File: ConvertToDestinationStyle.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (580 lines) | stat: -rw-r--r-- 24,197 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//===- ConvertToDestinationStyle.cpp - Convert non-DPS to DPS ops ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains patterns to convert non-DPS ops to DPS ops. New
// tensor.empty ops are inserted as a destination. Such tensor.empty can be
// eliminated with "empty tensor elimination", allowing them to bufferize
// without an allocation (assuming there are no further conflicts).
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"

using namespace mlir;
using namespace mlir::tensor;

// Implements backtracking to traverse indices of the output buffer while
// iterating over op.elements().
static Value createInserts(RewriterBase &rewriter, Location loc, int dim,
                           Value destination, ArrayRef<int64_t> shape,
                           ArrayRef<Value> constants,
                           OperandRange::iterator &elementIt,
                           SmallVectorImpl<Value> &indices) {
  if (dim == static_cast<int>(shape.size()) - 1) {
    for (int i = 0; i < shape.back(); ++i) {
      indices.back() = constants[i];
      destination = rewriter.create<tensor::InsertOp>(loc, *elementIt,
                                                      destination, indices);
      ++elementIt;
    }
    return destination;
  }
  for (int i = 0; i < shape[dim]; ++i) {
    indices[dim] = constants[i];
    destination = createInserts(rewriter, loc, dim + 1, destination, shape,
                                constants, elementIt, indices);
  }
  return destination;
}

/// Create a memcpy from the given source tensor to the given destination
/// memref. The copy op type can be specified in the `options`.
static void createMemcpy(OpBuilder &b, Location loc, Value tensorSource,
                         Value memrefDest,
                         const linalg::BufferizeToAllocationOptions &options) {
  auto tensorType = dyn_cast<RankedTensorType>(tensorSource.getType());
  assert(tensorType && "expected ranked tensor");
  assert(memrefDest.getType().isa<MemRefType>() && "expected ranked memref");

  switch (options.memcpyOp) {
  case linalg::BufferizeToAllocationOptions::MemcpyOp::MemrefTensorStore:
    // Note: This is the preferred way of memcpy'ing because no layout map
    // and/or memory space must be specified for the source.
    b.create<memref::TensorStoreOp>(loc, tensorSource, memrefDest);
    break;
  case linalg::BufferizeToAllocationOptions::MemcpyOp::MemrefCopy: {
    // TODO: Support custom memory space on source.
    // We do not know the layout map of the source yet, so use a fully dynamic
    // layout for best compatibility.
    Value toMemref = b.create<bufferization::ToMemrefOp>(
        loc, bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType),
        tensorSource, /*readOnly=*/true);
    b.create<memref::CopyOp>(loc, toMemref, memrefDest);
  } break;
  case linalg::BufferizeToAllocationOptions::MemcpyOp::LinalgCopy: {
    // TODO: Support custom memory space on source.
    // We do not know the layout map of the source yet, so use a fully dynamic
    // layout for best compatibility.
    Value toMemref = b.create<bufferization::ToMemrefOp>(
        loc, bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType),
        tensorSource, /*readOnly=*/true);
    b.create<linalg::CopyOp>(loc, toMemref, memrefDest);
  } break;
  };
}

static Operation *movePaddingToFillOrGenericOp(RewriterBase &rewriter,
                                               Location loc, PadOp padOp,
                                               Value dest) {
  OpBuilder::InsertionGuard g(rewriter);
  RankedTensorType resultType = padOp.getResultType();

  // Examine the yielded value to decide if a linalg.generic is neede or a
  // linalg.fill is sufficient.
  Value yieldedValue =
      cast<tensor::YieldOp>(padOp.getBody()->getTerminator()).getValue();
  Attribute constYieldedValue;
  // Is the yielded value a bbArg defined outside of the PadOp?
  bool outsideBbArg =
      isa<BlockArgument>(yieldedValue) &&
      cast<BlockArgument>(yieldedValue).getOwner()->getParentOp() !=
          padOp.getOperation();
  // Is the yielded value an OpResult defined outside of the PadOp?
  bool outsideOpResult =
      isa<OpResult>(yieldedValue) &&
      yieldedValue.getDefiningOp()->getParentOp() != padOp.getOperation();
  bool invariantYieldedValue = outsideBbArg || outsideOpResult;
  if (matchPattern(yieldedValue, m_Constant(&constYieldedValue))) {
    // Padding with a constant: Create linalg.fill.
    Dialect *arithDialect =
        rewriter.getContext()->getLoadedDialect<arith::ArithDialect>();
    Value fillValue =
        arithDialect
            ->materializeConstant(rewriter, constYieldedValue,
                                  yieldedValue.getType(), yieldedValue.getLoc())
            ->getResult(0);
    auto fillOp = rewriter.create<linalg::FillOp>(loc, ValueRange(fillValue),
                                                  ValueRange(dest));
    return fillOp;
  }

  if (invariantYieldedValue) {
    // Padding with an invariant value.
    auto fillOp = rewriter.create<linalg::FillOp>(loc, ValueRange(yieldedValue),
                                                  ValueRange(dest));
    return fillOp;
  }

  // Create linalg.generic.
  SmallVector<utils::IteratorType> iteratorTypes(resultType.getRank(),
                                                 utils::IteratorType::parallel);
  SmallVector<AffineMap> indexingMaps(
      1, rewriter.getMultiDimIdentityMap(resultType.getRank()));
  auto genericOp = rewriter.create<linalg::GenericOp>(
      loc, resultType, /*inputs=*/ValueRange(),
      /*outputs=*/ValueRange{dest}, /*indexingMaps=*/
      indexingMaps, iteratorTypes);
  Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
                                     resultType.getElementType(), loc);
  rewriter.setInsertionPointToStart(body);
  SmallVector<Value> bbArgReplacements;
  for (int64_t i = 0; i < resultType.getRank(); ++i)
    bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
  rewriter.mergeBlocks(padOp.getBody(), body, bbArgReplacements);

  // Update terminator.
  auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
  rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
  return genericOp;
}

static SmallVector<Value> reifyOrComputeDynamicSizes(OpBuilder &b,
                                                     Value value) {
  auto tensorType = cast<RankedTensorType>(value.getType());
  if (tensorType.hasStaticShape())
    return {};

  // Try to reify dynamic sizes.
  ReifiedRankedShapedTypeDims reifiedShape;
  if (isa<OpResult>(value) &&
      succeeded(reifyResultShapes(b, value.getDefiningOp(), reifiedShape))) {
    SmallVector<Value> dynSizes;
    for (int64_t i = 0; i < tensorType.getRank(); ++i) {
      if (tensorType.isDynamicDim(i))
        dynSizes.push_back(
            reifiedShape[cast<OpResult>(value).getResultNumber()][i]
                .get<Value>());
    }
    return dynSizes;
  }

  // Create tensor.dim ops.
  SmallVector<Value> dynSizes;
  for (int64_t i = 0; i < tensorType.getRank(); ++i) {
    if (tensorType.isDynamicDim(i))
      dynSizes.push_back(
          b.create<DimOp>(value.getLoc(), value,
                          b.create<arith::ConstantIndexOp>(value.getLoc(), i)));
  }
  return dynSizes;
}

static Value
createAllocationForTensor(RewriterBase &rewriter, Location loc, Value value,
                          const linalg::BufferizeToAllocationOptions &options,
                          Attribute memorySpace = {}) {
  OpBuilder::InsertionGuard g(rewriter);
  auto tensorType = cast<RankedTensorType>(value.getType());

  // Create buffer allocation.
  auto memrefType =
      cast<MemRefType>(bufferization::getMemRefTypeWithStaticIdentityLayout(
          tensorType, memorySpace));
  SmallVector<Value> dynamicSizes = reifyOrComputeDynamicSizes(rewriter, value);

  Value alloc;
  if (options.allocOp ==
      linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloc) {
    alloc = rewriter.create<memref::AllocOp>(loc, memrefType, dynamicSizes);
    // Place deallocation at the end of the block.
    rewriter.setInsertionPoint(rewriter.getInsertionBlock()->getTerminator());
    rewriter.create<memref::DeallocOp>(loc, alloc);
  } else if (options.allocOp ==
             linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloca) {
    alloc = rewriter.create<memref::AllocaOp>(loc, memrefType, dynamicSizes);
    // No dealloc is needed.
  }

  return alloc;
}

Value linalg::bufferizeToAllocation(
    RewriterBase &rewriter, const linalg::BufferizeToAllocationOptions &options,
    PadOp padOp, Attribute memorySpace, Operation *insertionPoint) {
  // tensor.pad does not have a destination operand.
  assert(!options.bufferizeDestinationOnly && "invalid options");

  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(insertionPoint ? insertionPoint : padOp);
  Location loc = padOp.getLoc();

  // Create buffer allocation.
  Value alloc = createAllocationForTensor(rewriter, loc, padOp.getResult(),
                                          options, memorySpace);
  rewriter.setInsertionPoint(padOp);

  if (!padOp.hasZeroLowPad() || !padOp.hasZeroHighPad()) {
    // Create linalg.fill or linalg.generic. Not needed if there is no padding.
    Operation *fillOp =
        movePaddingToFillOrGenericOp(rewriter, loc, padOp, alloc);
    rewriter.setInsertionPointAfter(fillOp);
  }

  // Create memref.tensor_store.
  SmallVector<OpFoldResult> sizes =
      getMixedSizes(rewriter, loc, padOp.getSource());
  SmallVector<OpFoldResult> strides(padOp.getResultType().getRank(),
                                    rewriter.getIndexAttr(1));
  Value subview = rewriter.create<memref::SubViewOp>(
      loc, alloc, /*offsets=*/padOp.getMixedLowPad(), sizes, strides);
  createMemcpy(rewriter, loc, padOp.getSource(), subview, options);

  // Create bufferization.to_tensor with "restrict" and "writable". The returned
  // tensor is a new buffer allocation, so it does not alias with any buffer.
  Value toTensorOp = rewriter.create<bufferization::ToTensorOp>(
      loc, alloc, /*restrict=*/true, /*writable=*/true);
  rewriter.replaceOp(padOp, toTensorOp);
  return alloc;
}

Value linalg::bufferizeToAllocation(
    RewriterBase &rewriter, const linalg::BufferizeToAllocationOptions &options,
    vector::MaskOp maskOp, Attribute memorySpace, Operation *insertionPoint) {
  assert(llvm::range_size(maskOp.getMaskBlock()->without_terminator()) == 1 &&
         "expected single masked op");
  OpBuilder::InsertionGuard g(rewriter);
  bufferization::BufferizationOptions bufferizationOptions;
  Operation *yieldOp = maskOp.getMaskRegion().front().getTerminator();
  assert(isa<vector::YieldOp>(yieldOp) && "expected yield op terminator");

  // Bufferize maskable op. By default, place the buffer allocation right before
  // the mask op.
  Value alloc = bufferizeToAllocation(
      rewriter, options, maskOp.getMaskableOp(), memorySpace,
      /*insertionPoint=*/insertionPoint ? insertionPoint : maskOp);

  if (options.bufferizeDestinationOnly)
    return alloc;

  // Bufferize terminator.
  rewriter.setInsertionPoint(yieldOp);
  if (failed(cast<bufferization::BufferizableOpInterface>(yieldOp).bufferize(
          rewriter, bufferizationOptions)))
    return nullptr;

  // Erase dead to_tensor ops inside of the mask op. This is necessary because
  // there only be one op (apart from the terminator) inside the mask op.
  // TODO: Remove dead to_tensor ops more aggressively during bufferization.
  SmallVector<Operation *> toTensorOps;
  maskOp.walk([&](bufferization::ToTensorOp toTensorOp) {
    if (toTensorOp->getUses().empty())
      toTensorOps.push_back(toTensorOp.getOperation());
  });
  for (Operation *op : toTensorOps)
    rewriter.eraseOp(op);

  // Bufferize mask op.
  SmallVector<OpOperand *> resultUses;
  for (Value result : maskOp.getResults())
    if (isa<TensorType>(result.getType()))
      for (OpOperand &use : result.getUses())
        resultUses.push_back(&use);
  rewriter.setInsertionPoint(maskOp);
  if (failed(cast<bufferization::BufferizableOpInterface>(maskOp.getOperation())
                 .bufferize(rewriter, bufferizationOptions)))
    return nullptr;

  // Set "restrict" attribute, indicating that no other tensor aliases with
  // this tensor. That is because we just allocated a new buffer for the tensor.
  for (OpOperand *resultUse : resultUses) {
    auto toTensorOp =
        resultUse->get().getDefiningOp<bufferization::ToTensorOp>();
    assert(toTensorOp && "expected to_tensor op");
    rewriter.updateRootInPlace(toTensorOp, [&]() {
      toTensorOp.setRestrict(true);
      toTensorOp.setWritable(true);
    });
  }

  return alloc;
}

/// Lower tensor.from_elements to a sequence of chained tensor.insert.
FailureOr<Operation *> mlir::linalg::rewriteInDestinationPassingStyle(
    RewriterBase &rewriter, tensor::FromElementsOp fromElementsOp) {
  Location loc = fromElementsOp.getLoc();
  RankedTensorType tensorType =
      cast<RankedTensorType>(fromElementsOp.getType());
  auto shape = tensorType.getShape();

  // Create tensor.empty.
  auto emptyOp = rewriter.create<EmptyOp>(loc, tensorType, ValueRange());

  // Case: tensor<elem_type>.
  if (shape.empty()) {
    Operation *res = rewriter.replaceOpWithNewOp<tensor::InsertOp>(
        fromElementsOp, fromElementsOp.getElements().front(),
        emptyOp.getResult(), ValueRange());
    return res;
  }

  // Create constants for the range of possible indices [0, max{shape_i}).
  auto maxDim = *std::max_element(shape.begin(), shape.end());
  SmallVector<Value, 2> constants;
  constants.reserve(maxDim);
  for (int i = 0; i < maxDim; ++i)
    constants.push_back(rewriter.create<arith::ConstantIndexOp>(loc, i));

  // Traverse all elements and create tensor.insert ops.
  auto elementIt = fromElementsOp.getElements().begin();
  SmallVector<Value, 2> indices(tensorType.getRank(), constants[0]);
  Value result = createInserts(rewriter, loc, /*dim=*/0, emptyOp.getResult(),
                               shape, constants, elementIt, indices);

  // Replace tensor.from_elements.
  rewriter.replaceOp(fromElementsOp, result);
  return result.getDefiningOp();
}

/// Lower tensor.generate to linalg.generic.
FailureOr<Operation *>
mlir::linalg::rewriteInDestinationPassingStyle(RewriterBase &rewriter,
                                               tensor::GenerateOp generateOp) {
  // Only ops with exactly one block are supported.
  if (!generateOp.getBody().hasOneBlock())
    return failure();

  Location loc = generateOp.getLoc();
  RankedTensorType tensorType = cast<RankedTensorType>(generateOp.getType());

  // Create tensor.empty.
  auto emptyOp =
      rewriter.create<EmptyOp>(loc, tensorType, generateOp.getDynamicExtents());

  // Create linalg.generic.
  SmallVector<utils::IteratorType> iteratorTypes(tensorType.getRank(),
                                                 utils::IteratorType::parallel);
  SmallVector<AffineMap> indexingMaps(
      1, rewriter.getMultiDimIdentityMap(tensorType.getRank()));
  auto genericOp = rewriter.create<linalg::GenericOp>(
      loc, tensorType, /*inputs=*/ValueRange(),
      /*outputs=*/ValueRange{emptyOp.getResult()}, /*indexingMaps=*/
      indexingMaps, iteratorTypes);
  Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
                                     tensorType.getElementType(), loc);
  rewriter.setInsertionPointToStart(body);
  SmallVector<Value> bbArgReplacements;
  for (int64_t i = 0; i < tensorType.getRank(); ++i)
    bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
  rewriter.mergeBlocks(&generateOp.getBody().front(), body, bbArgReplacements);

  // Update terminator.
  auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
  rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());

  // Replace tensor.generate.
  rewriter.replaceOp(generateOp, genericOp->getResult(0));
  return genericOp.getOperation();
}

/// Lower tensor.pad to linalg.generic + tensor.insert_slice.
FailureOr<Operation *>
mlir::linalg::rewriteInDestinationPassingStyle(RewriterBase &rewriter,
                                               tensor::PadOp padOp) {
  // Only ops with exactly one block are supported.
  if (!padOp.getBodyRegion().hasOneBlock())
    return failure();

  // Create tensor.empty.
  Location loc = padOp.getLoc();
  RankedTensorType resultType = padOp.getResultType();
  ReifiedRankedShapedTypeDims reifiedShape;
  if (failed(reifyResultShapes(rewriter, padOp, reifiedShape)))
    return rewriter.notifyMatchFailure(
        padOp, "failed to reify tensor.pad op result shape");
  SmallVector<Value> dynamicSizes;
  for (int64_t i = 0; i < resultType.getRank(); ++i)
    if (resultType.isDynamicDim(i))
      dynamicSizes.push_back(reifiedShape[0][i].get<Value>());

  // If the `padOp` has a nofold attribute and all paddings are known to be 0,
  // explicitly insert a `linalg.copy`.
  if (padOp.getNofoldAttr() &&
      llvm::all_of(padOp.getMixedLowPad(), isZeroIndex) &&
      llvm::all_of(padOp.getMixedHighPad(), isZeroIndex)) {
    using bufferization::AllocTensorOp;
    Value allocated =
        rewriter.create<AllocTensorOp>(loc, resultType, dynamicSizes);
    auto copyOp = rewriter.replaceOpWithNewOp<linalg::CopyOp>(
        padOp, padOp.getSource(), allocated);
    return copyOp.getOperation();
  }

  Value empty = rewriter.create<EmptyOp>(loc, resultType, dynamicSizes);
  // Create linalg.fill or linalg.generic.
  Operation *fillOp = movePaddingToFillOrGenericOp(rewriter, loc, padOp, empty);
  rewriter.setInsertionPointAfter(fillOp);

  // Create tensor::InsertSliceOp.
  SmallVector<OpFoldResult> sliceSizes =
      getMixedSizes(rewriter, loc, padOp.getSource());
  SmallVector<OpFoldResult> sliceStrides(resultType.getRank(),
                                         rewriter.getIndexAttr(1));
  auto insertSliceOp = rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
      padOp, padOp.getSource(), fillOp->getResult(0),
      /*offsets=*/padOp.getMixedLowPad(), sliceSizes, sliceStrides);
  return insertSliceOp.getOperation();
}

Value linalg::bufferizeToAllocation(
    RewriterBase &rewriter, const linalg::BufferizeToAllocationOptions &options,
    Operation *op, Attribute memorySpace, Operation *insertionPoint) {
  using namespace bufferization;

  // Call specialized overload for certain ops.
  if (auto padOp = dyn_cast<tensor::PadOp>(op))
    return bufferizeToAllocation(rewriter, options, padOp, memorySpace);
  if (auto maskOp = dyn_cast<vector::MaskOp>(op))
    return bufferizeToAllocation(rewriter, options, maskOp, memorySpace);

  // Only bufferizable ops are supported.
  auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op);
  if (!bufferizableOp)
    return nullptr;
  BufferizationOptions bufferizationOptions;
  AnalysisState state(bufferizationOptions);

#ifndef NDEBUG
  // Ops with nested tensor ops are not supported yet. At the moment, this
  // function just bufferizes the given op itself, but not its body.
  op->walk([&](Operation *nestedOp) {
    if (op == nestedOp)
      return;
    if (llvm::any_of(nestedOp->getOperands(),
                     [](Value v) { return v.getType().isa<TensorType>(); }))
      llvm_unreachable("ops with nested tensor ops are not supported yet");
    if (llvm::any_of(nestedOp->getResults(),
                     [](Value v) { return v.getType().isa<TensorType>(); }))
      llvm_unreachable("ops with nested tensor ops are not supported yet");
  });
#endif // NDEBUG

  // Gather tensor results.
  SmallVector<OpResult> tensorResults;
  for (OpResult result : op->getResults()) {
    if (!result.getType().isa<TensorType>())
      continue;
    // Unranked tensors are not supported
    if (!isa<RankedTensorType>(result.getType()))
      return nullptr;
    // Ops that bufferize to an allocation are not supported.
    if (bufferizableOp.bufferizesToAllocation(result))
      return nullptr;
    tensorResults.push_back(result);
  }

  // Gather all operands that should bufferize to a new allocation. I.e.,
  // bufferize out-of-place.
  SmallVector<OpOperand *> outOfPlaceOperands, resultUses;
  auto addOutOfPlaceOperand = [&](OpOperand *operand) {
    if (llvm::find(outOfPlaceOperands, operand) == outOfPlaceOperands.end())
      outOfPlaceOperands.push_back(operand);
  };
  for (OpResult result : tensorResults) {
    AliasingOpOperandList aliasingOperands =
        state.getAliasingOpOperands(result);
    for (const AliasingOpOperand &operand : aliasingOperands) {
      addOutOfPlaceOperand(operand.opOperand);
      for (OpOperand &resultUse : result.getUses())
        resultUses.push_back(&resultUse);
    }
  }
  for (OpOperand &operand : op->getOpOperands()) {
    if (!state.bufferizesToMemoryWrite(operand))
      continue;
    if (!isa<RankedTensorType>(operand.get().getType()))
      return nullptr;
    addOutOfPlaceOperand(&operand);
  }
  // TODO: Support multiple buffers.
  if (outOfPlaceOperands.size() != 1)
    return nullptr;

  // Allocate buffers.
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(insertionPoint ? insertionPoint : op);
  SmallVector<Value> allocs;
  for (OpOperand *operand : outOfPlaceOperands) {
    Value alloc = createAllocationForTensor(
        rewriter, op->getLoc(), operand->get(), options, memorySpace);
    allocs.push_back(alloc);
    if (!state.findDefinitions(operand->get()).empty()) {
      // Initialize buffer with a copy of the operand data. Not needed if the
      // tensor is uninitialized.
      createMemcpy(rewriter, op->getLoc(), operand->get(), alloc, options);
    }
    rewriter.updateRootInPlace(op, [&]() {
      auto toTensorOp = rewriter.create<ToTensorOp>(op->getLoc(), alloc);
      operand->set(toTensorOp);
      if (options.bufferizeDestinationOnly) {
        rewriter.updateRootInPlace(toTensorOp, [&]() {
          toTensorOp.setRestrict(true);
          toTensorOp.setWritable(true);
        });
      }
    });
  }

  if (options.bufferizeDestinationOnly)
    return allocs.front();

  // Bufferize the op.
  rewriter.setInsertionPoint(op);
  if (failed(bufferizableOp.bufferize(rewriter, bufferizationOptions)))
    return nullptr;

  // Set "restrict" attribute, indicating that no other tensor aliases with
  // this tensor. That is because we just allocated a new buffer for the tensor.
  for (OpOperand *resultUse : resultUses) {
    auto toTensorOp = resultUse->get().getDefiningOp<ToTensorOp>();
    assert(toTensorOp && "expected to_tensor op");
    rewriter.updateRootInPlace(toTensorOp, [&]() {
      toTensorOp.setRestrict(true);
      toTensorOp.setWritable(true);
    });
  }
  return allocs.front();
}

namespace {

template <typename OpTy>
LogicalResult rewriteOpInDestinationPassingStyle(OpTy op,
                                                 PatternRewriter &rewriter) {
  return linalg::rewriteInDestinationPassingStyle(rewriter, op);
}

} // namespace

void linalg::populateConvertToDestinationStylePatterns(
    RewritePatternSet &patterns) {
  patterns.add(rewriteOpInDestinationPassingStyle<tensor::FromElementsOp>);
  patterns.add(rewriteOpInDestinationPassingStyle<tensor::GenerateOp>);
  patterns.add(rewriteOpInDestinationPassingStyle<tensor::PadOp>);
}