices[i][dim] = indices[inputDims[i][dim]];
dstIndices[dim] = indices[outputDims[dim]];
}
dstLinearIndex = dstIndices.front();
for (int i = 0; i < numInputs; ++i)
srcLinearIndices[i] = srcIndices[i].front();
for (int dim = 1; dim < outputType.getRank(); ++dim) {
dstLinearIndex = dstLinearIndex * outputShape[dim] + dstIndices[dim];
for (int i = 0; i < numInputs; ++i)
srcLinearIndices[i] =
srcLinearIndices[i] * inputShapes[i][dim] + srcIndices[i][dim];
}
};
bool isFloat = isa<FloatType>(elementType);
if (isFloat) {
SmallVector<DenseElementsAttr::iterator_range<APFloat>> inFpRanges;
for (int i = 0; i < numInputs; ++i)
inFpRanges.push_back(inputValues[i].getValues<APFloat>());
computeFnInputs.apFloats.resize(numInputs, APFloat(0.f));
// Transpose the input constant. Because we don't know its rank in
// advance, we need to loop over the range [0, element count) and
// delinearize the index.
for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) {
computeRemappedLinearIndex(linearIndex);
// Collect constant elements for all inputs at this loop iteration.
for (int i = 0; i < numInputs; ++i)
computeFnInputs.apFloats[i] = inFpRanges[i][srcLinearIndices[i]];
// Invoke the computation to get the corresponding constant output
// element.
fpOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apFloat;
}
} else {
SmallVector<DenseElementsAttr::iterator_range<APInt>> inIntRanges;
for (int i = 0; i < numInputs; ++i)
inIntRanges.push_back(inputValues[i].getValues<APInt>());
computeFnInputs.apInts.resize(numInputs);
// Transpose the input constant. Because we don't know its rank in
// advance, we need to loop over the range [0, element count) and
// delinearize the index.
for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) {
computeRemappedLinearIndex(linearIndex);
// Collect constant elements for all inputs at this loop iteration.
for (int i = 0; i < numInputs; ++i)
computeFnInputs.apInts[i] = inIntRanges[i][srcLinearIndices[i]];
// Invoke the computation to get the corresponding constant output
// element.
intOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apInt;
}
}
DenseElementsAttr outputAttr =
isFloat ? DenseElementsAttr::get(outputType, fpOutputValues)
: DenseElementsAttr::get(outputType, intOutputValues);
rewriter.replaceOpWithNewOp<arith::ConstantOp>(genericOp, outputAttr);
return success();
}
private:
ControlFusionFn controlFn;
};
// Folds linalg.generic ops that are actually transposes on constant values.
struct FoldConstantTranspose : public FoldConstantBase<FoldConstantTranspose> {
using FoldConstantBase::FoldConstantBase;
bool matchIndexingMaps(GenericOp genericOp) const {
// We should have one input and one output.
return genericOp.getIndexingMapsArray().size() == 2;
}
RegionComputationFn getRegionComputeFn(GenericOp genericOp) const {
// Make sure the region only contains a yield op.
Block &body = genericOp.getRegion().front();
if (!llvm::hasSingleElement(body))
return nullptr;
auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator());
if (!yieldOp)
return nullptr;
// The yield op should return the block argument corresponds to the input.
for (Value yieldVal : yieldOp.getValues()) {
auto yieldArg = dyn_cast<BlockArgument>(yieldVal);
if (!yieldArg || yieldArg.getOwner() != &body)
return nullptr;
if (yieldArg.getArgNumber() != 0)
return nullptr;
}
// No computation; just return the orginal value.
return [](const APIntOrFloatArray &inputs) {
if (inputs.apFloats.empty())
return APIntOrFloat{inputs.apInts.front(), std::nullopt};
return APIntOrFloat{std::nullopt, inputs.apFloats.front()};
};
}
ControlFusionFn controlFn;
};
} // namespace
void mlir::linalg::populateConstantFoldLinalgOperations(
RewritePatternSet &patterns, const ControlFusionFn &controlFn) {
MLIRContext *context = patterns.getContext();
patterns.insert<FoldConstantTranspose>(context, controlFn);
}
|