File: DropUnitDims.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (707 lines) | stat: -rw-r--r-- 29,909 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Passes.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDUNITEXTENTDIMS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir

#define DEBUG_TYPE "linalg-drop-unit-dims"

using namespace mlir;
using namespace mlir::linalg;

namespace {
/// Pattern to move init operands to ins when all the loops are parallel and
/// blockArgument corresponding to init is used in the region. This is a fix-up
/// when unit reduction dimensions are all folded away. In this context, it
/// becomes a elementwise generic op. E.g., it converts
///
///  %0 = tensor.empty() : tensor<1x1xf32>
///  %1 = linalg.fill
///    ins(%cst : f32)
///    outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
///  %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
///                                        affine_map<(d0) -> (0, d0)>],
///                       iterator_types = ["parallel"]}
///    ins(%arg0 : tensor<1x?x1x1xf32>)
///    outs(%1 : tensor<1x1xf32>) {
///  ^bb0(%in: f32, %out: f32):
///    %3 = arith.addf %in, %out : f32
///    linalg.yield %3 : f32
///  } -> tensor<1x1xf32>
///
///  into
///
///  %0 = tensor.empty() : tensor<1x1xf32>
///  %1 = linalg.fill
///    ins(%cst : f32)
///    outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
///  %2 = tensor.empty() : tensor<1x1xf32>
///  %3 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
///                                        affine_map<(d0) -> (0, d0)>,
///                                        affine_map<(d0) -> (0, d0)>],
///                       iterator_types = ["parallel"]}
///   ins(%arg0, %1 : tensor<1x?x1x1xf32>, tensor<1x1xf32>)
///   outs(%2 : tensor<1x1xf32>) {
///  ^bb0(%in: f32, %in_0: f32, %out: f32):
///    %4 = arith.addf %in, %in_0 : f32
///    linalg.yield %4 : f32
///  } -> tensor<1x1xf32>
struct MoveInitOperandsToInput : public OpRewritePattern<GenericOp> {
  using OpRewritePattern<GenericOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    if (!genericOp.hasTensorSemantics())
      return failure();
    if (genericOp.getNumParallelLoops() != genericOp.getNumLoops())
      return failure();

    auto outputOperands = genericOp.getDpsInitOperands();
    SetVector<OpOperand *> candidates;
    for (OpOperand *op : outputOperands) {
      if (genericOp.getMatchingBlockArgument(op).use_empty())
        continue;
      candidates.insert(op);
    }

    if (candidates.empty())
      return failure();

    // Compute the modified indexing maps.
    int64_t origNumInput = genericOp.getNumDpsInputs();
    SmallVector<Value> newInputOperands = genericOp.getDpsInputOperands();
    SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
    SmallVector<AffineMap> newIndexingMaps;
    newIndexingMaps.append(indexingMaps.begin(),
                           std::next(indexingMaps.begin(), origNumInput));
    for (OpOperand *op : candidates) {
      newInputOperands.push_back(op->get());
      newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(op));
    }
    newIndexingMaps.append(std::next(indexingMaps.begin(), origNumInput),
                           indexingMaps.end());

    Location loc = genericOp.getLoc();
    SmallVector<Value> newOutputOperands = outputOperands;
    for (OpOperand *op : candidates) {
      OpBuilder::InsertionGuard guard(rewriter);
      rewriter.setInsertionPointAfterValue(op->get());
      auto elemType = cast<ShapedType>(op->get().getType()).getElementType();
      auto empty = rewriter.create<tensor::EmptyOp>(
          loc, tensor::getMixedSizes(rewriter, loc, op->get()), elemType);

      auto [start, end] = genericOp.getDpsInitsPositionRange();
      newOutputOperands[op->getOperandNumber() - start] = empty.getResult();
    }

    auto newOp = rewriter.create<GenericOp>(
        loc, genericOp.getResultTypes(), newInputOperands, newOutputOperands,
        newIndexingMaps, genericOp.getIteratorTypesArray(),
        /*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));

    Region &region = newOp.getRegion();
    Block *block = new Block();
    region.push_back(block);
    IRMapping mapper;
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(block);
    for (auto bbarg : genericOp.getRegionInputArgs())
      mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));

    for (OpOperand *op : candidates) {
      BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
      mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
    }

    for (OpOperand *op : outputOperands) {
      BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
      if (candidates.count(op))
        block->addArgument(bbarg.getType(), loc);
      else
        mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
    }

    for (auto &op : genericOp.getBody()->getOperations()) {
      rewriter.clone(op, mapper);
    }
    rewriter.replaceOp(genericOp, newOp.getResults());

    return success();
  }
};
} // namespace

//===---------------------------------------------------------------------===//
// Drop loops that are unit-extents within Linalg operations.
//===---------------------------------------------------------------------===//

/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
///   affine_map<(d0, d1) -> (0, d1)>,
///   affine_map<(d0, d1) -> (d0, 0)>,
///   affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
///   args_in = 2,
///   args_out = 1,
///   indexing_maps = #accesses,
///   iterator_types = ["parallel", "parallel"],
///   library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
///   %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
///        tensor<5xf32> into tensor<1x5xf32>
///   %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
///        tensor<5xf32> into tensor<5x1xf32>
///   %2 = linalg.generic #trait %0, %1 {
///        ^bb0(%arg2: f32, %arg3: f32):
///          %3 = arith.addf %arg2, %arg3 : f32
///          linalg.yield %3 : f32
///        } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
///   return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
///   affine_map<(d0, d1) -> (d1)>,
///   affine_map<(d0, d1) -> (d0)>,
///   affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
///   args_in = 2,
///   args_out = 1,
///   indexing_maps = #accesses,
///   iterator_types = ["parallel", "parallel"],
///   library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
///   %0 = linalg.generic #trait %arg0, %arg1 {
///        ^bb0(%arg2: f32, %arg3: f32):
///          %3 = arith.addf %arg2, %arg3 : f32
///          linalg.yield %3 : f32
///        } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
///   return %0 : tensor<5x5xf32>
/// }

/// Update the index accesses of linalg operations having index semantics.
static void
replaceUnitDimIndexOps(GenericOp genericOp,
                       const llvm::SmallDenseSet<unsigned> &unitDims,
                       RewriterBase &rewriter) {
  for (IndexOp indexOp :
       llvm::make_early_inc_range(genericOp.getBody()->getOps<IndexOp>())) {
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPoint(indexOp);
    if (unitDims.count(indexOp.getDim()) != 0) {
      rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(indexOp, 0);
    } else {
      // Update the dimension of the index operation if needed.
      unsigned droppedDims = llvm::count_if(
          unitDims, [&](unsigned dim) { return dim < indexOp.getDim(); });
      if (droppedDims != 0)
        rewriter.replaceOpWithNewOp<IndexOp>(indexOp,
                                             indexOp.getDim() - droppedDims);
    }
  }
}

/// Expand the given `value` so that the type matches the type of `origDest`.
/// The `reassociation` is used when `rankReductionStrategy` is set to
/// `RankReductionStrategy::ReassociativeReshape`.
static Value
expandValue(RewriterBase &rewriter, Location loc, Value result, Value origDest,
            ArrayRef<ReassociationIndices> reassociation,
            ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) {
  // There are no results for memref outputs.
  auto origResultType = cast<RankedTensorType>(origDest.getType());
  if (rankReductionStrategy ==
      ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
    unsigned rank = origResultType.getRank();
    SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
    SmallVector<OpFoldResult> sizes =
        tensor::getMixedSizes(rewriter, loc, origDest);
    SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
    return rewriter.createOrFold<tensor::InsertSliceOp>(
        loc, result, origDest, offsets, sizes, strides);
  }

  assert(rankReductionStrategy ==
             ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
         "unknown rank reduction strategy");
  return rewriter.create<tensor::ExpandShapeOp>(loc, origResultType, result,
                                                reassociation);
}

/// Collapse the given `value` so that the type matches the type of
/// `origOutput`. The `reassociation` is used when `rankReductionStrategy` is
/// set to `RankReductionStrategy::ReassociativeReshape`.
static Value collapseValue(
    RewriterBase &rewriter, Location loc, Value operand,
    ArrayRef<int64_t> targetShape, ArrayRef<ReassociationIndices> reassociation,
    ControlDropUnitDims::RankReductionStrategy rankReductionStrategy) {
  if (auto memrefType = dyn_cast<MemRefType>(operand.getType())) {
    if (rankReductionStrategy ==
        ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
      FailureOr<Value> rankReducingExtract =
          memref::SubViewOp::rankReduceIfNeeded(rewriter, loc, operand,
                                                targetShape);
      assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
      return *rankReducingExtract;
    }

    assert(
        rankReductionStrategy ==
            ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
        "unknown rank reduction strategy");
    MemRefLayoutAttrInterface layout;
    auto targetType = MemRefType::get(targetShape, memrefType.getElementType(),
                                      layout, memrefType.getMemorySpace());
    return rewriter.create<memref::CollapseShapeOp>(loc, targetType, operand,
                                                    reassociation);
  }
  if (auto tensorType = dyn_cast<RankedTensorType>(operand.getType())) {
    if (rankReductionStrategy ==
        ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
      FailureOr<Value> rankReducingExtract =
          tensor::ExtractSliceOp::rankReduceIfNeeded(rewriter, loc, operand,
                                                     targetShape);
      assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
      return *rankReducingExtract;
    }

    assert(
        rankReductionStrategy ==
            ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape &&
        "unknown rank reduction strategy");
    auto targetType =
        RankedTensorType::get(targetShape, tensorType.getElementType());
    return rewriter.create<tensor::CollapseShapeOp>(loc, targetType, operand,
                                                    reassociation);
  }
  llvm_unreachable("unsupported operand type");
}

/// Compute the modified metadata for an operands of operation
/// whose unit dims are being dropped. Return the new indexing map
/// to use, the shape of the operand in the replacement op
/// and the `reassocation` to use to go from original operand shape
/// to modified operand shape.
struct UnitExtentReplacementInfo {
  AffineMap indexMap;
  SmallVector<ReassociationIndices> reassociation;
  SmallVector<int64_t> targetShape;
};
static UnitExtentReplacementInfo dropUnitExtentFromOperandMetadata(
    MLIRContext *context, GenericOp genericOp, OpOperand *opOperand,
    llvm::SmallDenseMap<unsigned, unsigned> &oldDimsToNewDimsMap,
    ArrayRef<AffineExpr> dimReplacements) {
  UnitExtentReplacementInfo info;
  ReassociationIndices reassociationGroup;
  SmallVector<AffineExpr> newIndexExprs;
  AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
  ArrayRef<int64_t> operandShape = genericOp.getShape(opOperand);
  ArrayRef<AffineExpr> exprs = indexingMap.getResults();

  auto isUnitDim = [&](unsigned dim) {
    if (auto dimExpr = exprs[dim].dyn_cast<AffineDimExpr>()) {
      unsigned oldPosition = dimExpr.getPosition();
      return !oldDimsToNewDimsMap.count(oldPosition);
    }
    // Handle the other case where the shape is 1, and is accessed using a
    // constant 0.
    if (operandShape[dim] == 1) {
      auto constAffineExpr = exprs[dim].dyn_cast<AffineConstantExpr>();
      return constAffineExpr && constAffineExpr.getValue() == 0;
    }
    return false;
  };

  unsigned dim = 0;
  while (dim < operandShape.size() && isUnitDim(dim))
    reassociationGroup.push_back(dim++);
  while (dim < operandShape.size()) {
    assert(!isUnitDim(dim) && "expected non unit-extent");
    reassociationGroup.push_back(dim);
    AffineExpr newExpr = exprs[dim].replaceDims(dimReplacements);
    newIndexExprs.push_back(newExpr);
    info.targetShape.push_back(operandShape[dim]);
    ++dim;
    // Fold all following dimensions that are unit-extent.
    while (dim < operandShape.size() && isUnitDim(dim)) {
      reassociationGroup.push_back(dim++);
    }
    info.reassociation.push_back(reassociationGroup);
    reassociationGroup.clear();
  }
  info.indexMap =
      AffineMap::get(oldDimsToNewDimsMap.size(), indexingMap.getNumSymbols(),
                     newIndexExprs, context);
  return info;
}

LogicalResult linalg::dropUnitDims(RewriterBase &rewriter, GenericOp genericOp,
                                   const ControlDropUnitDims &options) {
  SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
  if (indexingMaps.empty())
    return failure();

  // 1. Check if any of the iteration dimensions are unit-trip count. They will
  //    end up being unit-trip count if they are used to index into a unit-dim
  //    tensor/memref.
  AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
  if (!invertedMap) {
    return rewriter.notifyMatchFailure(genericOp,
                                       "invalid indexing maps for operation");
  }
  SmallVector<int64_t> dims = genericOp.getStaticShape();

  // 1a. Get the allowed list of dimensions to drop from the `options`.
  SmallVector<unsigned> allowedUnitDims = options.controlFn(genericOp);
  if (allowedUnitDims.empty()) {
    return rewriter.notifyMatchFailure(
        genericOp, "control function returns no allowed unit dims to prune");
  }
  llvm::SmallDenseSet<unsigned> unitDimsFilter(allowedUnitDims.begin(),
                                               allowedUnitDims.end());
  llvm::SmallDenseSet<unsigned> unitDims;
  for (const auto &expr : enumerate(invertedMap.getResults())) {
    if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>()) {
      if (dims[dimExpr.getPosition()] == 1 &&
          unitDimsFilter.count(expr.index()))
        unitDims.insert(expr.index());
    }
  }

  // 2. Compute the iterator types of the modified op by dropping the one-trip
  //    count loops.
  SmallVector<utils::IteratorType> newIteratorTypes;
  llvm::SmallDenseMap<unsigned, unsigned> oldDimToNewDimMap;
  SmallVector<AffineExpr> dimReplacements;
  unsigned newDims = 0;
  for (auto [index, attr] :
       llvm::enumerate(genericOp.getIteratorTypesArray())) {
    if (unitDims.count(index)) {
      dimReplacements.push_back(
          getAffineConstantExpr(0, rewriter.getContext()));
    } else {
      newIteratorTypes.push_back(attr);
      oldDimToNewDimMap[index] = newDims;
      dimReplacements.push_back(
          getAffineDimExpr(newDims, rewriter.getContext()));
      newDims++;
    }
  }

  // 3. For each of the operands, find the
  //    - modified affine map to use.
  //    - shape of the operands after the unit-dims are dropped.
  //    - the reassociation indices used to convert from the original
  //      operand type to modified operand (needed only when using reshapes
  //      for rank reduction strategy)
  // Note that the indexing maps might need changing even if there are no
  // unit dimensions that are dropped to handle cases where `0` is used to
  // access a unit-extent tensor. Consider moving this out of this specific
  // transformation as a stand-alone transformation. Kept here right now due
  // to legacy.
  SmallVector<AffineMap> newIndexingMaps;
  SmallVector<SmallVector<ReassociationIndices>> reassociations;
  SmallVector<SmallVector<int64_t>> targetShapes;
  SmallVector<bool> collapsed;
  auto hasCollapsibleType = [](OpOperand &operand) {
    Type operandType = operand.get().getType();
    if (auto memrefOperandType = dyn_cast_or_null<MemRefType>(operandType)) {
      return memrefOperandType.getLayout().isIdentity();
    } else if (auto tensorOperandType =
                   dyn_cast<RankedTensorType>(operandType)) {
      return tensorOperandType.getEncoding() == nullptr;
    }
    return false;
  };
  for (OpOperand &opOperand : genericOp->getOpOperands()) {
    auto indexingMap = genericOp.getMatchingIndexingMap(&opOperand);
    ArrayRef<int64_t> shape = genericOp.getShape(&opOperand);
    if (!hasCollapsibleType(opOperand)) {
      AffineMap newIndexingMap = indexingMap.replaceDimsAndSymbols(
          dimReplacements, ArrayRef<AffineExpr>{}, oldDimToNewDimMap.size(), 0);
      newIndexingMaps.push_back(newIndexingMap);
      targetShapes.push_back(llvm::to_vector(shape));
      collapsed.push_back(false);
      reassociations.push_back({});
      continue;
    }
    auto replacementInfo = dropUnitExtentFromOperandMetadata(
        rewriter.getContext(), genericOp, &opOperand, oldDimToNewDimMap,
        dimReplacements);
    reassociations.push_back(replacementInfo.reassociation);
    newIndexingMaps.push_back(replacementInfo.indexMap);
    targetShapes.push_back(replacementInfo.targetShape);
    collapsed.push_back(!(replacementInfo.indexMap.getNumResults() ==
                          indexingMap.getNumResults()));
  }

  // Abort if the indexing maps of the result operation are not invertible
  // (i.e. not legal) or if no dimension was reduced.
  if (newIndexingMaps == indexingMaps ||
      !inversePermutation(concatAffineMaps(newIndexingMaps)))
    return failure();

  Location loc = genericOp.getLoc();
  // 4. For each of the operands, collapse the operand to convert
  //    from original shape to shape in the modified operation if needed,
  //    either through use of reshapes or rank-reducing slices as
  //    specified in `options`.
  SmallVector<Value> newOperands;
  for (OpOperand &opOperand : genericOp->getOpOperands()) {
    int64_t idx = opOperand.getOperandNumber();
    if (!collapsed[idx]) {
      newOperands.push_back(opOperand.get());
      continue;
    }
    newOperands.push_back(collapseValue(rewriter, loc, opOperand.get(),
                                        targetShapes[idx], reassociations[idx],
                                        options.rankReductionStrategy));
  }

  // 5. Create the `linalg.generic` operation with the new operands,
  //    indexing maps, iterator types and result types.
  ArrayRef<Value> newInputs =
      ArrayRef<Value>(newOperands).take_front(genericOp.getNumDpsInputs());
  ArrayRef<Value> newOutputs =
      ArrayRef<Value>(newOperands).take_back(genericOp.getNumDpsInits());
  SmallVector<Type> resultTypes;
  resultTypes.reserve(genericOp.getNumResults());
  for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
    resultTypes.push_back(newOutputs[i].getType());
  GenericOp replacementOp =
      rewriter.create<GenericOp>(loc, resultTypes, newInputs, newOutputs,
                                 newIndexingMaps, newIteratorTypes);
  rewriter.inlineRegionBefore(genericOp.getRegion(), replacementOp.getRegion(),
                              replacementOp.getRegion().begin());
  // 5a. Replace `linalg.index` operations that refer to the dropped unit
  // dimensions.
  replaceUnitDimIndexOps(replacementOp, unitDims, rewriter);

  // 6. If any result type changes, insert a reshape/slice to convert from the
  // original
  //    type to the new type.
  SmallVector<Value> resultReplacements;
  for (auto [index, result] : llvm::enumerate(replacementOp.getResults())) {
    unsigned opOperandIndex = index + replacementOp.getNumDpsInputs();
    Value origDest = genericOp.getDpsInitOperand(index)->get();
    if (!collapsed[opOperandIndex]) {
      resultReplacements.push_back(result);
      continue;
    }
    resultReplacements.push_back(expandValue(rewriter, loc, result, origDest,
                                             reassociations[opOperandIndex],
                                             options.rankReductionStrategy));
  }

  rewriter.replaceOp(genericOp, resultReplacements);
  return success();
}

namespace {
struct DropUnitDims : public OpRewritePattern<GenericOp> {
  DropUnitDims(MLIRContext *context, ControlDropUnitDims options = {},
               PatternBenefit benefit = 1)
      : OpRewritePattern(context, benefit), options(std::move(options)) {}

  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    return dropUnitDims(rewriter, genericOp, options);
  }

private:
  ControlDropUnitDims options;
};
} // namespace

namespace {
/// Convert `extract_slice` operations to rank-reduced versions.
struct RankReducedExtractSliceOp
    : public OpRewritePattern<tensor::ExtractSliceOp> {
  using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
                                PatternRewriter &rewriter) const override {
    RankedTensorType resultType = sliceOp.getType();
    SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
    SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
    SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides();
    auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
    if (!reassociation ||
        reassociation->size() == static_cast<size_t>(resultType.getRank()))
      return failure();
    auto rankReducedType = cast<RankedTensorType>(
        tensor::ExtractSliceOp::inferCanonicalRankReducedResultType(
            reassociation->size(), sliceOp.getSourceType(), offsets, sizes,
            strides));

    Location loc = sliceOp.getLoc();
    Value newSlice = rewriter.create<tensor::ExtractSliceOp>(
        loc, rankReducedType, sliceOp.getSource(), offsets, sizes, strides);
    rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
        sliceOp, resultType, newSlice, *reassociation);
    return success();
  }
};

/// Convert `insert_slice` operations to rank-reduced versions.
/// This patterns works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> {
  using OpRewritePattern<InsertOpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
                                PatternRewriter &rewriter) const override {
    RankedTensorType sourceType = insertSliceOp.getSourceType();
    SmallVector<OpFoldResult> offsets = insertSliceOp.getMixedOffsets();
    SmallVector<OpFoldResult> sizes = insertSliceOp.getMixedSizes();
    SmallVector<OpFoldResult> strides = insertSliceOp.getMixedStrides();
    auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
    if (!reassociation ||
        reassociation->size() == static_cast<size_t>(sourceType.getRank()))
      return failure();
    Location loc = insertSliceOp.getLoc();
    tensor::CollapseShapeOp reshapedSource;
    {
      OpBuilder::InsertionGuard g(rewriter);
      // The only difference between InsertSliceOp and ParallelInsertSliceOp
      // is the insertion point is just before the ParallelCombiningOp in the
      // parallel case.
      if (std::is_same<InsertOpTy, tensor::ParallelInsertSliceOp>::value)
        rewriter.setInsertionPoint(insertSliceOp->getParentOp());
      reshapedSource = rewriter.create<tensor::CollapseShapeOp>(
          loc, insertSliceOp.getSource(), *reassociation);
    }
    rewriter.replaceOpWithNewOp<InsertOpTy>(
        insertSliceOp, reshapedSource, insertSliceOp.getDest(),
        insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
        insertSliceOp.getMixedStrides());
    return success();
  }
};
} // namespace

/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
static void
populateFoldUnitExtentDimsViaReshapesPatterns(RewritePatternSet &patterns,
                                              ControlDropUnitDims &options) {
  auto *context = patterns.getContext();
  patterns.add<DropUnitDims>(context, options);
  // TODO: Patterns unrelated to unit dim folding should be factored out.
  patterns.add<RankReducedExtractSliceOp,
               RankReducedInsertSliceOp<tensor::InsertSliceOp>,
               RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>(
      context);
  linalg::FillOp::getCanonicalizationPatterns(patterns, context);
  tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
  tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
  tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
  tensor::populateFoldTensorEmptyPatterns(patterns);
  memref::populateResolveRankedShapedTypeResultDimsPatterns(patterns);
  memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}

static void
populateFoldUnitExtentDimsViaSlicesPatterns(RewritePatternSet &patterns,
                                            ControlDropUnitDims &options) {
  auto *context = patterns.getContext();
  options.rankReductionStrategy =
      ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice;
  patterns.add<DropUnitDims>(context, options);
  // TODO: Patterns unrelated to unit dim folding should be factored out.
  linalg::FillOp::getCanonicalizationPatterns(patterns, context);
  tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
  tensor::populateFoldTensorEmptyPatterns(patterns);
  memref::populateResolveRankedShapedTypeResultDimsPatterns(patterns);
  memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}

void mlir::linalg::populateFoldUnitExtentDimsPatterns(
    RewritePatternSet &patterns, linalg::ControlDropUnitDims &options) {
  if (options.rankReductionStrategy ==
      linalg::ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
    populateFoldUnitExtentDimsViaSlicesPatterns(patterns, options);
  } else if (options.rankReductionStrategy ==
             linalg::ControlDropUnitDims::RankReductionStrategy::
                 ReassociativeReshape) {
    populateFoldUnitExtentDimsViaReshapesPatterns(patterns, options);
  }
}

void mlir::linalg::populateMoveInitOperandsToInputPattern(
    RewritePatternSet &patterns) {
  patterns.add<MoveInitOperandsToInput>(patterns.getContext());
}

namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
    : public impl::LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
  void runOnOperation() override {
    Operation *op = getOperation();
    MLIRContext *context = op->getContext();
    RewritePatternSet patterns(context);
    ControlDropUnitDims options;
    if (useRankReducingSlices) {
      options.rankReductionStrategy = linalg::ControlDropUnitDims::
          RankReductionStrategy::ExtractInsertSlice;
    }
    linalg::populateFoldUnitExtentDimsPatterns(patterns, options);
    populateMoveInitOperandsToInputPattern(patterns);
    (void)applyPatternsAndFoldGreedily(op, std::move(patterns));
  }
};
} // namespace

std::unique_ptr<Pass> mlir::createLinalgFoldUnitExtentDimsPass() {
  return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}