File: NamedOpConversions.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (168 lines) | stat: -rw-r--r-- 6,618 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
//===- NamedOpConversions.cpp - Implements conversions between named ops --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements conversions between named ops that can be seens as
// canonicalizations of named ops.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Passes.h"

#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"

namespace mlir {
#define GEN_PASS_DEF_LINALGNAMEDOPCONVERSION
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir

using namespace mlir;
using namespace mlir::linalg;

static llvm::SmallVector<int64_t> getIndicesVector(int start, int end) {
  return llvm::to_vector<2>(llvm::seq<int64_t>(start, end));
}

static LogicalResult
matchAndReplaceDepthwiseConv(Operation *operation, Value input, Value kernel,
                             Value iZp, Value kZp, Value init, Attribute stride,
                             Attribute dilation, PatternRewriter &rewriter) {
  Location loc = operation->getLoc();
  auto linalgOp = dyn_cast<LinalgOp>(operation);
  // Exit out on the memref version of this operation.
  if (!linalgOp || !linalgOp.hasTensorSemantics())
    return failure();

  auto result = operation->getResult(0);

  auto kernelTy = dyn_cast<RankedTensorType>(kernel.getType());
  auto initTy = dyn_cast<RankedTensorType>(init.getType());
  auto resultTy = dyn_cast<RankedTensorType>(result.getType());
  if (!kernelTy || !initTy || !resultTy)
    return failure();

  if (kernelTy.getDimSize(3) != 1)
    return failure();

  // Collapse kernel dims.
  SmallVector<ReassociationIndices, 4> collapsedKernelDims = {
      getIndicesVector(0, 1), getIndicesVector(1, 2), getIndicesVector(2, 4)};
  auto newKernelTy = RankedTensorType::get(
      {kernelTy.getDimSize(0), kernelTy.getDimSize(1), kernelTy.getDimSize(2)},
      kernelTy.getElementType());
  auto collapsedKernel = rewriter.create<tensor::CollapseShapeOp>(
      loc, newKernelTy, kernel, collapsedKernelDims);

  // Collapse init dims.
  SmallVector<ReassociationIndices, 4> collapsedInitDims = {
      getIndicesVector(0, 1), getIndicesVector(1, 2), getIndicesVector(2, 3),
      getIndicesVector(3, 5)};
  auto newInitTy =
      RankedTensorType::get({initTy.getDimSize(0), initTy.getDimSize(1),
                             initTy.getDimSize(2), initTy.getDimSize(3)},
                            initTy.getElementType());
  auto collapsedInit = rewriter.create<tensor::CollapseShapeOp>(
      loc, newInitTy, init, collapsedInitDims);

  SmallVector<NamedAttribute> preservedAttrs;
  Operation *newConv =
      TypeSwitch<Operation *, Operation *>(operation)
          .Case<DepthwiseConv2DNhwcHwcmOp>([&](auto op) {
            preservedAttrs = getPrunedAttributeList(op);
            return rewriter.create<DepthwiseConv2DNhwcHwcOp>(
                loc, newInitTy, ValueRange{input, collapsedKernel},
                ValueRange{collapsedInit}, stride, dilation);
          })
          .Case<DepthwiseConv2DNhwcHwcmQOp>([&](auto op) {
            preservedAttrs = getPrunedAttributeList(op);
            return rewriter.create<DepthwiseConv2DNhwcHwcQOp>(
                loc, newInitTy, ValueRange{input, collapsedKernel, iZp, kZp},
                ValueRange{collapsedInit}, stride, dilation);
          })
          .Default([](Operation *op) { return nullptr; });
  if (!newConv)
    return failure();
  for (auto attr : preservedAttrs)
    newConv->setAttr(attr.getName(), attr.getValue());

  // Expand dimensions back out to
  rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
      operation, resultTy, newConv->getResult(0), collapsedInitDims);
  return success();
}

namespace {
struct SimplifyDepthwiseConvOp
    : public OpRewritePattern<DepthwiseConv2DNhwcHwcmOp> {
  using OpRewritePattern<DepthwiseConv2DNhwcHwcmOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcmOp op,
                                PatternRewriter &rewriter) const override {
    Operation *operation = op.getOperation();
    Value input = op.getDpsInputOperand(0)->get();
    Value kernel = op.getDpsInputOperand(1)->get();
    Value init = op.getDpsInitOperand(0)->get();

    auto stride = op.getStrides();
    auto dilation = op.getDilations();

    return matchAndReplaceDepthwiseConv(operation, input, kernel, nullptr,
                                        nullptr, init, stride, dilation,
                                        rewriter);
  }
};

struct SimplifyDepthwiseConvQOp
    : public OpRewritePattern<DepthwiseConv2DNhwcHwcmQOp> {
  using OpRewritePattern<DepthwiseConv2DNhwcHwcmQOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcmQOp op,
                                PatternRewriter &rewriter) const override {
    Operation *operation = op.getOperation();
    Value input = op.getDpsInputOperand(0)->get();
    Value kernel = op.getDpsInputOperand(1)->get();
    Value iZp = op.getDpsInputOperand(2)->get();
    Value kZp = op.getDpsInputOperand(3)->get();
    Value init = op.getDpsInitOperand(0)->get();

    auto stride = op.getStrides();
    auto dilation = op.getDilations();

    return matchAndReplaceDepthwiseConv(operation, input, kernel, iZp, kZp,
                                        init, stride, dilation, rewriter);
  }
};

struct LinalgNamedOpConversionPass
    : public impl::LinalgNamedOpConversionBase<LinalgNamedOpConversionPass> {
  LinalgNamedOpConversionPass() = default;
  LinalgNamedOpConversionPass(const LinalgNamedOpConversionPass &) = default;

  void runOnOperation() override {
    Operation *op = getOperation();
    RewritePatternSet patterns(op->getContext());
    populateLinalgNamedOpConversionPatterns(patterns);
    if (failed(applyPatternsAndFoldGreedily(op, std::move(patterns))))
      return signalPassFailure();
  }
};
} // namespace

void mlir::linalg::populateLinalgNamedOpConversionPatterns(
    RewritePatternSet &patterns) {
  patterns.add<SimplifyDepthwiseConvOp, SimplifyDepthwiseConvQOp>(
      patterns.getContext());
}

std::unique_ptr<Pass> mlir::createLinalgNamedOpConversionPass() {
  return std::make_unique<LinalgNamedOpConversionPass>();
}