1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
//===- DecomposeLinalgOps.cpp - Pattern to break up Linalg ops ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include <optional>
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Pattern to decompose a GenericOp that has more than two statements
/// into one GenericOp with the first statement (i.e. peeled operation), and
/// a second GenericOp with the remaining statements (i.e. residual operations).
/// - The result of the first GenericOp has the same shape as the iteration
/// space of the GenericOp. The body of the op yields as many values as the
/// original op plus all the results of the peeled operation.
/// - The second GenericOp has as many operands as the original operation plus
/// all the results of the first Generic Op. It has the same number of yields as
/// the original op.
/// - If the result of the peeled operation was yielded by the original
/// GenericOp the uses of the corresponding results will be replaced with the
/// result of the first GenericOp created.
///
/// Example
///
/// ```mlir
/// %result:2 = linalg.generic ... ins(%arg0, %arg1, %arg2 : ...)
/// outs(%init0, %init1 : ...) {
/// ^bb0(%b0: ... , %b1: ... , %b2: ... , %b3: ..., %b4: ...):
/// %0 = <s0> %b0, %b1 : ...
/// %1 = <s1> %0, %b2 : ...
/// linalg.yield %0, %1 : ...
/// } -> (..., ...)
/// return %result#0, %result#1
/// ```
///
/// gets split into
///
/// ```mlir
/// %init = tensor.empty ...
/// %op0:3 = linalg.generic ... ins(%arg0, %arg1, %arg2 : ...)
/// outs(%init0, %init1, %init : ...)
/// ^bb0(%b0: ... , %b1: ... , %b2: ... , %b3: ..., %b4: ..., %b5: ...):
/// %0 = <s0> %b0, %b1 : ...
/// linalg.yield %0, %..., %0 : ...
/// } -> (..., ..., ...)
/// %op1:2 = linalg.generic ... ins(%arg0, %arg1, %arg2, %op0#2 : ...)
/// outs(%init0, %init1 : ...) {
/// ^bb0(%b0: ... , %b1: ... , %b2: ... , %b3: ..., %b4: ..., %b5: ...):
/// %1 = <s1> %b3, %b2 : ...
/// linalg.yield %..., %1 : ...
/// } -> (..., ...)
/// return %op0#0, %op1#1
/// ```
///
/// After canonicalization this is expected to be
///
/// ```mlir
/// %init = tensor.empty ...
/// %op0 = linalg.generic ... ins(%arg0, %arg1, : ...)
/// outs(%init : ...)
/// ^bb0(%b0: ... , %b1: ... , %b2: ...):
/// %0 = <s0> %b0, %b1 : ...
/// linalg.yield %0 : ...
/// } -> ...
/// %op1 = linalg.generic ... ins(%arg2, %op0#2 : ...)
/// outs(%init1 : ...) {
/// ^bb0(%b0: ... , %b1: ... , %b2: ...):
/// %1 = <s1> %b1, %b0 : ...
/// linalg.yield %..., %1 : ...
/// } -> ...
/// return %op0, %op1
/// ```
struct DecomposeLinalgOp : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override;
private:
/// Helper method to create a generic op for the peeled scalar operation. The
/// created op has an empty region.
GenericOp createPeeledGenericOp(GenericOp genericOp,
PatternRewriter &rewriter) const;
/// Helper method to create a generic op for the residual scalar operation.
/// The created op has the same region as the original op.
GenericOp createResidualGenericOp(GenericOp genericOp,
GenericOp peeledGenericOp,
PatternRewriter &rewriter) const;
};
} // namespace
/// Helper method to compute the range of a generic op.
static SmallVector<OpFoldResult> getGenericOpLoopRange(OpBuilder &b,
GenericOp op) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
Location loc = op.getLoc();
auto allShapesSizes =
cast<LinalgOp>(op.getOperation()).createFlatListOfOperandDims(b, loc);
AffineMap map = op.getShapesToLoopsMap();
IRRewriter rewriter(b);
return affine::makeComposedFoldedMultiResultAffineApply(rewriter, loc, map,
allShapesSizes);
}
/// Helper method to permute the list of `values` based on the `map`.
SmallVector<OpFoldResult> permuteValues(ArrayRef<OpFoldResult> values,
AffineMap map) {
assert(map.isPermutation());
SmallVector<OpFoldResult> permutedValues(values.size());
for (const auto &position :
llvm::enumerate(llvm::map_range(map.getResults(), [](AffineExpr expr) {
return expr.cast<AffineDimExpr>().getPosition();
})))
permutedValues[position.value()] = values[position.index()];
return permutedValues;
}
/// Get zero value for an element type.
static Value getZero(OpBuilder &b, Location loc, Type elementType) {
assert(elementType.isIntOrIndexOrFloat() &&
"expected scalar type while computing zero value");
if (isa<IntegerType>(elementType))
return b.create<arith::ConstantIntOp>(loc, 0, elementType);
if (elementType.isIndex())
return b.create<arith::ConstantIndexOp>(loc, 0);
// Assume float.
auto floatType = cast<FloatType>(elementType);
return b.create<arith::ConstantFloatOp>(
loc, APFloat::getZero(floatType.getFloatSemantics()), floatType);
}
GenericOp
DecomposeLinalgOp::createPeeledGenericOp(GenericOp genericOp,
PatternRewriter &rewriter) const {
Block *body = genericOp.getBody();
Operation *peeledScalarOperation = &(*body->begin());
SmallVector<AffineMap> peeledGenericOpIndexingMaps =
genericOp.getIndexingMapsArray();
/// Compute the loop ranges for operation. This is the shape of the result of
/// the generic op for the peeled operation.
Location loc = genericOp.getLoc();
SmallVector<OpFoldResult> domain = getGenericOpLoopRange(rewriter, genericOp);
SmallVector<Value> newInitValues;
SmallVector<Type> newResultTypes;
// Add as many new results as the number of results of the peeled scalar op.
for (auto scalarOpResult : peeledScalarOperation->getResults()) {
// If the result is yielded by the original op, use the operand, indexing
// map and result type that correspond to the yielded value.
std::optional<unsigned> resultNumber;
for (auto *user : scalarOpResult.getUsers()) {
if (auto yieldOp = dyn_cast<YieldOp>(user)) {
// Find the first use of the `scalarOpResult` in the yield op.
for (OpOperand &yieldOperand : yieldOp->getOpOperands()) {
if (yieldOperand.get() == scalarOpResult) {
resultNumber = yieldOperand.getOperandNumber();
break;
}
}
assert(resultNumber && "unable to find use of a value in its user");
break;
}
}
if (resultNumber) {
newInitValues.push_back(
genericOp.getDpsInitOperand(*resultNumber)->get());
OpResult result = cast<OpResult>(genericOp.getResult(*resultNumber));
newResultTypes.push_back(result.getType());
peeledGenericOpIndexingMaps.push_back(
genericOp.getIndexingMapMatchingResult(result));
continue;
}
// Fall back path, use an `init_tensor` and identity indexing map.
AffineMap indexingMap = rewriter.getMultiDimIdentityMap(domain.size());
Value emptyTensor =
rewriter.create<tensor::EmptyOp>(loc, domain, scalarOpResult.getType());
newInitValues.push_back(emptyTensor);
newResultTypes.push_back(emptyTensor.getType());
peeledGenericOpIndexingMaps.push_back(indexingMap);
}
/// Create the peeled generic op with an empty body.
SmallVector<Value> outsOperands = genericOp.getOutputs();
outsOperands.append(newInitValues.begin(), newInitValues.end());
SmallVector<Type> resultTypes = llvm::to_vector(genericOp.getResultTypes());
resultTypes.append(newResultTypes.begin(), newResultTypes.end());
auto indexingMapAttr =
rewriter.getAffineMapArrayAttr(peeledGenericOpIndexingMaps);
return rewriter.create<GenericOp>(
loc, resultTypes, genericOp.getInputs(), outsOperands, indexingMapAttr,
genericOp.getIteratorTypes(), /*doc=*/nullptr, /*libraryCall=*/nullptr,
[](OpBuilder, Location, ValueRange) {});
}
GenericOp
DecomposeLinalgOp::createResidualGenericOp(GenericOp genericOp,
GenericOp peeledGenericOp,
PatternRewriter &rewriter) const {
/// Append all results from the peeledGenericOps as `ins` operand for the
/// residual generic op.
SmallVector<Value> residualGenericOpOperands = genericOp.getInputs();
unsigned origNumResults = genericOp.getNumResults();
unsigned peeledGenericOpNumResults = peeledGenericOp.getNumResults();
SmallVector<Value> extraIns;
for (auto resultNum :
llvm::seq<unsigned>(origNumResults, peeledGenericOpNumResults))
extraIns.push_back(peeledGenericOp->getResult(resultNum));
residualGenericOpOperands.append(extraIns);
/// Add indexing maps for the newly added operands. Use the same map
/// as those used for the new results of the peeledGenericOp.
auto indexingMaps = llvm::to_vector(
llvm::map_range(genericOp.getDpsInputOperands(), [&](OpOperand *operand) {
return genericOp.getMatchingIndexingMap(operand);
}));
for (auto resultNum :
llvm::seq<unsigned>(origNumResults, peeledGenericOpNumResults)) {
OpResult result = cast<OpResult>(peeledGenericOp.getResult(resultNum));
indexingMaps.push_back(
peeledGenericOp.getIndexingMapMatchingResult(result));
}
for (OpOperand *outOperand : genericOp.getDpsInitOperands())
indexingMaps.push_back(genericOp.getMatchingIndexingMap(outOperand));
auto indexingMapAttr = rewriter.getAffineMapArrayAttr(indexingMaps);
return rewriter.create<GenericOp>(
genericOp->getLoc(), genericOp->getResultTypes(),
residualGenericOpOperands, genericOp.getOutputs(), indexingMapAttr,
genericOp.getIteratorTypes(), /*doc=*/nullptr, /*libraryCall=*/nullptr,
[](OpBuilder, Location, ValueRange) {});
}
LogicalResult
DecomposeLinalgOp::matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const {
/// For now only match on operations where the iterator types are all parallel
if (genericOp.getNumParallelLoops() != genericOp.getNumLoops()) {
return rewriter.notifyMatchFailure(genericOp,
"unhandled decomposition of operation "
"with non-parallel iterator types");
}
// TODO: this could be generalized to handle `linalg.generic` with buffer
// operands too but requires allocation for intermediates. Punt on this for
// now.
if (!genericOp.hasTensorSemantics()) {
return rewriter.notifyMatchFailure(
genericOp, "only operations with tensor semantics are handled");
}
if (llvm::any_of(genericOp.getDpsInitOperands(), [&](OpOperand *outOperand) {
return !genericOp.getMatchingIndexingMap(outOperand).isPermutation();
})) {
return rewriter.notifyMatchFailure(
genericOp, "unhandled decomposition of generic op with out operand not "
"accessed using a permutation");
}
/// If the op has only a single statement (apart from the yield), do nothing.
Block *body = genericOp.getBody();
if (body->getOperations().size() <= 2) {
return rewriter.notifyMatchFailure(genericOp,
"operation has less than 3 statements");
}
/// Check that the peeled statement has a scalar element type.
if (llvm::any_of(body->getOperations().begin()->getResultTypes(),
[](Type t) { return !t.isIntOrIndexOrFloat(); })) {
return rewriter.notifyMatchFailure(
&(*body->getOperations().begin()),
"expected return type to be only int, index or float");
}
GenericOp peeledGenericOp = createPeeledGenericOp(genericOp, rewriter);
GenericOp residualGenericOp =
createResidualGenericOp(genericOp, peeledGenericOp, rewriter);
/// Move the first statement of the original operation into the body of the
/// generic op for the peeled operation.
Block *peeledGenericOpBody = peeledGenericOp.getBody();
Block *residualGenericOpBody = residualGenericOp.getBody();
assert(peeledGenericOpBody->empty() && residualGenericOpBody->empty() &&
"expected split generic ops to have empty region");
peeledGenericOpBody->getOperations().splice(
peeledGenericOpBody->begin(), body->getOperations(), body->begin());
residualGenericOpBody->getOperations().splice(residualGenericOpBody->begin(),
body->getOperations());
Operation *peeledScalarOperation = &(*peeledGenericOpBody->begin());
auto *yieldOp = residualGenericOpBody->getTerminator();
{
// Yield all the result of the peeled scalar operation.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPointToEnd(peeledGenericOpBody);
SmallVector<Value> yieldedVals;
for (auto origYield : yieldOp->getOperands()) {
if (origYield.getDefiningOp() == peeledScalarOperation) {
yieldedVals.push_back(origYield);
} else {
yieldedVals.push_back(
getZero(rewriter, genericOp.getLoc(), origYield.getType()));
}
}
yieldedVals.append(llvm::to_vector(
llvm::map_range(peeledScalarOperation->getResults(),
[](OpResult opr) -> Value { return opr; })));
rewriter.create<YieldOp>(genericOp.getLoc(), yieldedVals);
}
/// In the split operations, replace block arguments uses that refer to
/// original operation to the block arguments of the newly created operation.
unsigned origNumInputs = genericOp.getNumDpsInputs();
for (const auto &inputBlockArg :
llvm::enumerate(genericOp.getBody()->getArguments())) {
Value residualOpReplacementArg =
residualGenericOpBody->getArgument(inputBlockArg.index());
rewriter.replaceUsesWithIf(
inputBlockArg.value(), residualOpReplacementArg, [&](OpOperand &use) {
return use.getOwner()->getBlock() == residualGenericOpBody;
});
Value peeledOpReplacementArg =
peeledGenericOpBody->getArgument(inputBlockArg.index());
rewriter.replaceUsesWithIf(
inputBlockArg.value(), peeledOpReplacementArg, [&](OpOperand &use) {
return use.getOwner()->getBlock() == peeledGenericOpBody;
});
}
/// Before fixing up the residual operation, track what values are yielded. If
/// any of those are from the peeled scalar operation, the uses of the
/// corresponding result have to be remapped to result of the generic op for
/// the peeled operation.
SmallVector<Value> replacements;
for (const auto &yieldValue : llvm::enumerate(yieldOp->getOperands())) {
OpResult opr = dyn_cast<OpResult>(yieldValue.value());
if (!opr || opr.getOwner() != peeledScalarOperation)
replacements.push_back(residualGenericOp.getResult(yieldValue.index()));
else
replacements.push_back(peeledGenericOp->getResult(yieldValue.index()));
}
/// Update all uses of the peeled scalar operation results in the residual op
/// to the newly added arguments.
{
SmallVector<Value> scalarReplacements;
unsigned peeledScalarOpNumResults = peeledScalarOperation->getNumResults();
scalarReplacements.reserve(peeledScalarOpNumResults);
for (auto num : llvm::seq<unsigned>(0, peeledScalarOpNumResults))
scalarReplacements.push_back(
residualGenericOpBody->getArgument(num + origNumInputs));
bool allUsesReplaced = false;
rewriter.replaceOpWithinBlock(peeledScalarOperation, scalarReplacements,
residualGenericOpBody, &allUsesReplaced);
assert(!allUsesReplaced &&
"peeled scalar operation is erased when it wasnt expected to be");
}
// Replace the original operation
rewriter.replaceOp(genericOp, replacements);
return success();
}
void mlir::linalg::populateDecomposeLinalgOpsPattern(
RewritePatternSet &patterns, bool removeDeadArgsAndResults) {
patterns.insert<DecomposeLinalgOp>(patterns.getContext());
// Add the patterns to clean up the dead operands and results.
if (removeDeadArgsAndResults)
populateEraseUnusedOperandsAndResultsPatterns(patterns);
}
|