1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
//===- Loops.cpp - conversion from Linalg named and generic ops to loops --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
namespace mlir {
#define GEN_PASS_DEF_LINALGLOWERTOAFFINELOOPS
#define GEN_PASS_DEF_LINALGLOWERTOLOOPS
#define GEN_PASS_DEF_LINALGLOWERTOPARALLELLOOPS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::linalg;
static SmallVector<Value> makeCanonicalAffineApplies(OpBuilder &b, Location loc,
AffineMap map,
ArrayRef<Value> vals) {
if (map.isEmpty())
return {};
assert(map.getNumInputs() == vals.size());
SmallVector<Value> res;
res.reserve(map.getNumResults());
auto dims = map.getNumDims();
for (auto e : map.getResults()) {
auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e);
SmallVector<Value> operands(vals.begin(), vals.end());
affine::canonicalizeMapAndOperands(&exprMap, &operands);
res.push_back(b.create<affine::AffineApplyOp>(loc, exprMap, operands));
}
return res;
}
template <typename LoadOpTy, typename StoreOpTy, typename OpType>
static void inlineRegionAndEmitStore(OpBuilder &b, Location loc, OpType op,
ArrayRef<Value> indexedValues,
ArrayRef<SmallVector<Value>> indexing,
ArrayRef<Value> outputBuffers) {
auto &block = op->getRegion(0).front();
IRMapping map;
map.map(block.getArguments(), indexedValues);
for (auto &op : block.without_terminator()) {
auto *newOp = b.clone(op, map);
map.map(op.getResults(), newOp->getResults());
}
Operation *terminator = block.getTerminator();
for (OpOperand &operand : terminator->getOpOperands()) {
Value toStore = map.lookupOrDefault(operand.get());
b.create<StoreOpTy>(loc, toStore, outputBuffers[operand.getOperandNumber()],
indexing[operand.getOperandNumber()]);
}
}
// Returns a pair that contains input indices and output indices of a
// SingleInputPoolingOp `op`.
struct InputAndOutputIndices {
SmallVector<Value> inputs;
SmallVector<Value> outputs;
};
template <typename SingleInputPoolingOp>
static InputAndOutputIndices
getInputAndOutputIndices(OpBuilder &b, Location loc, ArrayRef<Value> allIvs,
SingleInputPoolingOp op) {
auto mapsRange = op.getIndexingMapsArray();
auto maps = llvm::to_vector<8>(
llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
return InputAndOutputIndices{
makeCanonicalAffineApplies(b, loc, maps[0], allIvs),
makeCanonicalAffineApplies(b, loc, maps[2], allIvs)};
}
/// Emits the MLIR for the scalar part of the generic op by:
/// 1. Emitting load ops for each input and output view in order. This is
/// achieved by applying the appropriate input or output map to the
/// enclosing induction variables.
/// 2. Emitting a call to `op.fun()` that takes as arguments the scalars
/// from point 1. above.
/// 3. Emitting store ops to store the results of 2. to the output
/// views.
///
/// An example output may resemble:
///
/// ```
/// scf.for %i = %c0 to %0 step %c1 {
/// scf.for %j = %c0 to %1 step %c1 {
/// scf.for %k = %c0 to %4 step %c1 {
/// %11 = load %arg0[%i, %j] :
/// memref<?x?xf32, stride_specification>
/// %12 = load %arg1[%i, %j, %k] :
/// memref<?x?x?xf32, stride_specification>
/// %13 = load %arg2[%i, %k, %j] :
/// memref<?x?x?xf32, stride_specification>
/// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32)
/// store %14#0, %arg1[%i, %j, %k] :
/// memref<?x?x?Xf32, stride_specification>
/// store %14#1, %arg2[%i, %k, %j] :
/// memref<?x?x?Xf32, stride_specification>
/// }
/// }
/// }
/// ```
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs,
LinalgOp linalgOp) {
assert(linalgOp.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
SmallVector<Value> indexedValues;
indexedValues.reserve(linalgOp->getNumOperands());
auto allIvsPlusDims = SmallVector<Value>(allIvs.begin(), allIvs.end());
// TODO: Avoid the loads if the corresponding argument of the
// region has no uses.
// 1.a. Emit load from input operand or for scalars access the operand itself.
for (OpOperand *inputOperand : linalgOp.getDpsInputOperands()) {
if (linalgOp.isScalar(inputOperand)) {
indexedValues.push_back(inputOperand->get());
continue;
}
auto indexing = makeCanonicalAffineApplies(
b, loc, linalgOp.getMatchingIndexingMap(inputOperand), allIvsPlusDims);
indexedValues.push_back(
b.create<LoadOpTy>(loc, inputOperand->get(), indexing));
}
// 1.b. Emit load from output views.
for (OpOperand *outputOperand : linalgOp.getDpsInitOperands()) {
SmallVector<Value> indexing = makeCanonicalAffineApplies(
b, loc, linalgOp.getMatchingIndexingMap(outputOperand), allIvsPlusDims);
indexedValues.push_back(
b.create<LoadOpTy>(loc, outputOperand->get(), indexing));
}
// TODO: When a region inliner exists, use it.
// 2. Inline region, currently only works for a single basic block.
// 3. Emit store.
SmallVector<SmallVector<Value>, 8> indexing;
SmallVector<Value> outputBuffers;
for (OpOperand *outputOperand : linalgOp.getDpsInitOperands()) {
if (!isa<MemRefType>(outputOperand->get().getType()))
continue;
indexing.push_back(makeCanonicalAffineApplies(
b, loc, linalgOp.getMatchingIndexingMap(outputOperand),
allIvsPlusDims));
outputBuffers.push_back(outputOperand->get());
}
inlineRegionAndEmitStore<LoadOpTy, StoreOpTy>(b, loc, linalgOp, indexedValues,
indexing, outputBuffers);
}
/// Replace the index operations in the body of the loop nest by the matching
/// induction variables.
static void replaceIndexOpsByInductionVariables(RewriterBase &rewriter,
LinalgOp linalgOp,
ArrayRef<Operation *> loopOps) {
// Extract the induction variables of the loop nest from outer to inner.
SmallVector<Value> allIvs;
for (Operation *loopOp : loopOps) {
llvm::TypeSwitch<Operation *>(loopOp)
.Case([&](scf::ParallelOp parallelOp) {
allIvs.append(parallelOp.getInductionVars().begin(),
parallelOp.getInductionVars().end());
})
.Case([&](scf::ForOp forOp) {
allIvs.push_back(forOp.getInductionVar());
})
.Case([&](affine::AffineForOp affineForOp) {
allIvs.push_back(affineForOp.getInductionVar());
})
.Default([&](Operation *op) { assert(false && "unexpected op"); });
}
assert(linalgOp.getNumLoops() == allIvs.size() &&
"expected the number of loops and induction variables to match");
// Replace the index operations in the body of the innermost loop op.
if (!loopOps.empty()) {
auto loopOp = cast<LoopLikeOpInterface>(loopOps.back());
for (IndexOp indexOp :
llvm::make_early_inc_range(loopOp.getLoopBody().getOps<IndexOp>()))
rewriter.replaceOp(indexOp, allIvs[indexOp.getDim()]);
}
}
template <typename LoopTy>
static FailureOr<LinalgLoops> linalgOpToLoopsImpl(RewriterBase &rewriter,
LinalgOp linalgOp) {
using LoadOpTy =
std::conditional_t<std::is_same<LoopTy, affine::AffineForOp>::value,
affine::AffineLoadOp, memref::LoadOp>;
using StoreOpTy =
std::conditional_t<std::is_same<LoopTy, affine::AffineForOp>::value,
affine::AffineStoreOp, memref::StoreOp>;
// The flattened loopToOperandRangesMaps is expected to be an invertible
// permutation map (which is asserted in the inverse calculation).
assert(linalgOp.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc());
auto iteratorTypes = linalgOp.getIteratorTypesArray();
SmallVector<Value> allIvs;
GenerateLoopNest<LoopTy>::doit(
rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange ivs,
ValueRange operandValuesToUse) -> scf::ValueVector {
assert(operandValuesToUse == linalgOp->getOperands() &&
"expect operands are captured and not passed by loop argument");
allIvs.append(ivs.begin(), ivs.end());
emitScalarImplementation<LoadOpTy, StoreOpTy>(b, loc, allIvs, linalgOp);
return scf::ValueVector{};
});
// Number of loop ops might be different from the number of ivs since some
// loops like affine.parallel and scf.parallel have multiple ivs.
SetVector<Operation *> loopSet;
for (Value iv : allIvs) {
if (!iv)
return failure();
// The induction variable is a block argument of the entry block of the
// loop operation.
BlockArgument ivVal = dyn_cast<BlockArgument>(iv);
if (!ivVal)
return failure();
loopSet.insert(ivVal.getOwner()->getParentOp());
}
LinalgLoops loops(loopSet.begin(), loopSet.end());
// Replace all index operations in the loop body.
replaceIndexOpsByInductionVariables(rewriter, linalgOp, loops);
return loops;
}
namespace {
template <typename LoopType>
class LinalgRewritePattern : public RewritePattern {
public:
LinalgRewritePattern(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto linalgOp = dyn_cast<LinalgOp>(op);
if (!isa<LinalgOp>(op) || !linalgOp.hasBufferSemantics()) {
return rewriter.notifyMatchFailure(
op, "expected linalg op with buffer semantics");
}
if (failed(linalgOpToLoopsImpl<LoopType>(rewriter, linalgOp)))
return failure();
rewriter.eraseOp(op);
return success();
}
};
/// Local folding pattern for AffineApplyOp that we can apply greedily.
/// This replaces AffineApplyOp by the proper value in cases where the
/// associated map is trivial.
/// A trivial map here is defined as a map with a single result and either:
/// 1. Zero operand + returns a single AffineConstantExpr
/// 2. One operand + returns a single AffineDimExpr
/// 3. One operand + returns a single AffineSymbolExpr
//
/// In the first case, the AffineApplyOp is replaced by a new constant. In the
/// other cases, it is replaced by its unique operand.
struct FoldAffineOp : public RewritePattern {
FoldAffineOp(MLIRContext *context)
: RewritePattern(affine::AffineApplyOp::getOperationName(), 0, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto affineApplyOp = cast<affine::AffineApplyOp>(op);
auto map = affineApplyOp.getAffineMap();
if (map.getNumResults() != 1 || map.getNumInputs() > 1)
return failure();
AffineExpr expr = map.getResult(0);
if (map.getNumInputs() == 0) {
if (auto val = expr.dyn_cast<AffineConstantExpr>()) {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op, val.getValue());
return success();
}
return failure();
}
if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) {
rewriter.replaceOp(op, op->getOperand(0));
return success();
}
return failure();
}
};
template <typename LoopType>
static void lowerLinalgToLoopsImpl(Operation *enclosingOp) {
MLIRContext *context = enclosingOp->getContext();
RewritePatternSet patterns(context);
patterns.add<LinalgRewritePattern<LoopType>>(context);
memref::DimOp::getCanonicalizationPatterns(patterns, context);
tensor::DimOp::getCanonicalizationPatterns(patterns, context);
affine::AffineApplyOp::getCanonicalizationPatterns(patterns, context);
patterns.add<FoldAffineOp>(context);
// Just apply the patterns greedily.
(void)applyPatternsAndFoldGreedily(enclosingOp, std::move(patterns));
}
struct LowerToAffineLoops
: public impl::LinalgLowerToAffineLoopsBase<LowerToAffineLoops> {
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<memref::MemRefDialect>();
}
void runOnOperation() override {
lowerLinalgToLoopsImpl<affine::AffineForOp>(getOperation());
}
};
struct LowerToLoops : public impl::LinalgLowerToLoopsBase<LowerToLoops> {
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<memref::MemRefDialect, scf::SCFDialect>();
}
void runOnOperation() override {
lowerLinalgToLoopsImpl<scf::ForOp>(getOperation());
}
};
struct LowerToParallelLoops
: public impl::LinalgLowerToParallelLoopsBase<LowerToParallelLoops> {
void runOnOperation() override {
lowerLinalgToLoopsImpl<scf::ParallelOp>(getOperation());
}
};
} // namespace
std::unique_ptr<Pass> mlir::createConvertLinalgToLoopsPass() {
return std::make_unique<LowerToLoops>();
}
std::unique_ptr<Pass> mlir::createConvertLinalgToParallelLoopsPass() {
return std::make_unique<LowerToParallelLoops>();
}
std::unique_ptr<Pass> mlir::createConvertLinalgToAffineLoopsPass() {
return std::make_unique<LowerToAffineLoops>();
}
/// Emits a loop nest of `affine.for` with the proper body for `linalgOp`.
FailureOr<LinalgLoops>
mlir::linalg::linalgOpToAffineLoops(RewriterBase &rewriter, LinalgOp linalgOp) {
return linalgOpToLoopsImpl<affine::AffineForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.for` with the proper body for `linalgOp`.
FailureOr<LinalgLoops> mlir::linalg::linalgOpToLoops(RewriterBase &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<scf::ForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.parallel` with the proper body for `linalgOp`.
FailureOr<LinalgLoops>
mlir::linalg::linalgOpToParallelLoops(RewriterBase &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<scf::ParallelOp>(rewriter, linalgOp);
}
|