File: FusePadOpWithLinalgProducer.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (124 lines) | stat: -rw-r--r-- 4,710 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
//===- FusePadOpWithLinalgProducer.cpp ---- Fuse pad with linalg producer -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns that fuses a linalg.generic -> tensor.pad op
// chain into a tensor.extract_slice -> linalg.generic -> tensor.insert_slice
// op chain.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Transforms/Transforms.h"

#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"

using namespace mlir;

namespace {

/// A sequence of operations
///
/// ```mlir
/// %0 = linalg. ...
/// %1 = tensor.pad %0 ...
/// ```
///
/// can be replaced with
///
/// ```mlir
/// %0 = linalg.fill
/// %1 = tensor.extract_slice %0 ...
/// %2 = linalg. .... outs(..., %1, ....) ....
/// %3 = tensor.insert_slice %2 into %1 ...
/// ```
///
/// if the `linalg.generic` has all parallel iterator types.
struct FusePadOp : OpRewritePattern<tensor::PadOp> {
  using OpRewritePattern<tensor::PadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::PadOp padOp,
                                PatternRewriter &rewriter) const override {
    // Only works on padding op that sets the padded value to a constant.
    Value padValue = padOp.getConstantPaddingValue();
    if (!padValue)
      return rewriter.notifyMatchFailure(padOp, "non constant padding");

    // This pattern could work for any Linalg op. For now restrict it to generic
    // ops.
    Value source = padOp.getSource();
    auto linalgOp = source.getDefiningOp<linalg::GenericOp>();
    if (!linalgOp) {
      return rewriter.notifyMatchFailure(
          padOp, "expected source to be linalg.generic op");
    }
    // All iterator types need to be parallel.
    if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) {
      return rewriter.notifyMatchFailure(
          padOp, "only supported for ops with all parallel iterator types");
    }
    ReifiedRankedShapedTypeDims resultShape;
    if (failed(reifyResultShapes(rewriter, padOp, resultShape)) ||
        resultShape.size() != 1) {
      return rewriter.notifyMatchFailure(
          padOp, "failed to get shape of pad op result");
    }

    Location loc = padOp.getLoc();

    // Create the tensor of same size as output of the pad op.
    RankedTensorType padResultType = padOp.getResultType();
    auto resultSizes = resultShape[0];
    auto emptyTensor = rewriter.create<tensor::EmptyOp>(
        loc, resultSizes, padResultType.getElementType());

    // Fill the tensor with the pad value.
    // TODO: There is an option to fill only the boundaries. For now just
    // filling the whole tensor.
    auto fillTensor =
        rewriter.create<linalg::FillOp>(loc, padValue, emptyTensor.getResult());

    // Construct a slice of the fill result that is to be replaced with the
    // result of the generic op. The low pad values are the offsets, the size of
    // the source is the size of the slice.
    // TODO: This insert/extract could be potentially made a utility method.
    unsigned resultNumber = cast<OpResult>(source).getResultNumber();
    SmallVector<OpFoldResult> offsets = padOp.getMixedLowPad();
    SmallVector<OpFoldResult> sizes;
    sizes.reserve(offsets.size());
    for (const auto &shape :
         llvm::enumerate(cast<RankedTensorType>(source.getType()).getShape())) {
      if (ShapedType::isDynamic(shape.value())) {
        sizes.push_back(
            rewriter.create<tensor::DimOp>(loc, source, shape.index())
                .getResult());
      } else {
        sizes.push_back(rewriter.getIndexAttr(shape.value()));
      }
    }
    SmallVector<OpFoldResult> strides(offsets.size(), rewriter.getIndexAttr(1));
    auto slice = rewriter.create<tensor::ExtractSliceOp>(
        loc, fillTensor.getResult(0), offsets, sizes, strides);

    // Clone the generic op.
    auto clonedOp =
        cast<linalg::GenericOp>(rewriter.clone(*linalgOp.getOperation()));
    clonedOp.setDpsInitOperand(resultNumber, slice.getResult());

    // Insert it back into the result of the fill.
    rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
        padOp, clonedOp.getResult(resultNumber), fillTensor.getResult(0),
        offsets, sizes, strides);
    return success();
  }
};
} // namespace

void mlir::linalg::populateFuseTensorPadWithProducerLinalgOpPatterns(
    RewritePatternSet &patterns) {
  patterns.add<FusePadOp>(patterns.getContext());
}