1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
|
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDUNITEXTENTDIMS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Pattern to move init operands to ins when all the loops are parallel and
/// blockArgument corresponding to init is used in the region. This is a fix-up
/// when unit reduction dimensions are all folded away. In this context, it
/// becomes a elementwise generic op. E.g., it converts
///
/// %0 = tensor.empty() : tensor<1x1xf32>
/// %1 = linalg.fill
/// ins(%cst : f32)
/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
/// %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
/// affine_map<(d0) -> (0, d0)>],
/// iterator_types = ["parallel"]}
/// ins(%arg0 : tensor<1x?x1x1xf32>)
/// outs(%1 : tensor<1x1xf32>) {
/// ^bb0(%in: f32, %out: f32):
/// %3 = arith.addf %in, %out : f32
/// linalg.yield %3 : f32
/// } -> tensor<1x1xf32>
///
/// into
///
/// %0 = tensor.empty() : tensor<1x1xf32>
/// %1 = linalg.fill
/// ins(%cst : f32)
/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
/// %2 = tensor.empty() : tensor<1x1xf32>
/// %3 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
/// affine_map<(d0) -> (0, d0)>,
/// affine_map<(d0) -> (0, d0)>],
/// iterator_types = ["parallel"]}
/// ins(%arg0, %1 : tensor<1x?x1x1xf32>, tensor<1x1xf32>)
/// outs(%2 : tensor<1x1xf32>) {
/// ^bb0(%in: f32, %in_0: f32, %out: f32):
/// %4 = arith.addf %in, %in_0 : f32
/// linalg.yield %4 : f32
/// } -> tensor<1x1xf32>
struct MoveInitOperandsToInput : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
if (!genericOp.hasTensorSemantics())
return failure();
if (genericOp.getNumParallelLoops() != genericOp.getNumLoops())
return failure();
auto outputOperands = genericOp.getDpsInitOperands();
SetVector<OpOperand *> candidates;
for (OpOperand *op : outputOperands) {
if (genericOp.getMatchingBlockArgument(op).use_empty())
continue;
candidates.insert(op);
}
if (candidates.empty())
return failure();
// Compute the modified indexing maps.
int64_t origNumInput = genericOp.getNumDpsInputs();
SmallVector<Value> newInputOperands = genericOp.getDpsInputOperands();
SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
SmallVector<AffineMap> newIndexingMaps;
newIndexingMaps.append(indexingMaps.begin(),
std::next(indexingMaps.begin(), origNumInput));
for (OpOperand *op : candidates) {
newInputOperands.push_back(op->get());
newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(op));
}
newIndexingMaps.append(std::next(indexingMaps.begin(), origNumInput),
indexingMaps.end());
Location loc = genericOp.getLoc();
SmallVector<Value> newOutputOperands = outputOperands;
for (OpOperand *op : candidates) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfterValue(op->get());
auto elemType = cast<ShapedType>(op->get().getType()).getElementType();
auto empty = rewriter.create<tensor::EmptyOp>(
loc, tensor::getMixedSizes(rewriter, loc, op->get()), elemType);
auto [start, end] = genericOp.getDpsInitsPositionRange();
newOutputOperands[op->getOperandNumber() - start] = empty.getResult();
}
auto newOp = rewriter.create<GenericOp>(
loc, genericOp.getResultTypes(), newInputOperands, newOutputOperands,
newIndexingMaps, genericOp.getIteratorTypesArray(),
/*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
Region ®ion = newOp.getRegion();
Block *block = new Block();
region.push_back(block);
IRMapping mapper;
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(block);
for (auto bbarg : genericOp.getRegionInputArgs())
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
for (OpOperand *op : candidates) {
BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
}
for (OpOperand *op : outputOperands) {
BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
if (candidates.count(op))
block->addArgument(bbarg.getType(), loc);
else
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
}
for (auto &op : genericOp.getBody()->getOperations()) {
rewriter.clone(op, mapper);
}
rewriter.replaceOp(genericOp, newOp.getResults());
return success();
}
};
} // namespace
//===---------------------------------------------------------------------===//
// Drop loops that are unit-extents within Linalg operations.
//===---------------------------------------------------------------------===//
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (0, d1)>,
/// affine_map<(d0, d1) -> (d0, 0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<1x5xf32>
/// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<5x1xf32>
/// %2 = linalg.generic #trait %0, %1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = arith.addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
/// return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (d1)>,
/// affine_map<(d0, d1) -> (d0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.generic #trait %arg0, %arg1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = arith.addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
/// return %0 : tensor<5x5xf32>
/// }
/// Update the index accesses of linalg operations having index semantics.
static void
replaceUnitDimIndexOps(GenericOp genericOp,
const llvm::SmallDenseSet<unsigned> &unitDims,
RewriterBase &rewriter) {
for (IndexOp indexOp :
llvm::make_early_inc_range(genericOp.getBody()->getOps<IndexOp>())) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(indexOp);
if (unitDims.count(indexOp.getDim()) != 0) {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(indexOp, 0);
} else {
// Update the dimension of the index operation if needed.
unsigned droppedDims = llvm::count_if(
unitDims, [&](unsigned dim) { return dim < indexOp.getDim(); });
if (droppedDims != 0)
rewriter.replaceOpWithNewOp<IndexOp>(indexOp,
indexOp.getDim() - droppedDims);
}
}
}
/// Expand the given `value` so that the type matches the type of `origDest`.
/// The `reassociation` is used when `rankReductionStrategy` is set to
/// `RankReductionStrategy::ReassociativeReshape`.
static Value
expandValue(RewriterBase &rewriter, Location loc, Value result, Value origDest,
ArrayRef<ReassociationIndices> reassociation,
ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) {
// There are no results for memref outputs.
auto origResultType = cast<RankedTensorType>(origDest.getType());
if (rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
unsigned rank = origResultType.getRank();
SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
SmallVector<OpFoldResult> sizes =
tensor::getMixedSizes(rewriter, loc, origDest);
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
return rewriter.createOrFold<tensor::InsertSliceOp>(
loc, result, origDest, offsets, sizes, strides);
}
assert(rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
return rewriter.create<tensor::ExpandShapeOp>(loc, origResultType, result,
reassociation);
}
/// Collapse the given `value` so that the type matches the type of
/// `origOutput`. The `reassociation` is used when `rankReductionStrategy` is
/// set to `RankReductionStrategy::ReassociativeReshape`.
static Value collapseValue(
RewriterBase &rewriter, Location loc, Value operand,
ArrayRef<int64_t> targetShape, ArrayRef<ReassociationIndices> reassociation,
ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) {
if (auto memrefType = dyn_cast<MemRefType>(operand.getType())) {
if (rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
FailureOr<Value> rankReducingExtract =
memref::SubViewOp::rankReduceIfNeeded(rewriter, loc, operand,
targetShape);
assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
return *rankReducingExtract;
}
assert(
rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
MemRefLayoutAttrInterface layout;
auto targetType = MemRefType::get(targetShape, memrefType.getElementType(),
layout, memrefType.getMemorySpace());
return rewriter.create<memref::CollapseShapeOp>(loc, targetType, operand,
reassociation);
}
if (auto tensorType = dyn_cast<RankedTensorType>(operand.getType())) {
if (rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
FailureOr<Value> rankReducingExtract =
tensor::ExtractSliceOp::rankReduceIfNeeded(rewriter, loc, operand,
targetShape);
assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
return *rankReducingExtract;
}
assert(
rankReductionStrategy ==
ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
auto targetType =
RankedTensorType::get(targetShape, tensorType.getElementType());
return rewriter.create<tensor::CollapseShapeOp>(loc, targetType, operand,
reassociation);
}
llvm_unreachable("unsupported operand type");
}
/// Compute the modified metadata for an operands of operation
/// whose unit dims are being dropped. Return the new indexing map
/// to use, the shape of the operand in the replacement op
/// and the `reassocation` to use to go from original operand shape
/// to modified operand shape.
struct UnitExtentReplacementInfo {
AffineMap indexMap;
SmallVector<ReassociationIndices> reassociation;
SmallVector<int64_t> targetShape;
};
static UnitExtentReplacementInfo dropUnitExtentFromOperandMetadata(
MLIRContext *context, GenericOp genericOp, OpOperand *opOperand,
llvm::SmallDenseMap<unsigned, unsigned> &oldDimsToNewDimsMap,
ArrayRef<AffineExpr> dimReplacements) {
UnitExtentReplacementInfo info;
ReassociationIndices reassociationGroup;
SmallVector<AffineExpr> newIndexExprs;
AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
ArrayRef<int64_t> operandShape = genericOp.getShape(opOperand);
ArrayRef<AffineExpr> exprs = indexingMap.getResults();
auto isUnitDim = [&](unsigned dim) {
if (auto dimExpr = exprs[dim].dyn_cast<AffineDimExpr>()) {
unsigned oldPosition = dimExpr.getPosition();
return !oldDimsToNewDimsMap.count(oldPosition);
}
// Handle the other case where the shape is 1, and is accessed using a
// constant 0.
if (operandShape[dim] == 1) {
auto constAffineExpr = exprs[dim].dyn_cast<AffineConstantExpr>();
return constAffineExpr && constAffineExpr.getValue() == 0;
}
return false;
};
unsigned dim = 0;
while (dim < operandShape.size() && isUnitDim(dim))
reassociationGroup.push_back(dim++);
while (dim < operandShape.size()) {
assert(!isUnitDim(dim) && "expected non unit-extent");
reassociationGroup.push_back(dim);
AffineExpr newExpr = exprs[dim].replaceDims(dimReplacements);
newIndexExprs.push_back(newExpr);
info.targetShape.push_back(operandShape[dim]);
++dim;
// Fold all following dimensions that are unit-extent.
while (dim < operandShape.size() && isUnitDim(dim)) {
reassociationGroup.push_back(dim++);
}
info.reassociation.push_back(reassociationGroup);
reassociationGroup.clear();
}
info.indexMap =
AffineMap::get(oldDimsToNewDimsMap.size(), indexingMap.getNumSymbols(),
newIndexExprs, context);
return info;
}
LogicalResult linalg::dropUnitDims(RewriterBase &rewriter, GenericOp genericOp,
const ControlDropUnitDims &options) {
SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
if (indexingMaps.empty())
return failure();
// 1. Check if any of the iteration dimensions are unit-trip count. They will
// end up being unit-trip count if they are used to index into a unit-dim
// tensor/memref.
AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
if (!invertedMap) {
return rewriter.notifyMatchFailure(genericOp,
"invalid indexing maps for operation");
}
SmallVector<int64_t> dims = genericOp.getStaticShape();
// 1a. Get the allowed list of dimensions to drop from the `options`.
SmallVector<unsigned> allowedUnitDims = options.controlFn(genericOp);
if (allowedUnitDims.empty()) {
return rewriter.notifyMatchFailure(
genericOp, "control function returns no allowed unit dims to prune");
}
llvm::SmallDenseSet<unsigned> unitDimsFilter(allowedUnitDims.begin(),
allowedUnitDims.end());
llvm::SmallDenseSet<unsigned> unitDims;
for (const auto &expr : enumerate(invertedMap.getResults())) {
if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>()) {
if (dims[dimExpr.getPosition()] == 1 &&
unitDimsFilter.count(expr.index()))
unitDims.insert(expr.index());
}
}
// 2. Compute the iterator types of the modified op by dropping the one-trip
// count loops.
SmallVector<utils::IteratorType> newIteratorTypes;
llvm::SmallDenseMap<unsigned, unsigned> oldDimToNewDimMap;
SmallVector<AffineExpr> dimReplacements;
unsigned newDims = 0;
for (auto [index, attr] :
llvm::enumerate(genericOp.getIteratorTypesArray())) {
if (unitDims.count(index)) {
dimReplacements.push_back(
getAffineConstantExpr(0, rewriter.getContext()));
} else {
newIteratorTypes.push_back(attr);
oldDimToNewDimMap[index] = newDims;
dimReplacements.push_back(
getAffineDimExpr(newDims, rewriter.getContext()));
newDims++;
}
}
// 3. For each of the operands, find the
// - modified affine map to use.
// - shape of the operands after the unit-dims are dropped.
// - the reassociation indices used to convert from the original
// operand type to modified operand (needed only when using reshapes
// for rank reduction strategy)
// Note that the indexing maps might need changing even if there are no
// unit dimensions that are dropped to handle cases where `0` is used to
// access a unit-extent tensor. Consider moving this out of this specific
// transformation as a stand-alone transformation. Kept here right now due
// to legacy.
SmallVector<AffineMap> newIndexingMaps;
SmallVector<SmallVector<ReassociationIndices>> reassociations;
SmallVector<SmallVector<int64_t>> targetShapes;
SmallVector<bool> collapsed;
auto hasCollapsibleType = [](OpOperand &operand) {
Type operandType = operand.get().getType();
if (auto memrefOperandType = dyn_cast_or_null<MemRefType>(operandType)) {
return memrefOperandType.getLayout().isIdentity();
} else if (auto tensorOperandType =
dyn_cast<RankedTensorType>(operandType)) {
return tensorOperandType.getEncoding() == nullptr;
}
return false;
};
for (OpOperand &opOperand : genericOp->getOpOperands()) {
auto indexingMap = genericOp.getMatchingIndexingMap(&opOperand);
ArrayRef<int64_t> shape = genericOp.getShape(&opOperand);
if (!hasCollapsibleType(opOperand)) {
AffineMap newIndexingMap = indexingMap.replaceDimsAndSymbols(
dimReplacements, ArrayRef<AffineExpr>{}, oldDimToNewDimMap.size(), 0);
newIndexingMaps.push_back(newIndexingMap);
targetShapes.push_back(llvm::to_vector(shape));
collapsed.push_back(false);
reassociations.push_back({});
continue;
}
auto replacementInfo = dropUnitExtentFromOperandMetadata(
rewriter.getContext(), genericOp, &opOperand, oldDimToNewDimMap,
dimReplacements);
reassociations.push_back(replacementInfo.reassociation);
newIndexingMaps.push_back(replacementInfo.indexMap);
targetShapes.push_back(replacementInfo.targetShape);
collapsed.push_back(!(replacementInfo.indexMap.getNumResults() ==
indexingMap.getNumResults()));
}
// Abort if the indexing maps of the result operation are not invertible
// (i.e. not legal) or if no dimension was reduced.
if (newIndexingMaps == indexingMaps ||
!inversePermutation(concatAffineMaps(newIndexingMaps)))
return failure();
Location loc = genericOp.getLoc();
// 4. For each of the operands, collapse the operand to convert
// from original shape to shape in the modified operation if needed,
// either through use of reshapes or rank-reducing slices as
// specified in `options`.
SmallVector<Value> newOperands;
for (OpOperand &opOperand : genericOp->getOpOperands()) {
int64_t idx = opOperand.getOperandNumber();
if (!collapsed[idx]) {
newOperands.push_back(opOperand.get());
continue;
}
newOperands.push_back(collapseValue(rewriter, loc, opOperand.get(),
targetShapes[idx], reassociations[idx],
options.rankReductionStrategy));
}
// 5. Create the `linalg.generic` operation with the new operands,
// indexing maps, iterator types and result types.
ArrayRef<Value> newInputs =
ArrayRef<Value>(newOperands).take_front(genericOp.getNumDpsInputs());
ArrayRef<Value> newOutputs =
ArrayRef<Value>(newOperands).take_back(genericOp.getNumDpsInits());
SmallVector<Type> resultTypes;
resultTypes.reserve(genericOp.getNumResults());
for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
resultTypes.push_back(newOutputs[i].getType());
GenericOp replacementOp =
rewriter.create<GenericOp>(loc, resultTypes, newInputs, newOutputs,
newIndexingMaps, newIteratorTypes);
rewriter.inlineRegionBefore(genericOp.getRegion(), replacementOp.getRegion(),
replacementOp.getRegion().begin());
// 5a. Replace `linalg.index` operations that refer to the dropped unit
// dimensions.
replaceUnitDimIndexOps(replacementOp, unitDims, rewriter);
// 6. If any result type changes, insert a reshape/slice to convert from the
// original
// type to the new type.
SmallVector<Value> resultReplacements;
for (auto [index, result] : llvm::enumerate(replacementOp.getResults())) {
unsigned opOperandIndex = index + replacementOp.getNumDpsInputs();
Value origDest = genericOp.getDpsInitOperand(index)->get();
if (!collapsed[opOperandIndex]) {
resultReplacements.push_back(result);
continue;
}
resultReplacements.push_back(expandValue(rewriter, loc, result, origDest,
reassociations[opOperandIndex],
options.rankReductionStrategy));
}
rewriter.replaceOp(genericOp, resultReplacements);
return success();
}
namespace {
struct DropUnitDims : public OpRewritePattern<GenericOp> {
DropUnitDims(MLIRContext *context, ControlDropUnitDims options = {},
PatternBenefit benefit = 1)
: OpRewritePattern(context, benefit), options(std::move(options)) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
return dropUnitDims(rewriter, genericOp, options);
}
private:
ControlDropUnitDims options;
};
} // namespace
namespace {
/// Convert `extract_slice` operations to rank-reduced versions.
struct RankReducedExtractSliceOp
: public OpRewritePattern<tensor::ExtractSliceOp> {
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
RankedTensorType resultType = sliceOp.getType();
SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(resultType.getRank()))
return failure();
auto rankReducedType = cast<RankedTensorType>(
tensor::ExtractSliceOp::inferCanonicalRankReducedResultType(
reassociation->size(), sliceOp.getSourceType(), offsets, sizes,
strides));
Location loc = sliceOp.getLoc();
Value newSlice = rewriter.create<tensor::ExtractSliceOp>(
loc, rankReducedType, sliceOp.getSource(), offsets, sizes, strides);
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
sliceOp, resultType, newSlice, *reassociation);
return success();
}
};
/// Convert `insert_slice` operations to rank-reduced versions.
/// This patterns works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> {
using OpRewritePattern<InsertOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
PatternRewriter &rewriter) const override {
RankedTensorType sourceType = insertSliceOp.getSourceType();
SmallVector<OpFoldResult> offsets = insertSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = insertSliceOp.getMixedSizes();
SmallVector<OpFoldResult> strides = insertSliceOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(sourceType.getRank()))
return failure();
Location loc = insertSliceOp.getLoc();
tensor::CollapseShapeOp reshapedSource;
{
OpBuilder::InsertionGuard g(rewriter);
// The only difference between InsertSliceOp and ParallelInsertSliceOp
// is the insertion point is just before the ParallelCombiningOp in the
// parallel case.
if (std::is_same<InsertOpTy, tensor::ParallelInsertSliceOp>::value)
rewriter.setInsertionPoint(insertSliceOp->getParentOp());
reshapedSource = rewriter.create<tensor::CollapseShapeOp>(
loc, insertSliceOp.getSource(), *reassociation);
}
rewriter.replaceOpWithNewOp<InsertOpTy>(
insertSliceOp, reshapedSource, insertSliceOp.getDest(),
insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
insertSliceOp.getMixedStrides());
return success();
}
};
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
static void
populateFoldUnitExtentDimsViaReshapesPatterns(RewritePatternSet &patterns,
ControlDropUnitDims &options) {
auto *context = patterns.getContext();
patterns.add<DropUnitDims>(context, options);
// TODO: Patterns unrelated to unit dim folding should be factored out.
patterns.add<RankReducedExtractSliceOp,
RankReducedInsertSliceOp<tensor::InsertSliceOp>,
RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>(
context);
linalg::FillOp::getCanonicalizationPatterns(patterns, context);
tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
tensor::populateFoldTensorEmptyPatterns(patterns);
memref::populateResolveRankedShapedTypeResultDimsPatterns(patterns);
memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
static void
populateFoldUnitExtentDimsViaSlicesPatterns(RewritePatternSet &patterns,
ControlDropUnitDims &options) {
auto *context = patterns.getContext();
options.rankReductionStrategy =
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice;
patterns.add<DropUnitDims>(context, options);
// TODO: Patterns unrelated to unit dim folding should be factored out.
linalg::FillOp::getCanonicalizationPatterns(patterns, context);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
tensor::populateFoldTensorEmptyPatterns(patterns);
memref::populateResolveRankedShapedTypeResultDimsPatterns(patterns);
memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
void mlir::linalg::populateFoldUnitExtentDimsPatterns(
RewritePatternSet &patterns, linalg::ControlDropUnitDims &options) {
if (options.rankReductionStrategy ==
linalg::ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
populateFoldUnitExtentDimsViaSlicesPatterns(patterns, options);
} else if (options.rankReductionStrategy ==
linalg::ControlDropUnitDims::RankReductionStrategy::
ReassociativeReshape) {
populateFoldUnitExtentDimsViaReshapesPatterns(patterns, options);
}
}
void mlir::linalg::populateMoveInitOperandsToInputPattern(
RewritePatternSet &patterns) {
patterns.add<MoveInitOperandsToInput>(patterns.getContext());
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
: public impl::LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *context = op->getContext();
RewritePatternSet patterns(context);
ControlDropUnitDims options;
if (useRankReducingSlices) {
options.rankReductionStrategy = linalg::ControlDropUnitDims::
RankReductionStrategy::ExtractInsertSlice;
}
linalg::populateFoldUnitExtentDimsPatterns(patterns, options);
populateMoveInitOperandsToInputPattern(patterns);
(void)applyPatternsAndFoldGreedily(op, std::move(patterns));
}
};
} // namespace
std::unique_ptr<Pass> mlir::createLinalgFoldUnitExtentDimsPass() {
return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}
|