1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
|
//===- ElementwiseOpFusion.cpp - Implementation of linalg Fusion ---------===///
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion on tensors operations pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>
#include <utility>
namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDUNITEXTENTDIMS
#define GEN_PASS_DEF_LINALGELEMENTWISEOPFUSION
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::linalg;
//===---------------------------------------------------------------------===//
// Methods and patterns that fuse elementwise `linalg.generic` operations.
//===---------------------------------------------------------------------===//
/// Append to `fusedOpIndexingMapAttrs` the indexing maps for the operands of
/// the `producer` to use in the fused operation given the indexing map of the
/// result of the producer in the consumer.
static AffineMap getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(
OpOperand *producerOpOperand, AffineMap producerResultIndexMap,
AffineMap fusedConsumerArgIndexMap) {
// The indexing map in the consumer op (fusedConsumerArgIndexMap) is a map
// from consumer loop -> consumer arg tensor index/producer result tensor
// index. The fused loop is same as the consumer loop. For each producer arg
// the indexing map to be computed is a map from consumer loop -> producer
// arg tensor index.
// producerResultIndexMap is a map from producer loop -> tensor index.
// Compute the inverse to get map from tensor index -> producer loop.
// The inverse is a map from producer result tensor index -> producer loop.
AffineMap invProducerResultIndexMap =
inversePermutation(producerResultIndexMap);
assert(invProducerResultIndexMap &&
"expected producer result indexing map to be invertible");
LinalgOp producer = cast<LinalgOp>(producerOpOperand->getOwner());
// argMap is a map from producer loop -> producer arg tensor index.
AffineMap argMap = producer.getMatchingIndexingMap(producerOpOperand);
// Compose argMap with invProducerResultIndexMap to get a map from
// producer result tensor index -> producer arg tensor index.
AffineMap t1 = argMap.compose(invProducerResultIndexMap);
// Compose t1 with fusedConsumerArgIndexMap gives an indexing map from
// consumer loop/ fused loop -> producer arg tensor index.
return t1.compose(fusedConsumerArgIndexMap);
}
/// Conditions for elementwise fusion of generic operations.
bool mlir::linalg::areElementwiseOpsFusable(OpOperand *fusedOperand) {
if (!fusedOperand)
return false;
auto producer = fusedOperand->get().getDefiningOp<GenericOp>();
auto consumer = dyn_cast<GenericOp>(fusedOperand->getOwner());
// Check producer and consumer are generic ops.
if (!producer || !consumer)
return false;
// Consumer can have mixed semantics, just check operand itself has tensor
// type. Producer must have full tensor semantics to avoid potential
// aliasing between producer and consumer memrefs.
if (!producer.hasTensorSemantics() ||
!isa<RankedTensorType>(fusedOperand->get().getType()))
return false;
// Verify that
// - the producer has all "parallel" iterator type.
if (producer.getNumParallelLoops() != producer.getNumLoops())
return false;
// Only allow fusing the producer of an input operand for now.
// TODO: allow fusing the producer of an output operand.
if (!consumer.isDpsInput(fusedOperand))
return false;
// Get the consumer index map. The number of results of the consumer index
// map must match the number of loops of the producer.
AffineMap consumerIndexMap = consumer.getMatchingIndexingMap(fusedOperand);
if (consumerIndexMap.getNumResults() != producer.getNumLoops())
return false;
// Finally the index_map for the result must be invertible. For now just
// verify it is a permutation.
AffineMap producerResultIndexMap =
producer.getMatchingIndexingMap(producer.getDpsInitOperand(0));
if (!producerResultIndexMap.isPermutation())
return false;
// Ensure that the fusion does not remove size information required to
// get the loop bounds. For non-reduction generics, this is trivially the
// case due to the output operand. For reductions, we need to check that after
// the fusion, each loop dimension has at least one input that defines it.
if ((consumer.getNumReductionLoops())) {
BitVector coveredDims(consumer.getNumLoops(), false);
auto addToCoveredDims = [&](AffineMap map) {
for (auto result : map.getResults())
if (auto dimExpr = result.dyn_cast<AffineDimExpr>())
coveredDims[dimExpr.getPosition()] = true;
};
for (auto pair :
llvm::zip(consumer->getOperands(), consumer.getIndexingMapsArray())) {
Value operand = std::get<0>(pair);
if (operand == fusedOperand->get())
continue;
AffineMap operandMap = std::get<1>(pair);
addToCoveredDims(operandMap);
}
for (OpOperand *operand : producer.getDpsInputOperands()) {
AffineMap newIndexingMap =
getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(
operand, producerResultIndexMap, consumerIndexMap);
addToCoveredDims(newIndexingMap);
}
if (!coveredDims.all())
return false;
}
return true;
}
/// Generate the region of the fused tensor operation. The region of the fused
/// op must be empty.
static void generateFusedElementwiseOpRegion(
RewriterBase &rewriter, GenericOp fusedOp,
AffineMap consumerToProducerLoopsMap, OpOperand *fusedOperand,
unsigned nloops, llvm::SmallDenseSet<int> &preservedProducerResults) {
auto producer = cast<GenericOp>(fusedOperand->get().getDefiningOp());
auto consumer = cast<GenericOp>(fusedOperand->getOwner());
// Build the region of the fused op.
Block &producerBlock = producer->getRegion(0).front();
Block &consumerBlock = consumer->getRegion(0).front();
Block *fusedBlock = new Block();
fusedOp.getRegion().push_back(fusedBlock);
IRMapping mapper;
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(fusedBlock);
// 2. Add an index operation for every fused loop dimension and use the
// `consumerToProducerLoopsMap` to map the producer indices.
if (producer.hasIndexSemantics()) {
// Add an index operation for every fused loop dimension.
unsigned numFusedOpLoops =
std::max(producer.getNumLoops(), consumer.getNumLoops());
SmallVector<Value> fusedIndices;
fusedIndices.reserve(numFusedOpLoops);
llvm::transform(llvm::seq<uint64_t>(0, numFusedOpLoops),
std::back_inserter(fusedIndices), [&](uint64_t dim) {
return rewriter.create<IndexOp>(producer.getLoc(), dim);
});
for (IndexOp indexOp :
llvm::make_early_inc_range(producerBlock.getOps<IndexOp>())) {
Value newIndex = rewriter.create<affine::AffineApplyOp>(
producer.getLoc(),
consumerToProducerLoopsMap.getSubMap(indexOp.getDim()), fusedIndices);
mapper.map(indexOp.getResult(), newIndex);
}
}
// TODO: allow fusing the producer of an output operand.
assert(consumer.isDpsInput(fusedOperand) &&
"expected producer of input operand");
// 3. Consumer input operands up to consumerIdx (exclusive).
for (BlockArgument bbArg : consumerBlock.getArguments().take_front(
fusedOperand->getOperandNumber())) // input assumption.
mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc()));
// Replacing consumerIdx requires getting the cloned, yielded, value from
// the (cloned) producer block. This happens in step 9.
// 4. Splice in producer's input operands.
for (BlockArgument bbArg :
producerBlock.getArguments().take_front(producer.getNumDpsInputs()))
mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc()));
// 5. Remaining consumer's input operands (drop past index `consumerIdx`).
for (BlockArgument bbArg :
consumerBlock.getArguments()
.take_front(consumer.getNumDpsInputs())
.drop_front(fusedOperand->getOperandNumber() + 1))
mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc()));
// 6. All of the producer's output operands
for (const auto &bbArg : llvm::enumerate(
producerBlock.getArguments().take_back(producer.getNumDpsInits()))) {
if (!preservedProducerResults.count(bbArg.index()))
continue;
mapper.map(bbArg.value(), fusedBlock->addArgument(bbArg.value().getType(),
bbArg.value().getLoc()));
}
// 7. All of consumer's output operands.
for (BlockArgument bbArg :
consumerBlock.getArguments().take_back(consumer.getNumDpsInits()))
mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc()));
// 8. Clone all producer operations except for the yield and index operations
// to the fused operation.
for (auto &op : producerBlock.without_terminator()) {
if (!isa<IndexOp>(op))
rewriter.clone(op, mapper);
}
// 9. Now we can map the consumerBlock's `consumerIdx` block argument. Just
// forward the yield operand.
auto producerYieldOp = cast<linalg::YieldOp>(producerBlock.getTerminator());
unsigned producerResultNumber =
cast<OpResult>(fusedOperand->get()).getResultNumber();
Value replacement =
mapper.lookupOrDefault(producerYieldOp.getOperand(producerResultNumber));
// Sanity checks, if replacement is not already in the mapper then it must be
// produced outside.
if (replacement == producerYieldOp.getOperand(producerResultNumber)) {
if (auto bb = dyn_cast<BlockArgument>(replacement))
assert(bb.getOwner() != &producerBlock &&
"yielded block argument must have been mapped");
else
assert(!producer->isAncestor(replacement.getDefiningOp()) &&
"yielded value must have been mapped");
}
mapper.map(consumerBlock.getArgument(fusedOperand->getOperandNumber()),
replacement);
// 10. Clone operations from the consumer to the fused op.
for (auto &op : consumerBlock.without_terminator())
rewriter.clone(op, mapper);
// 11. Include the final yield (which is the remapped values for all the
// yield)
auto consumerYieldOp = cast<linalg::YieldOp>(consumerBlock.getTerminator());
SmallVector<Value> fusedYieldValues;
fusedYieldValues.reserve(producerYieldOp.getNumOperands() +
consumerYieldOp.getNumOperands());
for (const auto &producerYieldVal :
llvm::enumerate(producerYieldOp.getOperands())) {
if (preservedProducerResults.count(producerYieldVal.index()))
fusedYieldValues.push_back(
mapper.lookupOrDefault(producerYieldVal.value()));
}
for (auto consumerYieldVal : consumerYieldOp.getOperands())
fusedYieldValues.push_back(mapper.lookupOrDefault(consumerYieldVal));
rewriter.create<YieldOp>(fusedOp.getLoc(), fusedYieldValues);
// Sanity checks.
assert(fusedBlock->getNumArguments() == fusedOp.getNumOperands() &&
"Ill-formed GenericOp region");
}
FailureOr<mlir::linalg::ElementwiseOpFusionResult>
mlir::linalg::fuseElementwiseOps(RewriterBase &rewriter,
OpOperand *fusedOperand) {
assert(areElementwiseOpsFusable(fusedOperand) &&
"expected elementwise operation pre-conditions to pass");
auto producerResult = cast<OpResult>(fusedOperand->get());
auto producer = cast<GenericOp>(producerResult.getOwner());
auto consumer = cast<GenericOp>(fusedOperand->getOwner());
// TODO: allow fusing the producer of an output operand.
assert(consumer.isDpsInput(fusedOperand) &&
"expected producer of input operand");
/// Find the results of the producer that have uses outside of the consumer.
llvm::SmallDenseSet<int> preservedProducerResults;
for (const auto &producerResult : llvm::enumerate(producer->getResults())) {
auto *outputOperand = producer.getDpsInitOperand(producerResult.index());
if (producer.payloadUsesValueFromOperand(outputOperand) ||
!producer.canOpOperandsBeDropped(outputOperand) ||
llvm::any_of(producerResult.value().getUsers(), [&](Operation *user) {
return user != consumer.getOperation();
})) {
preservedProducerResults.insert(producerResult.index());
}
}
// Compute the fused operands list and indexing maps.
SmallVector<Value> fusedInputOperands, fusedOutputOperands;
SmallVector<Type> fusedResultTypes;
SmallVector<AffineMap> fusedIndexMaps;
fusedInputOperands.reserve(producer.getNumDpsInputs() +
consumer.getNumDpsInputs());
fusedOutputOperands.reserve(preservedProducerResults.size() +
consumer.getNumDpsInits());
fusedResultTypes.reserve(preservedProducerResults.size() +
consumer.getNumDpsInits());
fusedIndexMaps.reserve(producer->getNumOperands() +
consumer->getNumOperands());
// In the following, numbering matches that of `generateFusedTensorOpRegion`.
// 3. Consumer input operands/maps up to consumerIdx (exclusive).
auto consumerInputs = consumer.getDpsInputOperands();
auto *it = llvm::find_if(consumerInputs, [&](OpOperand *operand) {
return operand == fusedOperand;
});
assert(it != consumerInputs.end() && "expected to find the consumer operand");
for (OpOperand *opOperand : llvm::make_range(consumerInputs.begin(), it)) {
fusedInputOperands.push_back(opOperand->get());
fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand));
}
// 4. Splice in producer's input operands/maps.
AffineMap producerResultIndexMap =
producer.getIndexingMapMatchingResult(producerResult);
for (OpOperand *opOperand : producer.getDpsInputOperands()) {
fusedInputOperands.push_back(opOperand->get());
// Compute indexing maps for the producer args in the fused operation.
AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(
opOperand, producerResultIndexMap,
consumer.getMatchingIndexingMap(fusedOperand));
fusedIndexMaps.push_back(map);
}
// 5. Remaining consumer's input operands/maps (drop past index
// `consumerIdx`).
for (OpOperand *opOperand :
llvm::make_range(std::next(it), consumerInputs.end())) {
fusedInputOperands.push_back(opOperand->get());
fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand));
}
// 6. Collect all of the producer outputs.
for (const auto &opOperand : llvm::enumerate(producer.getDpsInitOperands())) {
if (!preservedProducerResults.count(opOperand.index()))
continue;
fusedOutputOperands.push_back(opOperand.value()->get());
AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(
opOperand.value(), producerResultIndexMap,
consumer.getMatchingIndexingMap(fusedOperand));
fusedIndexMaps.push_back(map);
fusedResultTypes.push_back(opOperand.value()->get().getType());
}
// 7. All of consumer's output operands (skip operands: added by the builder).
for (OpOperand *opOperand : consumer.getDpsInitOperands()) {
fusedOutputOperands.push_back(opOperand->get());
fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand));
Type resultType = opOperand->get().getType();
if (!isa<MemRefType>(resultType))
fusedResultTypes.push_back(resultType);
}
// Generate the fused op.
auto fusedOp = rewriter.create<GenericOp>(
consumer.getLoc(), fusedResultTypes, fusedInputOperands,
fusedOutputOperands, rewriter.getAffineMapArrayAttr(fusedIndexMaps),
consumer.getIteratorTypes(),
/*doc=*/nullptr,
/*library_call=*/nullptr);
if (!fusedOp.getShapesToLoopsMap()) {
// Fused op has invalid indexing maps. Typically this means something is off
// in the input, but going ahead here would result in verification errors.
// So cleanup and abort.
rewriter.eraseOp(fusedOp);
return rewriter.notifyMatchFailure(
fusedOp, "fused op failed loop bound computation check");
}
// Construct an AffineMap from consumer loops to producer loops.
// consumer loop -> tensor index
AffineMap consumerResultIndexMap =
consumer.getMatchingIndexingMap(fusedOperand);
// tensor index -> producer loop
AffineMap invProducerResultIndexMap =
inversePermutation(producerResultIndexMap);
assert(invProducerResultIndexMap &&
"expected producer result indexig map to be invertible");
// consumer loop -> producer loop
AffineMap consumerToProducerLoopsMap =
invProducerResultIndexMap.compose(consumerResultIndexMap);
generateFusedElementwiseOpRegion(
rewriter, fusedOp, consumerToProducerLoopsMap, fusedOperand,
consumer.getNumLoops(), preservedProducerResults);
ElementwiseOpFusionResult result;
result.fusedOp = fusedOp;
int resultNum = 0;
for (auto [index, producerResult] : llvm::enumerate(producer->getResults()))
if (preservedProducerResults.count(index))
result.replacements[producerResult] = fusedOp->getResult(resultNum++);
for (auto consumerResult : consumer->getResults())
result.replacements[consumerResult] = fusedOp->getResult(resultNum++);
return result;
}
namespace {
/// Patterns to fuse a generic op, with the producer of its operands.
class FuseElementwiseOps : public OpRewritePattern<GenericOp> {
public:
FuseElementwiseOps(MLIRContext *context, ControlFusionFn fun,
PatternBenefit benefit = 1)
: OpRewritePattern<GenericOp>(context, benefit),
controlFn(std::move(fun)) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
// Find the first operand that is defined by another generic op on tensors.
for (OpOperand &opOperand : genericOp->getOpOperands()) {
if (!areElementwiseOpsFusable(&opOperand))
continue;
if (!controlFn(&opOperand))
continue;
// Find the producer of the operand.
FailureOr<ElementwiseOpFusionResult> fusionResult =
fuseElementwiseOps(rewriter, &opOperand);
if (failed(fusionResult))
return rewriter.notifyMatchFailure(genericOp, "fusion failed");
Operation *producer = opOperand.get().getDefiningOp();
// Do not fuse a sparse-in/dense-out operation, as the
// result is too often not sparsifiable anymore.
if (sparse_tensor::hasAnySparseOperand(producer) &&
!sparse_tensor::hasAnySparseResult(producer))
return failure();
// Perform the fusion.
for (auto [origVal, replacement] : fusionResult->replacements) {
rewriter.replaceUsesWithIf(origVal, replacement, [&](OpOperand &use) {
// Only replace consumer uses.
return use.get().getDefiningOp() != producer;
});
}
rewriter.eraseOp(genericOp);
return success();
}
return failure();
}
private:
ControlFusionFn controlFn;
};
} // namespace
//===---------------------------------------------------------------------===//
// Methods and patterns that fuse reshape ops with elementwise operations by
// expanding the dimensionality of the elementwise operations.
//===---------------------------------------------------------------------===//
/// Conditions for folding a generic operation with a reshape op by expanding
/// the iteration space dimensionality for tensor operations. These are
/// preconditions assumed by `foldReshapeByDimExpansion` which implements the
/// following fusion pattern.
///
/// Consider
///
/// %c = linalg.generic ins(%a, %b : memref<?x?x?xf32>, memref<?x?xf32>)
/// indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>,
/// affine_map<(d0, d1, d2) -> (d1, d2)>,
/// affine_map<(d0, d1, d2) -> (d0, d2, d1)>]
/// %d = tensor.expand_shape %c [[0, 1], [2], [3, 4, 5]]
/// : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32>
///
/// The reshape can be folded into the `genericOp` if its loop dimensionality
/// is increased to match the result (operand) of the tensor.expand_shape.
/// The indexing_map of the fused tensor in the `genericOp` and the
/// reassociation map helps compute the indexing maps of the modified op.
/// For the above example, based on the reassociation map it
/// can be concluded that
///
/// - The loop used to access the first dimension of the fused tensor is split
/// into two.
/// - The loop used to access the second dimension of the fused tensor is kept
/// as is.
/// - The loop used to access the third dimension of the fused tensor is split
/// into three.
///
/// i.e. (e0, e1, e2, e3, e4) is the domain of the indexing map of the modified
/// op, then
///
/// d0 -> e0, e1
/// d1 -> e2, e3, e4
/// d2 -> e5
///
/// substituting this, the generic op can be rewritten as
///
/// %d = linalg.generic ins(%0, %1 : )
/// indexing_maps =
/// [affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e0, e1, e5)>,
/// affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e5)>,
/// affine_map<(e0, e1, e2, e3, e4, e5) -> (e0, e1, e5, e2, e3, e4)>]
///
/// Since operands to the linalg generic are now 5D, reshapes can be introduced
/// to make it consistent
///
/// %0 = tensor.expand_shape %a [[0, 1, 2], [3, 4], [5]]
/// : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32>
/// %1 = tensor.expand_shape %b [[0, 1, 2], [3]]
/// : tensor<?x?x?xf32> into tensor<?x?x?x?xf32>
///
/// The added reshapes are again expanding patterns, so they will get fused
/// with its producers if possible.
static bool isFusableWithReshapeByDimExpansion(GenericOp genericOp,
OpOperand *fusableOpOperand) {
// Is fusable only if:
// - All the indexing maps for operands and results are projected
// permutations.
// - The fused tensor is not a scalar.
// - All the loops are parallel loops.
return genericOp.hasTensorSemantics() &&
llvm::all_of(genericOp.getIndexingMaps().getValue(),
[](Attribute attr) {
return cast<AffineMapAttr>(attr)
.getValue()
.isProjectedPermutation();
}) &&
genericOp.getMatchingIndexingMap(fusableOpOperand).getNumResults() >
0 &&
llvm::all_of(genericOp.getIteratorTypesArray(), isParallelIterator);
}
namespace {
/// Information needed to expand a generic operation to fold the reshape with
/// it.
class ExpansionInfo {
public:
// Computes the mapping from original dimensions of the op to the dimensions
// of the expanded op given the `indexingMap` of the fused operand/result of
// the generic op, the `reassocationMaps` of the reshape op and the shape of
// the expanded op.
LogicalResult compute(LinalgOp linalgOp, OpOperand *fusableOpOperand,
ArrayRef<AffineMap> reassociationMaps,
ArrayRef<int64_t> expandedShape,
ArrayRef<int64_t> collapsedShape,
PatternRewriter &rewriter);
unsigned getOrigOpNumDims() const { return reassociation.size(); }
unsigned getExpandedOpNumDims() const { return expandedOpNumDims; }
ReassociationIndicesRef getExpandedDims(unsigned i) const {
return reassociation[i];
}
ArrayRef<int64_t> getExpandedShapeOfDim(unsigned i) const {
return expandedShapeMap[i];
}
ArrayRef<int64_t> getOriginalShape() const { return originalLoopExtent; }
private:
/// Reassociation from the dimensions in the original operation to the
/// dimension of the expanded operation.
SmallVector<ReassociationIndices> reassociation;
/// Mapping from extent of loops in the original operation, to the extent of
/// loops in the expanded operation.
SmallVector<SmallVector<int64_t>> expandedShapeMap;
/// Extent of the loop in the original operation.
SmallVector<int64_t> originalLoopExtent;
unsigned expandedOpNumDims;
};
} // namespace
LogicalResult ExpansionInfo::compute(LinalgOp linalgOp,
OpOperand *fusableOpOperand,
ArrayRef<AffineMap> reassociationMaps,
ArrayRef<int64_t> expandedShape,
ArrayRef<int64_t> collapsedShape,
PatternRewriter &rewriter) {
if (reassociationMaps.empty())
return failure();
AffineMap fusedIndexMap = linalgOp.getMatchingIndexingMap(fusableOpOperand);
SmallVector<int64_t, 4> originalLoopRange = linalgOp.getStaticLoopRanges();
originalLoopExtent.assign(originalLoopRange.begin(), originalLoopRange.end());
reassociation.clear();
expandedShapeMap.clear();
// Compute the number of dimension in the expanded op that correspond to each
// dimension of the original op.
SmallVector<unsigned> numExpandedDims(fusedIndexMap.getNumDims(), 1);
expandedShapeMap.resize(fusedIndexMap.getNumDims());
for (const auto &resultExpr : llvm::enumerate(fusedIndexMap.getResults())) {
unsigned pos = resultExpr.value().cast<AffineDimExpr>().getPosition();
AffineMap foldedDims = reassociationMaps[resultExpr.index()];
numExpandedDims[pos] = foldedDims.getNumResults();
ArrayRef<int64_t> shape =
expandedShape.slice(foldedDims.getDimPosition(0), numExpandedDims[pos]);
expandedShapeMap[pos].assign(shape.begin(), shape.end());
}
// The remaining dimensions remain the same.
for (unsigned i : llvm::seq<unsigned>(0, fusedIndexMap.getNumDims()))
if (expandedShapeMap[i].empty())
expandedShapeMap[i] = {originalLoopExtent[i]};
// Compute reassociation map from the original op to the expanded op.
unsigned sum = 0;
reassociation.reserve(fusedIndexMap.getNumDims());
for (const auto &numFoldedDim : llvm::enumerate(numExpandedDims)) {
auto seq = llvm::seq<int64_t>(sum, sum + numFoldedDim.value());
reassociation.emplace_back(seq.begin(), seq.end());
sum += numFoldedDim.value();
}
expandedOpNumDims = sum;
return success();
}
/// Epanding the body of a linalg operation requires adaptations of the accessed
/// loop indices. Specifically, access of indices in the original operation need
/// to be replaced with linearizations of indices in the expanded op. That
/// requires the shape of the expanded dimensions to be static (at least all but
/// the most significant). For now check that these are all statically sized.
/// Note that this could be extended to handle dynamic case, but the
/// implementation below uses `affine.apply` which seems to have issues when the
/// shapes are not static.
static LogicalResult isGenericOpExpandable(GenericOp genericOp,
const ExpansionInfo &expansionInfo,
PatternRewriter &rewriter) {
if (!genericOp.hasIndexSemantics())
return success();
for (unsigned i : llvm::seq<unsigned>(0, expansionInfo.getOrigOpNumDims())) {
ArrayRef<int64_t> expandedShape = expansionInfo.getExpandedShapeOfDim(i);
if (expandedShape.size() == 1)
continue;
for (int64_t shape : expandedShape.drop_front()) {
if (ShapedType::isDynamic(shape)) {
return rewriter.notifyMatchFailure(
genericOp, "cannot expand due to index semantics and dynamic dims");
}
}
}
return success();
}
/// Return the indexing map to use in the expanded op for a given the
/// `indexingMap` of the original operation.
static AffineMap
getIndexingMapInExpandedOp(OpBuilder &builder, AffineMap indexingMap,
const ExpansionInfo &expansionInfo) {
SmallVector<AffineExpr> newExprs;
for (AffineExpr expr : indexingMap.getResults()) {
unsigned pos = expr.cast<AffineDimExpr>().getPosition();
SmallVector<AffineExpr, 4> expandedExprs = llvm::to_vector<4>(
llvm::map_range(expansionInfo.getExpandedDims(pos), [&](int64_t v) {
return builder.getAffineDimExpr(static_cast<unsigned>(v));
}));
newExprs.append(expandedExprs.begin(), expandedExprs.end());
}
return AffineMap::get(expansionInfo.getExpandedOpNumDims(),
indexingMap.getNumSymbols(), newExprs,
builder.getContext());
}
/// Return the type of the operand/result to use in the expanded op given the
/// type in the original op.
static RankedTensorType getExpandedType(RankedTensorType originalType,
AffineMap indexingMap,
const ExpansionInfo &expansionInfo) {
SmallVector<int64_t> expandedShape;
for (AffineExpr expr : indexingMap.getResults()) {
unsigned dim = expr.cast<AffineDimExpr>().getPosition();
auto dimExpansion = expansionInfo.getExpandedShapeOfDim(dim);
expandedShape.append(dimExpansion.begin(), dimExpansion.end());
}
return RankedTensorType::get(expandedShape, originalType.getElementType());
}
/// Returns the reassociation maps to use in the `tensor.expand_shape`
/// operation to convert the operands of the original operation to operands of
/// the expanded operation. The same method is used to compute the
/// `tensor.collapse_shape` used to collapse the result of the expanded
/// op to get the value that can replace all uses of the results of the original
/// op.
static SmallVector<ReassociationIndices>
getReassociationForExpansion(AffineMap indexingMap,
const ExpansionInfo &expansionInfo) {
SmallVector<ReassociationIndices> reassociation;
unsigned numReshapeDims = 0;
for (AffineExpr expr : indexingMap.getResults()) {
unsigned dim = expr.cast<AffineDimExpr>().getPosition();
auto numExpandedDims = expansionInfo.getExpandedDims(dim).size();
SmallVector<int64_t, 2> indices = llvm::to_vector<2>(
llvm::seq<int64_t>(numReshapeDims, numReshapeDims + numExpandedDims));
reassociation.emplace_back(std::move(indices));
numReshapeDims += numExpandedDims;
}
return reassociation;
}
/// Update the body of an expanded linalg operation having index semantics. The
/// indices of the original operation need to be recovered by linearizing the
/// indices of the correspoding dimensions of the expanded operation. For now it
/// is assumed that the shapes of the expanded operation needed for
/// linearization are static.
static void updateExpandedGenericOpRegion(PatternRewriter &rewriter,
Location loc, Region &fusedRegion,
const ExpansionInfo &expansionInfo) {
// Replace the original indices by the linearization of the expanded indices.
for (IndexOp indexOp :
llvm::make_early_inc_range(fusedRegion.front().getOps<IndexOp>())) {
ArrayRef<int64_t> expandedDims =
expansionInfo.getExpandedDims(indexOp.getDim());
assert(!expandedDims.empty() && "expected valid expansion info");
// Skip index operations that are not affected by the expansion.
if (expandedDims.size() == 1 &&
expandedDims.front() == (int64_t)indexOp.getDim())
continue;
// Linearize the expanded indices of the original index dimension.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfter(indexOp);
ArrayRef<int64_t> expandedDimsShape =
expansionInfo.getExpandedShapeOfDim(indexOp.getDim()).drop_front();
SmallVector<Value> expandedIndices;
expandedIndices.reserve(expandedDims.size() - 1);
llvm::transform(
expandedDims.drop_front(), std::back_inserter(expandedIndices),
[&](int64_t dim) { return rewriter.create<IndexOp>(loc, dim); });
Value newIndex = rewriter.create<IndexOp>(loc, expandedDims.front());
for (auto it : llvm::zip(expandedDimsShape, expandedIndices)) {
assert(!ShapedType::isDynamic(std::get<0>(it)));
AffineExpr idx, acc;
bindDims(rewriter.getContext(), idx, acc);
newIndex = rewriter.create<affine::AffineApplyOp>(
indexOp.getLoc(), idx + acc * std::get<0>(it),
ValueRange{std::get<1>(it), newIndex});
}
rewriter.replaceOp(indexOp, newIndex);
}
}
/// Implements the fusion of a tensor.collapse_shape or a tensor.expand_shape op
/// and a generic op as explained in `isFusableWithReshapeByExpansion`. Assumes
/// that those conditions have been satisfied.
static std::optional<SmallVector<Value>>
fuseWithReshapeByExpansion(GenericOp genericOp, Operation *reshapeOp,
OpOperand *fusableOpOperand,
PatternRewriter &rewriter) {
assert(isFusableWithReshapeByDimExpansion(genericOp, fusableOpOperand) &&
"preconditions for fuse operation failed");
// Check if reshape is expanding or collapsing.
auto expandingReshapeOp = dyn_cast<tensor::ExpandShapeOp>(*reshapeOp);
auto collapsingReshapeOp = dyn_cast<tensor::CollapseShapeOp>(*reshapeOp);
bool isExpanding = (expandingReshapeOp != nullptr);
RankedTensorType expandedType = isExpanding
? expandingReshapeOp.getResultType()
: collapsingReshapeOp.getSrcType();
RankedTensorType collapsedType = isExpanding
? expandingReshapeOp.getSrcType()
: collapsingReshapeOp.getResultType();
ExpansionInfo expansionInfo;
if (failed(expansionInfo.compute(
genericOp, fusableOpOperand,
isExpanding ? expandingReshapeOp.getReassociationMaps()
: collapsingReshapeOp.getReassociationMaps(),
expandedType.getShape(), collapsedType.getShape(), rewriter)))
return std::nullopt;
if (failed(isGenericOpExpandable(genericOp, expansionInfo, rewriter)))
return std::nullopt;
SmallVector<AffineMap, 4> expandedOpIndexingMaps = llvm::to_vector<4>(
llvm::map_range(genericOp.getIndexingMapsArray(), [&](AffineMap m) {
return getIndexingMapInExpandedOp(rewriter, m, expansionInfo);
}));
// Set insertion point to the generic op.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(genericOp);
SmallVector<Value> expandedOpOperands;
expandedOpOperands.reserve(genericOp.getNumDpsInputs());
for (OpOperand *opOperand : genericOp.getDpsInputOperands()) {
if (opOperand == fusableOpOperand) {
expandedOpOperands.push_back(isExpanding ? expandingReshapeOp.getSrc()
: collapsingReshapeOp.getSrc());
continue;
}
if (auto opOperandType =
dyn_cast<RankedTensorType>(opOperand->get().getType())) {
AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
RankedTensorType expandedOperandType =
getExpandedType(opOperandType, indexingMap, expansionInfo);
if (expandedOperandType != opOperand->get().getType()) {
// Reshape the operand to get the right type.
SmallVector<ReassociationIndices> reassociation =
getReassociationForExpansion(indexingMap, expansionInfo);
if (failed(reshapeLikeShapesAreCompatible(
[&](const Twine &msg) {
return rewriter.notifyMatchFailure(genericOp, msg);
},
opOperandType.getShape(), expandedOperandType.getShape(),
reassociation,
/*isExpandingReshape=*/true)))
return std::nullopt;
expandedOpOperands.push_back(rewriter.create<tensor::ExpandShapeOp>(
genericOp.getLoc(), expandedOperandType, opOperand->get(),
reassociation));
continue;
}
}
expandedOpOperands.push_back(opOperand->get());
}
Location loc = genericOp.getLoc();
SmallVector<Value> outputs;
for (OpOperand *opOperand : genericOp.getDpsInitOperands()) {
AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
auto opOperandType = cast<RankedTensorType>(opOperand->get().getType());
RankedTensorType expandedOutputType =
getExpandedType(opOperandType, indexingMap, expansionInfo);
if (expandedOutputType != opOperand->get().getType()) {
SmallVector<ReassociationIndices> reassociation =
getReassociationForExpansion(indexingMap, expansionInfo);
if (failed(reshapeLikeShapesAreCompatible(
[&](const Twine &msg) {
return rewriter.notifyMatchFailure(genericOp, msg);
},
opOperandType.getShape(), expandedOutputType.getShape(),
reassociation,
/*isExpandingReshape=*/true)))
return std::nullopt;
outputs.push_back(rewriter.create<tensor::ExpandShapeOp>(
genericOp.getLoc(), expandedOutputType, opOperand->get(),
reassociation));
} else {
outputs.push_back(opOperand->get());
}
}
// The iterator types of the expanded op are all parallel.
SmallVector<utils::IteratorType> iteratorTypes(
expansionInfo.getExpandedOpNumDims(), utils::IteratorType::parallel);
TypeRange resultTypes = ValueRange(outputs).getTypes();
auto fusedOp =
rewriter.create<GenericOp>(genericOp.getLoc(), resultTypes,
/*inputs=*/expandedOpOperands, outputs,
expandedOpIndexingMaps, iteratorTypes);
Region &fusedRegion = fusedOp->getRegion(0);
Region &originalRegion = genericOp->getRegion(0);
rewriter.cloneRegionBefore(originalRegion, fusedRegion, fusedRegion.begin());
// Update the index accesses after the expansion.
updateExpandedGenericOpRegion(rewriter, loc, fusedRegion, expansionInfo);
// Reshape the result values to their original shape if this is a collapsing
// reshape folded into its consumer.
SmallVector<Value> resultVals;
for (OpResult opResult : genericOp->getOpResults()) {
int64_t resultNumber = opResult.getResultNumber();
if (resultTypes[resultNumber] != opResult.getType()) {
SmallVector<ReassociationIndices> reassociation =
getReassociationForExpansion(
genericOp.getMatchingIndexingMap(
genericOp.getDpsInitOperand(resultNumber)),
expansionInfo);
resultVals.push_back(rewriter.create<tensor::CollapseShapeOp>(
genericOp.getLoc(), opResult.getType(),
fusedOp->getResult(resultNumber), reassociation));
} else {
resultVals.push_back(fusedOp->getResult(resultNumber));
}
}
// Assuming a single result.
return resultVals;
}
namespace {
/// Pattern to fuse a tensor.collapse_shape op with its consumer generic op,
/// when the reshape op is collapsing dimensions. The dimensionality of the loop
/// in the consumer is expanded.
class FoldWithProducerReshapeOpByExpansion
: public OpRewritePattern<GenericOp> {
public:
FoldWithProducerReshapeOpByExpansion(MLIRContext *context,
ControlFusionFn foldReshapes,
PatternBenefit benefit = 1)
: OpRewritePattern<GenericOp>(context, benefit),
controlFoldingReshapes(std::move(foldReshapes)) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
for (OpOperand *opOperand : genericOp.getDpsInputOperands()) {
tensor::CollapseShapeOp reshapeOp =
opOperand->get().getDefiningOp<tensor::CollapseShapeOp>();
if (!reshapeOp)
continue;
// Fold only if
// - The tensor reshape op is folding.
// - All constraints of fusing with reshape by expansion are met.
if (!isFusableWithReshapeByDimExpansion(genericOp, opOperand) ||
(!controlFoldingReshapes(opOperand)))
continue;
std::optional<SmallVector<Value>> replacementValues =
fuseWithReshapeByExpansion(genericOp, reshapeOp, opOperand, rewriter);
if (!replacementValues)
return failure();
rewriter.replaceOp(genericOp, *replacementValues);
return success();
}
return failure();
}
private:
ControlFusionFn controlFoldingReshapes;
};
/// Pattern to fold a tensor.expand_shape op with its producer generic op
/// by expanding the dimensionality of the loop in the producer op.
struct FoldReshapeWithGenericOpByExpansion
: public OpRewritePattern<tensor::ExpandShapeOp> {
FoldReshapeWithGenericOpByExpansion(MLIRContext *context,
ControlFusionFn foldReshapes,
PatternBenefit benefit = 1)
: OpRewritePattern<tensor::ExpandShapeOp>(context, benefit),
controlFoldingReshapes(std::move(foldReshapes)) {}
LogicalResult matchAndRewrite(tensor::ExpandShapeOp reshapeOp,
PatternRewriter &rewriter) const override {
// Fold only if all constraints of fusing with reshape by expansion are met.
auto producerResult = dyn_cast<OpResult>(reshapeOp.getSrc());
if (!producerResult) {
return rewriter.notifyMatchFailure(reshapeOp,
"source not produced by an operation");
}
auto producer = dyn_cast<GenericOp>(producerResult.getOwner());
if (!producer) {
return rewriter.notifyMatchFailure(reshapeOp,
"producer not a generic op");
}
if (!isFusableWithReshapeByDimExpansion(
producer,
producer.getDpsInitOperand(producerResult.getResultNumber()))) {
return rewriter.notifyMatchFailure(
reshapeOp, "failed preconditions of fusion with producer generic op");
}
if (!controlFoldingReshapes(&reshapeOp->getOpOperand(0))) {
return rewriter.notifyMatchFailure(reshapeOp,
"fusion blocked by control function");
}
std::optional<SmallVector<Value>> replacementValues =
fuseWithReshapeByExpansion(
producer, reshapeOp,
producer.getDpsInitOperand(producerResult.getResultNumber()),
rewriter);
if (!replacementValues) {
return rewriter.notifyMatchFailure(reshapeOp,
"fusion by expansion failed");
}
// Find the replacement for the reshape op. Since the replacements have the
// same type as the returns of the original generic op, the consumer reshape
// op can be replaced by the source of the collapse_shape op that defines
// the replacement.
Value reshapeReplacement =
(*replacementValues)[cast<OpResult>(reshapeOp.getSrc())
.getResultNumber()];
if (auto collapseOp =
reshapeReplacement.getDefiningOp<tensor::CollapseShapeOp>()) {
reshapeReplacement = collapseOp.getSrc();
}
rewriter.replaceOp(reshapeOp, reshapeReplacement);
rewriter.replaceOp(producer, *replacementValues);
return success();
}
private:
ControlFusionFn controlFoldingReshapes;
};
} // namespace
//===---------------------------------------------------------------------===//
// Methods and patterns to fuse reshape with linalg.generic operations by
// contraction of dimensions.
//===---------------------------------------------------------------------===//
/// For a given list of indices in the range of the `indexingMap` that are
/// folded, return the indices of the corresponding domain. Return
/// `std::nullopt` on failure. Ensures that all the elements of the returned
/// reassociation are distinct.
static ReassociationIndices
getDomainReassociation(AffineMap indexingMap,
ReassociationIndicesRef rangeReassociation) {
assert(indexingMap.isProjectedPermutation() &&
"expected projected permutation");
ReassociationIndices domainReassociation = llvm::to_vector<4>(
llvm::map_range(rangeReassociation, [&](int64_t pos) -> int64_t {
return indexingMap.getResults()[pos]
.cast<AffineDimExpr>()
.getPosition();
}));
// The projected permutation semantics ensures that there is no repetition of
// the domain indices.
return domainReassociation;
}
/// For a given `dimSequence`, check if the sequence is conserved in the
/// `indexingMap`. `indexingMap` is expected to be a projected permutation.
/// Non-existence of the sequence returns true as well.
bool mlir::linalg::isDimSequencePreserved(AffineMap indexingMap,
ReassociationIndicesRef dimSequence) {
assert(!dimSequence.empty() &&
"expected non-empty list for dimension sequence");
assert(indexingMap.isProjectedPermutation() &&
"expected indexing map to be projected permutation");
llvm::SmallDenseSet<unsigned, 4> sequenceElements;
sequenceElements.insert(dimSequence.begin(), dimSequence.end());
unsigned dimSequenceStart = dimSequence[0];
for (const auto &expr : enumerate(indexingMap.getResults())) {
unsigned dimInMapStart = expr.value().cast<AffineDimExpr>().getPosition();
// 1. Check if this start of the sequence.
if (dimInMapStart == dimSequenceStart) {
if (expr.index() + dimSequence.size() > indexingMap.getNumResults())
return false;
// 1a. Check if sequence is preserved.
for (const auto &dimInSequence : enumerate(dimSequence)) {
unsigned dimInMap =
indexingMap.getResult(expr.index() + dimInSequence.index())
.cast<AffineDimExpr>()
.getPosition();
if (dimInMap != dimInSequence.value())
return false;
}
// Found the sequence. Projected permutation
// enforces that all AffineDimExprs in the result are unique, so no
// further checks are needed.
return true;
}
// 2. If position in the expr (which is of type AffineDimExpr) is part
// of sequence, return false here. This implies the entire sequence does not
// exist in the indexing map.
if (sequenceElements.count(dimInMapStart))
return false;
}
// 3. No element of sequence found. Return true.
return true;
}
bool mlir::linalg::areDimSequencesPreserved(
ArrayRef<AffineMap> maps, ArrayRef<ReassociationIndices> dimSequences) {
return llvm::all_of(maps, [&](AffineMap map) {
return llvm::all_of(dimSequences, [&](ReassociationIndicesRef dimSequence) {
return isDimSequencePreserved(map, dimSequence);
});
});
}
// Return the list of dimensions of the iteration domain that can be
// collapsed to allow for fusion with the a producer that is an expand_shape
// operation. If all dimensions created by expansion can be collapsed in the
// iteration space then the reshape is defunct.
//
// Example:
//
// ```mlir
// #map = affine_map<(d0, d1) -> (d0, d1)>
// %1 = tensor.expand_shape %0 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32>
// %2 = tensor.empty [..] : tensor<?x4xf32>
// %3 = linalg.generic {
// indexing_maps = [#map, #map],
// iterator_types = ["parallel" ,"parallel"]}
// ins(%1 : tensor<?x4xf32>) outs(%2 : tensor<?x4xf32>) {.. }
// ```
//
// can be fused by collapsing the dimensions of the iteration space.
//
// ```mlir
// #map = affine_map<(d0) -> (d0)>
// %2 = tensor.empty [..] : tensor<?xf32>
// %3 = linalg.generic {
// indexing_maps = [#map, #map],
// iterator_types = ["parallel"]}
// ins(%1 : tensor<?xf32>) outs(%2 : tensor<?xf32>) {.. }
// %4 = tensor.expand_shape %3 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32>
// ```
//
// In the following example,
//
// ```mlir
// #map0 = affine_map<(d0, d1) -> (d0, d1)>
// #map1 = affine_map<(d0, d1) -> (d1, d0)>
// %1 = tensor.expand_shape %0 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32>
// %2 = tensor.empty [..] : tensor<4x?xf32>
// %2 = linalg.generic {
// indexing_maps = [#map0, #map1],
// iterator_types = ["parallel" ,"parallel"]}
// ins(%1 : tensor<?x4xf32>) outs(%2 : tensor<4x?xf32>) {.. }
// ```
//
// the reshape cannot be fused with the generic op by collapsing the op
// dimensions since the indexing maps will have to contain mods and divs
// to preserve the accesses pattern. When no dimensions of the iteration
// space are collapsable and empty vector is returned.
static SmallVector<ReassociationIndices>
getCollapsableIterationSpaceDims(GenericOp genericOp, OpOperand *fusableOperand,
ArrayRef<ReassociationIndices> reassociation) {
// Some basic checks for this fusion to be valid.
if (!genericOp.hasTensorSemantics() || genericOp.getNumDpsInits() != 1)
return {};
if (!llvm::all_of(genericOp.getIndexingMapsArray(), [](AffineMap map) {
return map.isProjectedPermutation();
})) {
return {};
}
// Compute all the loops with the reduction iterator types.
SmallVector<unsigned> reductionDims;
genericOp.getReductionDims(reductionDims);
llvm::SmallDenseSet<unsigned, 4> processedIterationDims;
AffineMap indexingMap = genericOp.getMatchingIndexingMap(fusableOperand);
auto iteratorTypes = genericOp.getIteratorTypesArray();
SmallVector<ReassociationIndices> iterationSpaceReassociation;
for (ReassociationIndicesRef foldedRangeDims : reassociation) {
assert(!foldedRangeDims.empty() && "unexpected empty reassociation");
// Ignore dims that are not folded.
if (foldedRangeDims.size() == 1)
continue;
ReassociationIndices foldedIterationSpaceDims =
getDomainReassociation(indexingMap, foldedRangeDims);
// Check that the folded iteration dims do not contain already processed
// dims.
if (llvm::any_of(foldedIterationSpaceDims, [&](int64_t dim) {
return processedIterationDims.count(dim);
}))
continue;
// Check that all folded iterator types are all parallel or all reductions.
utils::IteratorType startIteratorType =
iteratorTypes[foldedIterationSpaceDims[0]];
if (!isParallelIterator(startIteratorType) &&
!isReductionIterator(startIteratorType))
continue;
if (llvm::any_of(foldedIterationSpaceDims, [&](int64_t dim) {
return iteratorTypes[dim] != startIteratorType;
}))
continue;
// If the folded dimensions correspond to a "reduction" iterator type,
// the folded dimensions need to be "in-order". Strictly speaking this is
// not necessary, for reductions that are associative and commutative, but
// using a more strict definition of reduction for now.
if (isReductionIterator(startIteratorType)) {
bool isContiguous = false;
for (const auto &startDim : llvm::enumerate(reductionDims)) {
// Move window in `reductionDims` to start of the folded iteration dims.
if (startDim.value() != foldedIterationSpaceDims[0])
continue;
// If sizes doesnt match, trivial not contiguous. This condition should
// not be hit.
if (startDim.index() + foldedIterationSpaceDims.size() >
reductionDims.size())
break;
// Check that the contiguity is maintained.
isContiguous = true;
for (const auto &foldedDim :
llvm::enumerate(foldedIterationSpaceDims)) {
if (reductionDims[foldedDim.index() + startDim.index()] !=
foldedDim.value()) {
isContiguous = false;
break;
}
}
break;
}
if (!isContiguous)
continue;
}
// Check that the sequence is preserved in all indexing maps.
if (llvm::any_of(genericOp.getIndexingMapsArray(),
[&](AffineMap indexingMap) {
return !isDimSequencePreserved(indexingMap,
foldedIterationSpaceDims);
}))
continue;
processedIterationDims.insert(foldedIterationSpaceDims.begin(),
foldedIterationSpaceDims.end());
iterationSpaceReassociation.emplace_back(
std::move(foldedIterationSpaceDims));
}
return iterationSpaceReassociation;
}
/// Helper class to carry state while collapsing the `linalg.generic` op.
namespace {
class CollapsingInfo {
public:
LogicalResult initialize(unsigned origNumLoops,
ArrayRef<ReassociationIndices> foldedIterationDims) {
llvm::SmallDenseSet<int64_t, 4> processedDims;
// Find all the dims that are folded.
for (ReassociationIndicesRef foldedIterationDim : foldedIterationDims) {
if (foldedIterationDim.empty())
continue;
// If the folded dims contain dims already folded, that's illegal
// specification. Repetition within a list is also illegal.
for (auto dim : foldedIterationDim) {
if (dim >= origNumLoops)
return failure();
if (processedDims.count(dim))
return failure();
processedDims.insert(dim);
}
collapsedOpToOrigOpIterationDim.emplace_back(foldedIterationDim.begin(),
foldedIterationDim.end());
}
if (processedDims.size() > origNumLoops)
return failure();
// Add all the preserved dims of the original op as single
// elements to `collapsedOpToOrigOpIterationDim`.
for (auto dim : llvm::seq<int64_t>(0, origNumLoops)) {
if (processedDims.count(dim))
continue;
collapsedOpToOrigOpIterationDim.emplace_back(ReassociationIndices{dim});
}
llvm::sort(collapsedOpToOrigOpIterationDim,
[&](ReassociationIndicesRef lhs, ReassociationIndicesRef rhs) {
return lhs[0] < rhs[0];
});
origOpToCollapsedOpIterationDim.resize(origNumLoops);
for (const auto &foldedDims :
llvm::enumerate(collapsedOpToOrigOpIterationDim)) {
for (const auto &dim : enumerate(foldedDims.value()))
origOpToCollapsedOpIterationDim[dim.value()] =
std::make_pair<int64_t, unsigned>(foldedDims.index(), dim.index());
}
return success();
}
/// Return mapping from collapsed loop domain to original loop domain.
ArrayRef<ReassociationIndices> getCollapsedOpToOrigOpMapping() const {
return collapsedOpToOrigOpIterationDim;
}
/// Return mapping from original loop domain to collapsed loop domain. The
/// mapping is a pair. First value is the dimension in the collapsed loop that
/// the original loop is mapped to. Second is the relative position in folded
/// list of this domain. For example if the original loop domain is 3D, and
/// the collapsed loop domain is folding all of it, i.e.
///
/// ```
/// collapsedOpToOrigOpMapping = [[0, 1, 2] [3, 4]]`
/// ```
///
/// then
///
/// ```
/// origOpToCollapsedOpMapping[0] = {0, 0};
/// origOpToCollapsedOpMapping[1] = {0, 1};
/// origOpToCollapsedOpMapping[2] = {0, 2};
/// origOpToCollapsedOpMapping[3] = {1, 0};
/// origOpToCollapsedOpMapping[4] = {1, 1};
/// ```
///
ArrayRef<std::pair<int64_t, unsigned>> getOrigOpToCollapsedOpMapping() const {
return origOpToCollapsedOpIterationDim;
}
/// Return the collapsed op iteration domain rank.
unsigned getCollapsedOpIterationRank() const {
return collapsedOpToOrigOpIterationDim.size();
}
private:
/// Map from the iteration domain index in collapsed op to the iteration
/// domain indices in the original op.
SmallVector<ReassociationIndices> collapsedOpToOrigOpIterationDim;
/// Map from iteration domain index in the original op to the iteration domain
/// index in the collapsed op.
SmallVector<std::pair<int64_t, unsigned>> origOpToCollapsedOpIterationDim;
};
} // namespace
/// Get the iterator types for the collapsed operation given the original
/// iterator types and collapsed dimensions.
static SmallVector<utils::IteratorType>
getCollapsedOpIteratorTypes(ArrayRef<utils::IteratorType> iteratorTypes,
const CollapsingInfo &collapsingInfo) {
SmallVector<utils::IteratorType> collapsedIteratorTypes;
for (ReassociationIndicesRef foldedIterDims :
collapsingInfo.getCollapsedOpToOrigOpMapping()) {
assert(!foldedIterDims.empty() &&
"reassociation indices expected to have non-empty sets");
// Just pick the iterator type of the first folded dim. Pre-condition checks
// expected to have checked that iterator types of all folded dimensions are
// the same.
collapsedIteratorTypes.push_back(iteratorTypes[foldedIterDims[0]]);
}
return collapsedIteratorTypes;
}
/// Compute the indexing map in the collapsed op that corresponds to the given
/// `indexingMap` of the original operation.
static AffineMap
getCollapsedOpIndexingMap(AffineMap indexingMap,
const CollapsingInfo &collapsingInfo) {
MLIRContext *context = indexingMap.getContext();
assert(indexingMap.isProjectedPermutation() &&
"expected indexing map to be projected permutation");
SmallVector<AffineExpr> resultExprs;
auto origOpToCollapsedOpMapping =
collapsingInfo.getOrigOpToCollapsedOpMapping();
for (auto expr : indexingMap.getResults()) {
unsigned dim = expr.cast<AffineDimExpr>().getPosition();
// If the dim is not the first of the collapsed dim, do nothing.
if (origOpToCollapsedOpMapping[dim].second != 0)
continue;
// The next n-dims are guaranteed to be collapsed. So just use the
// iteration dimension of the collapsed op.
resultExprs.push_back(
getAffineDimExpr(origOpToCollapsedOpMapping[dim].first, context));
}
return AffineMap::get(collapsingInfo.getCollapsedOpIterationRank(), 0,
resultExprs, context);
}
/// Return the `reassociation` indices to use to collapse the operand when the
/// iteration space of a generic op is collapsed.
static SmallVector<ReassociationIndices>
getOperandReassociation(AffineMap indexingMap,
const CollapsingInfo &collapsingInfo) {
unsigned counter = 0;
SmallVector<ReassociationIndices> operandReassociation;
auto origOpToCollapsedOpMapping =
collapsingInfo.getOrigOpToCollapsedOpMapping();
auto collapsedOpToOrigOpMapping =
collapsingInfo.getCollapsedOpToOrigOpMapping();
while (counter < indexingMap.getNumResults()) {
unsigned dim =
indexingMap.getResult(counter).cast<AffineDimExpr>().getPosition();
// This is the start of a collapsed dimensions of the iteration that
// is gauranteed to be preserved in the indexing map. The number of folded
// dims is obtained from the collapsed op to original op mapping.
unsigned numFoldedDims =
collapsedOpToOrigOpMapping[origOpToCollapsedOpMapping[dim].first]
.size();
if (origOpToCollapsedOpMapping[dim].second == 0) {
auto range = llvm::seq<unsigned>(counter, counter + numFoldedDims);
operandReassociation.emplace_back(range.begin(), range.end());
}
counter += numFoldedDims;
}
return operandReassociation;
}
/// Get the new value to use for a given `OpOperand` in the collapsed operation.
static Value getCollapsedOpOperand(Location loc, GenericOp genericOp,
OpOperand *opOperand,
const CollapsingInfo &collapsingInfo,
OpBuilder &builder) {
AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
SmallVector<ReassociationIndices> operandReassociation =
getOperandReassociation(indexingMap, collapsingInfo);
// If the number of entries in the reassocation for the operand is same as the
// number of results of the indexing map, then nothing to do for this operand.
Value operand = opOperand->get();
if (operandReassociation.size() == indexingMap.getNumResults())
return operand;
// Insert a reshape to collapse the dimensions.
auto reshapeOp = builder.create<tensor::CollapseShapeOp>(
loc, operand, operandReassociation);
return reshapeOp.getResult();
}
/// Modify the `linalg.index` operations in the original generic op, to its
/// value in the collapsed operation.
void generateCollapsedIndexingRegion(Location loc, Block *block,
const CollapsingInfo &collapsingInfo,
ValueRange loopRange,
RewriterBase &rewriter) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPointToStart(block);
// Collect all the original index ops.
auto indexOps = llvm::to_vector(block->getOps<linalg::IndexOp>());
// For each folded dimension list resolve the original induction variable
// values in terms of the folded dimension induction variable.
// i_{folded} = (i_0 * d1 + i1) * d2 + i2.
// can be inverted to
// i2 = i_{folded} % d2
// i1 = (i_{folded} / d2) % d1
// i0 = i_{folded} / (d1 * d2)
llvm::DenseMap<unsigned, Value> indexReplacementVals;
for (auto foldedDims :
enumerate(collapsingInfo.getCollapsedOpToOrigOpMapping())) {
ReassociationIndicesRef foldedDimsRef(foldedDims.value());
Value newIndexVal =
rewriter.create<linalg::IndexOp>(loc, foldedDims.index());
for (auto dim : llvm::reverse(foldedDimsRef.drop_front())) {
indexReplacementVals[dim] =
rewriter.create<arith::RemUIOp>(loc, newIndexVal, loopRange[dim]);
newIndexVal =
rewriter.create<arith::DivUIOp>(loc, newIndexVal, loopRange[dim]);
}
indexReplacementVals[foldedDims.value().front()] = newIndexVal;
}
for (auto indexOp : indexOps) {
auto dim = indexOp.getDim();
rewriter.replaceOp(indexOp, indexReplacementVals[dim]);
}
}
/// Implementation of fusion with reshape operation by collapsing dimensions.
FailureOr<SmallVector<Value>> mlir::linalg::collapseGenericOpIterationDims(
GenericOp genericOp, ArrayRef<ReassociationIndices> foldedIterationDims,
RewriterBase &rewriter) {
// Bail on trivial no-op cases.
if (genericOp.getNumLoops() <= 1 || foldedIterationDims.empty() ||
llvm::all_of(foldedIterationDims, [](ReassociationIndicesRef foldedDims) {
return foldedDims.size() <= 1;
}))
return failure();
CollapsingInfo collapsingInfo;
if (failed(collapsingInfo.initialize(genericOp.getNumLoops(),
foldedIterationDims))) {
return rewriter.notifyMatchFailure(
genericOp, "illegal to collapse specified dimensions");
}
// Bail on non-canonical ranges.
SmallVector<Range> loopRanges =
cast<LinalgOp>(genericOp.getOperation())
.createLoopRanges(rewriter, genericOp.getLoc());
auto opFoldIsConstantValue = [](OpFoldResult ofr, int64_t value) {
if (auto attr = llvm::dyn_cast_if_present<Attribute>(ofr))
return cast<IntegerAttr>(attr).getInt() == value;
llvm::APInt actual;
return matchPattern(ofr.get<Value>(), m_ConstantInt(&actual)) &&
actual.getSExtValue() == value;
};
if (!llvm::all_of(loopRanges, [&](Range range) {
return opFoldIsConstantValue(range.offset, 0) &&
opFoldIsConstantValue(range.stride, 1);
})) {
return rewriter.notifyMatchFailure(
genericOp,
"expected all loop ranges to have zero start and unit stride");
}
// Get the iterator types for the operand.
SmallVector<utils::IteratorType> iteratorTypes = getCollapsedOpIteratorTypes(
genericOp.getIteratorTypesArray(), collapsingInfo);
// Get the indexing maps.
auto indexingMaps = llvm::to_vector(
llvm::map_range(genericOp.getIndexingMapsArray(), [&](AffineMap map) {
return getCollapsedOpIndexingMap(map, collapsingInfo);
}));
Location loc = genericOp->getLoc();
// Get the input operands.
auto inputOperands = llvm::to_vector(llvm::map_range(
genericOp.getDpsInputOperands(), [&](OpOperand *opOperand) {
return getCollapsedOpOperand(loc, genericOp, opOperand, collapsingInfo,
rewriter);
}));
// Get the output operands and result types.
SmallVector<Type> resultTypes;
SmallVector<Value> outputOperands;
resultTypes.reserve(genericOp.getNumDpsInits());
outputOperands.reserve(genericOp.getNumDpsInits());
for (OpOperand *output : genericOp.getDpsInitOperands()) {
Value newOutput =
getCollapsedOpOperand(loc, genericOp, output, collapsingInfo, rewriter);
outputOperands.push_back(newOutput);
resultTypes.push_back(newOutput.getType());
}
// Create the generic op.
auto collapsedGenericOp = rewriter.create<linalg::GenericOp>(
loc, resultTypes, inputOperands, outputOperands, indexingMaps,
iteratorTypes, [](OpBuilder &builder, Location loc, ValueRange args) {});
Block *origOpBlock = &genericOp->getRegion(0).front();
Block *collapsedOpBlock = &collapsedGenericOp->getRegion(0).front();
rewriter.mergeBlocks(origOpBlock, collapsedOpBlock,
collapsedOpBlock->getArguments());
if (collapsedGenericOp.hasIndexSemantics()) {
// Collect the loop range of the generic op.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(collapsedGenericOp);
SmallVector<Value> loopBound =
llvm::to_vector(llvm::map_range(loopRanges, [&](Range range) {
return getValueOrCreateConstantIndexOp(rewriter, loc, range.size);
}));
generateCollapsedIndexingRegion(loc,
&collapsedGenericOp->getRegion(0).front(),
collapsingInfo, loopBound, rewriter);
}
// Insert expanding reshape for the result to get back the original result
// type.
SmallVector<Value> results;
for (const auto &originalResult : llvm::enumerate(genericOp->getResults())) {
Value collapsedOpResult =
collapsedGenericOp->getResult(originalResult.index());
auto originalResultType =
cast<ShapedType>(originalResult.value().getType());
auto collapsedOpResultType = cast<ShapedType>(collapsedOpResult.getType());
if (collapsedOpResultType.getRank() != originalResultType.getRank()) {
AffineMap indexingMap =
genericOp.getIndexingMapMatchingResult(originalResult.value());
SmallVector<ReassociationIndices> reassociation =
getOperandReassociation(indexingMap, collapsingInfo);
Value result = rewriter.create<tensor::ExpandShapeOp>(
loc, originalResultType, collapsedOpResult, reassociation);
results.push_back(result);
} else {
results.push_back(collapsedOpResult);
}
}
return results;
}
namespace {
/// Pattern to fuse a tensor.expand_shape op with its consumer generic op by
/// contracting dimensions of the loop.
class FoldWithProducerReshapeOpByCollapsing
: public OpRewritePattern<GenericOp> {
public:
FoldWithProducerReshapeOpByCollapsing(MLIRContext *context,
ControlFusionFn foldReshapes,
PatternBenefit benefit = 1)
: OpRewritePattern<GenericOp>(context, benefit),
controlFoldingReshapes(std::move(foldReshapes)) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
for (OpOperand &opOperand : genericOp->getOpOperands()) {
tensor::ExpandShapeOp reshapeOp =
opOperand.get().getDefiningOp<tensor::ExpandShapeOp>();
if (!reshapeOp)
continue;
SmallVector<ReassociationIndices> collapsableIterationDims =
getCollapsableIterationSpaceDims(genericOp, &opOperand,
reshapeOp.getReassociationIndices());
if (collapsableIterationDims.empty() ||
!controlFoldingReshapes(&opOperand)) {
continue;
}
std::optional<SmallVector<Value>> replacements =
collapseGenericOpIterationDims(genericOp, collapsableIterationDims,
rewriter);
if (!replacements) {
return rewriter.notifyMatchFailure(
genericOp, "failed to do the fusion by collapsing transformation");
}
rewriter.replaceOp(genericOp, *replacements);
return success();
}
return failure();
}
private:
ControlFusionFn controlFoldingReshapes;
};
/// Pattern to collapse dimensions.
class CollapseLinalgDimensions : public OpRewritePattern<GenericOp> {
public:
CollapseLinalgDimensions(MLIRContext *context,
GetCollapsableDimensionsFn collapseDimensions,
PatternBenefit benefit = 1)
: OpRewritePattern<GenericOp>(context, benefit),
controlCollapseDimension(std::move(collapseDimensions)) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
SmallVector<ReassociationIndices> collapsableIterationDims =
controlCollapseDimension(genericOp);
if (collapsableIterationDims.empty())
return failure();
// Check if the specified list of dimensions to collapse is a valid list.
if (!areDimSequencesPreserved(genericOp.getIndexingMapsArray(),
collapsableIterationDims)) {
return rewriter.notifyMatchFailure(
genericOp, "specified dimensions cannot be collapsed");
}
std::optional<SmallVector<Value>> replacements =
collapseGenericOpIterationDims(genericOp, collapsableIterationDims,
rewriter);
if (!replacements) {
return rewriter.notifyMatchFailure(genericOp,
"failed to collapse dimensions");
}
rewriter.replaceOp(genericOp, *replacements);
return success();
}
private:
GetCollapsableDimensionsFn controlCollapseDimension;
};
} // namespace
//===---------------------------------------------------------------------===//
// Methods and patterns that fuse constants with linalg.generic operations.
//===---------------------------------------------------------------------===//
namespace {
/// Pattern to fold a generic op with a splat constant/scalar constant. Does not
/// handle cases where the constant is not single-valued.
class FoldScalarOrSplatConstant : public OpRewritePattern<GenericOp> {
public:
FoldScalarOrSplatConstant(MLIRContext *context, PatternBenefit benefit = 1)
: OpRewritePattern<GenericOp>(context, benefit) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
if (!genericOp.hasTensorSemantics())
return failure();
for (OpOperand *opOperand : genericOp.getDpsInputOperands()) {
Operation *def = opOperand->get().getDefiningOp();
TypedAttr constantAttr;
auto isScalarOrSplatConstantOp = [&constantAttr](Operation *def) -> bool {
{
DenseElementsAttr splatAttr;
if (matchPattern(def, m_Constant<DenseElementsAttr>(&splatAttr)) &&
splatAttr.isSplat() &&
splatAttr.getType().getElementType().isIntOrFloat()) {
constantAttr = splatAttr.getSplatValue<TypedAttr>();
return true;
}
}
{
IntegerAttr intAttr;
if (matchPattern(def, m_Constant<IntegerAttr>(&intAttr))) {
constantAttr = intAttr;
return true;
}
}
{
FloatAttr floatAttr;
if (matchPattern(def, m_Constant<FloatAttr>(&floatAttr))) {
constantAttr = floatAttr;
return true;
}
}
return false;
};
auto resultValue = dyn_cast<OpResult>(opOperand->get());
if (!def || !resultValue || !isScalarOrSplatConstantOp(def))
continue;
// The operands and the indexing_maps of the fused operation the same as
// the operands and indexing_maps of the generic operations with the
// values at the constant index dropped.
SmallVector<AffineMap> fusedIndexMaps;
SmallVector<Value> fusedOperands;
SmallVector<Location> fusedLocs{genericOp.getLoc()};
fusedIndexMaps.reserve(genericOp->getNumOperands());
fusedOperands.reserve(genericOp.getNumDpsInputs());
fusedLocs.reserve(fusedLocs.size() + genericOp.getNumDpsInputs());
for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) {
if (inputOperand == opOperand)
continue;
Value inputValue = inputOperand->get();
fusedIndexMaps.push_back(
genericOp.getMatchingIndexingMap(inputOperand));
fusedOperands.push_back(inputValue);
fusedLocs.push_back(inputValue.getLoc());
}
for (OpOperand *outputOperand : genericOp.getDpsInitOperands())
fusedIndexMaps.push_back(
genericOp.getMatchingIndexingMap(outputOperand));
// Check if the operation shapes to loops map is computable.
if (!inversePermutation(concatAffineMaps(fusedIndexMaps))) {
return rewriter.notifyMatchFailure(
genericOp, "fused op loop bound computation failed");
}
// Create a constant scalar value from the splat constant.
Value scalarConstant =
rewriter.create<arith::ConstantOp>(def->getLoc(), constantAttr);
SmallVector<Value> outputOperands = genericOp.getOutputs();
auto fusedOp = rewriter.create<GenericOp>(
rewriter.getFusedLoc(fusedLocs), genericOp->getResultTypes(),
/*inputs=*/fusedOperands,
/*outputs=*/outputOperands,
rewriter.getAffineMapArrayAttr(fusedIndexMaps),
genericOp.getIteratorTypes(),
/*doc=*/nullptr,
/*library_call=*/nullptr);
// Map the block argument corresponding to the replaced argument with the
// scalar constant.
Region ®ion = genericOp->getRegion(0);
Block &entryBlock = *region.begin();
IRMapping mapping;
mapping.map(entryBlock.getArgument(opOperand->getOperandNumber()),
scalarConstant);
Region &fusedRegion = fusedOp->getRegion(0);
rewriter.cloneRegionBefore(region, fusedRegion, fusedRegion.begin(),
mapping);
rewriter.replaceOp(genericOp, fusedOp->getResults());
return success();
}
return failure();
}
};
} // namespace
//===---------------------------------------------------------------------===//
// Miscellaneous patterns that help fusion.
//===---------------------------------------------------------------------===//
namespace {
/// Forces `outs` operands of linalg operations to use `tensor.empty` if the
/// value of the `outs` operand is not used within the op. This is only
/// implemented for `linalg.generic` operations for now, but should hold for all
/// linalg structured ops.
struct RemoveOutsDependency : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp op,
PatternRewriter &rewriter) const override {
rewriter.startRootUpdate(op);
bool modifiedOutput = false;
Location loc = op.getLoc();
for (OpOperand *opOperand : op.getDpsInitOperands()) {
if (!op.payloadUsesValueFromOperand(opOperand)) {
Value operandVal = opOperand->get();
auto operandType = dyn_cast<RankedTensorType>(operandVal.getType());
if (!operandType)
continue;
// If outs is sparse, leave it to the sparse compiler.
if (sparse_tensor::getSparseTensorEncoding(operandVal.getType()))
continue;
// If outs is already an `empty` operation, nothing to do.
auto definingOp = operandVal.getDefiningOp<tensor::EmptyOp>();
if (definingOp)
continue;
modifiedOutput = true;
SmallVector<OpFoldResult> mixedSizes =
tensor::getMixedSizes(rewriter, loc, operandVal);
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, mixedSizes, operandType.getElementType());
op->setOperand(opOperand->getOperandNumber(), emptyTensor);
}
}
if (!modifiedOutput) {
rewriter.cancelRootUpdate(op);
return failure();
}
rewriter.finalizeRootUpdate(op);
return success();
}
};
/// Fold linalg.fill into linalg.generic
struct FoldFillWithGenericOp : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
if (!genericOp.hasTensorSemantics())
return failure();
bool fillFound = false;
Block &payload = genericOp.getRegion().front();
for (OpOperand *opOperand : genericOp.getDpsInputOperands()) {
if (!genericOp.payloadUsesValueFromOperand(opOperand))
continue;
FillOp fillOp = opOperand->get().getDefiningOp<FillOp>();
if (!fillOp)
continue;
fillFound = true;
Value fillVal = fillOp.value();
auto resultType =
cast<RankedTensorType>(fillOp.result().getType()).getElementType();
Value convertedVal =
convertScalarToDtype(rewriter, fillOp.getLoc(), fillVal, resultType,
/*isUnsignedCast =*/false);
rewriter.replaceAllUsesWith(
payload.getArgument(opOperand->getOperandNumber()), convertedVal);
}
return success(fillFound);
}
};
} // namespace
void mlir::linalg::populateFoldReshapeOpsByExpansionPatterns(
RewritePatternSet &patterns,
const ControlFusionFn &controlFoldingReshapes) {
patterns.add<FoldReshapeWithGenericOpByExpansion>(patterns.getContext(),
controlFoldingReshapes);
patterns.add<FoldWithProducerReshapeOpByExpansion>(patterns.getContext(),
controlFoldingReshapes);
}
void mlir::linalg::populateFoldReshapeOpsByCollapsingPatterns(
RewritePatternSet &patterns,
const ControlFusionFn &controlFoldingReshapes) {
patterns.add<FoldWithProducerReshapeOpByCollapsing>(patterns.getContext(),
controlFoldingReshapes);
}
void mlir::linalg::populateElementwiseOpsFusionPatterns(
RewritePatternSet &patterns,
const ControlFusionFn &controlElementwiseOpsFusion) {
auto *context = patterns.getContext();
patterns.add<FuseElementwiseOps>(context, controlElementwiseOpsFusion);
patterns.add<FoldFillWithGenericOp, FoldScalarOrSplatConstant,
RemoveOutsDependency>(context);
// Add the patterns that clean up dead operands and results.
populateEraseUnusedOperandsAndResultsPatterns(patterns);
}
void mlir::linalg::populateCollapseDimensions(
RewritePatternSet &patterns,
const GetCollapsableDimensionsFn &controlCollapseDimensions) {
patterns.add<CollapseLinalgDimensions>(patterns.getContext(),
controlCollapseDimensions);
}
//===---------------------------------------------------------------------===//
// Passes
//===---------------------------------------------------------------------===//
namespace {
/// Pass that fuses generic ops on tensors. Used only for testing.
// TODO(ravishankarm): This pass is to be deprecated. The efficacy of the
// patterns added here heavily depends on the cost function used. Having an
// opinionated pass of this form is not recommended. Deprecate this pass in
// favor of test passes that check the functionality of each of the patterns
// added here individually.
struct LinalgElementwiseOpFusionPass
: public impl::LinalgElementwiseOpFusionBase<
LinalgElementwiseOpFusionPass> {
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *context = op->getContext();
RewritePatternSet patterns(context);
// Add folding with reshape by expansion patterns.
ControlFusionFn defaultControlFn = [](OpOperand *fusedOperand) {
Operation *producer = fusedOperand->get().getDefiningOp();
return producer && producer->hasOneUse();
};
// Add elementwise op fusion patterns.
populateElementwiseOpsFusionPatterns(patterns, defaultControlFn);
populateFoldReshapeOpsByExpansionPatterns(patterns, defaultControlFn);
// General canonicalization patterns.
affine::AffineApplyOp::getCanonicalizationPatterns(patterns, context);
GenericOp::getCanonicalizationPatterns(patterns, context);
tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
context->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(
patterns);
// Add constant folding patterns.
populateConstantFoldLinalgOperations(patterns, defaultControlFn);
// Use TopDownTraversal for compile time reasons
GreedyRewriteConfig grc;
grc.useTopDownTraversal = true;
(void)applyPatternsAndFoldGreedily(op, std::move(patterns), grc);
}
};
} // namespace
std::unique_ptr<Pass> mlir::createLinalgElementwiseOpFusionPass() {
return std::make_unique<LinalgElementwiseOpFusionPass>();
}
|