1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
//===- Padding.cpp - Padding of Linalg ops --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#define DEBUG_TYPE "linalg-padding"
using namespace mlir;
using namespace mlir::linalg;
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
#define DBGSNL() (llvm::dbgs() << "\n")
/// Compute the padded shape of the given operand. The operand is padded to a
/// static bounding box according to the specified options.
static LogicalResult computePaddedShape(linalg::LinalgOp opToPad,
OpOperand *opOperand,
const LinalgPaddingOptions &options,
SmallVector<int64_t> &paddedShape,
bool &alreadyHasRequestedShape) {
AffineMap indexingMap = opToPad.getMatchingIndexingMap(opOperand);
ArrayRef<int64_t> shape = opToPad.getShape(opOperand);
// Collect the shape dimensions that are a function of "paddingDimensions",
// along with the multiple that they should be padded to ("1" if none).
alreadyHasRequestedShape = true;
DenseMap<int64_t, int64_t> shapeDimToMultiple;
for (const auto &dimEn : enumerate(options.paddingDimensions)) {
for (const auto &en : enumerate(indexingMap.getResults())) {
if (en.value().isFunctionOfDim(dimEn.value())) {
int64_t dimSize = shape[en.index()];
if (options.padToMultipleOf.has_value()) {
shapeDimToMultiple[en.index()] =
(*options.padToMultipleOf)[dimEn.index()];
} else {
shapeDimToMultiple[en.index()] = 1;
}
if (ShapedType::isDynamic(dimSize)) {
alreadyHasRequestedShape = false;
} else if (dimSize % shapeDimToMultiple[en.index()] != 0) {
alreadyHasRequestedShape = false;
}
}
}
}
// Helper function to round a number up to a given multiple.
auto ceil = [](int64_t val, int64_t multiple) {
return ((val + multiple - 1) / multiple) * multiple;
};
// Upper bound the sizes to obtain a static bounding box.
paddedShape.assign(shape.begin(), shape.end());
for (int64_t i = 0, e = shape.size(); i < e; ++i) {
LLVM_DEBUG(DBGS() << "--compute padded size for dim " << i << "\n");
// Skip dimensions that do not require padding.
if (!shapeDimToMultiple.contains(i)) {
LLVM_DEBUG(DBGS() << "----dim does not require padding, SKIP\n");
continue;
}
// Otherwise, try to compute a constant upper bound for the size value.
FailureOr<int64_t> upperBound =
ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::UB, opOperand->get(),
/*dim=*/i, /*stopCondition=*/nullptr, /*closedUB=*/true);
if (failed(upperBound)) {
LLVM_DEBUG(DBGS() << "----count not compute a bounding box for padding");
return failure();
}
paddedShape[i] = ceil(*upperBound, shapeDimToMultiple[i]);
LLVM_DEBUG(DBGS() << "----new dim size: " << paddedShape[i] << "\n");
}
return success();
}
/// Pad the `opOperand` in the "paddingDimensions" using the padding value and
/// the nofold flag found in "paddingValues" and "packPaddings", respectively.
///
/// Exit early and return the `opOperand` value if it already has the requested
/// shape. I.e.:
/// - static shape
/// - nofold is not set
/// - dim sizes are multiples of "padToMultipleOf"
///
/// Otherwise, try to pad the shape dimensions that match the iterator
/// dimensions "paddingDimensions" and return the tensor::PadOp result if
/// padding succeeds or failure otherwise.
static FailureOr<Value> padOperandToSmallestStaticBoundingBox(
RewriterBase &rewriter, linalg::LinalgOp opToPad, OpOperand *opOperand,
const LinalgPaddingOptions &options) {
assert(
(!options.padToMultipleOf.has_value() ||
options.padToMultipleOf->size() == options.paddingDimensions.size()) &&
"invalid number of elements in padToMultipleOf");
// Compute padded shape.
SmallVector<int64_t> paddedShape;
bool alreadyHasRequestedShape = false;
if (failed(computePaddedShape(opToPad, opOperand, options, paddedShape,
alreadyHasRequestedShape)))
return rewriter.notifyMatchFailure(opToPad,
"--failed to compute padded shape");
// Return the unpadded operand if padding to a static shape is not needed and
// if the nofold flag is not set.
bool nofold = opOperand->getOperandNumber() < options.packPaddings.size()
? options.packPaddings[opOperand->getOperandNumber()]
: false;
if (!nofold && alreadyHasRequestedShape)
return opOperand->get();
// Fail if `paddingValues` specifies no padding value.
if (opOperand->getOperandNumber() >= options.paddingValues.size()) {
return rewriter.notifyMatchFailure(opToPad, "--no padding value specified");
}
Attribute paddingAttr = options.paddingValues[opOperand->getOperandNumber()];
Value paddingValue;
if (auto complexTy = dyn_cast<ComplexType>(
getElementTypeOrSelf(opOperand->get().getType()))) {
auto complexAttr = cast<ArrayAttr>(paddingAttr);
paddingValue = rewriter.create<complex::ConstantOp>(opToPad.getLoc(),
complexTy, complexAttr);
} else {
paddingValue = rewriter.create<arith::ConstantOp>(
opToPad.getLoc(), cast<TypedAttr>(paddingAttr));
}
// Pad the operand to the bounding box defined by `paddedShape`.
auto paddedTensorType = RankedTensorType::get(
paddedShape, getElementTypeOrSelf(opOperand->get()));
LLVM_DEBUG(DBGS() << "--SUCCESS, makeComposedPadHighOp with type: "
<< paddedTensorType);
return makeComposedPadHighOp(rewriter, opToPad->getLoc(), paddedTensorType,
opOperand->get(), paddingValue, nofold);
}
LogicalResult
linalg::rewriteAsPaddedOp(RewriterBase &rewriter, LinalgOp opToPad,
const LinalgPaddingOptions &constOptions,
LinalgOp &paddedOp, SmallVector<Value> &replacements,
SmallVector<tensor::PadOp> &padOps, bool copyBack) {
LLVM_DEBUG(DBGS() << "Start rewriteAsPaddedOp : " << opToPad << "\n");
Location loc = opToPad->getLoc();
LinalgPaddingOptions options(constOptions);
// Allow inference of pad values if they are not explicitly specified.
// TODO: be mindful about the value depending on the actual operation.
if (options.paddingValues.empty()) {
SmallVector<Type> types(opToPad->getOperandTypes());
llvm::append_range(types, opToPad->getResultTypes());
for (Type t : types) {
options.paddingValues.push_back(
rewriter.getZeroAttr(getElementTypeOrSelf(t)));
}
}
// TODO: there are cases where we may still want to pad to larger sizes.
if (!opToPad.hasTensorSemantics())
return rewriter.notifyMatchFailure(opToPad,
"expected operation on tensors");
OpBuilder::InsertionGuard g(rewriter);
// Set IP after op because we also take the dims of the original output.
rewriter.setInsertionPointAfter(opToPad);
// Make a copy of the shaped operands and update it.
SmallVector<Value> newOperands;
newOperands.reserve(opToPad->getNumOperands());
for (OpOperand &opOperand : opToPad->getOpOperands()) {
FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox(
rewriter, opToPad, &opOperand, options);
// Exit if `paddingDimensions` cannot be bounded statically.
if (failed(paddedOperand)) {
LLVM_DEBUG(DBGS() << "--operand cannot be bound statically : "
<< opOperand.get() << " -> FAIL\n");
return rewriter.notifyMatchFailure(opToPad,
"operand cannot be bound statically");
}
newOperands.push_back(*paddedOperand);
if (auto padOp = paddedOperand->getDefiningOp<tensor::PadOp>())
padOps.push_back(padOp);
}
ReifiedRankedShapedTypeDims reifiedResultShapes;
if (failed(reifyResultShapes(rewriter, opToPad, reifiedResultShapes))) {
LLVM_DEBUG(DBGS() << "--failed to reify result shapes -> FAIL\n");
return rewriter.notifyMatchFailure(opToPad,
"failed to reify result shapes");
}
assert(reifiedResultShapes.size() == opToPad->getNumResults() &&
"expected same number of results");
// Clone `opToPad` to operate on the statically padded shapes.
auto resultTensorTypes =
ValueRange(newOperands).take_back(opToPad.getNumDpsInits()).getTypes();
// clone **should** properly notify the rewriter.
paddedOp = clone(rewriter, opToPad, resultTensorTypes, newOperands);
LLVM_DEBUG(DBGS() << "--cloned padded op: " << paddedOp << "\n");
// Recover the slice out of the new static results. This keeps the original
// linalg op around because it uses the dims of the original results.
SmallVector<Value> paddedSubtensorResults;
paddedSubtensorResults.reserve(opToPad->getNumResults());
for (const auto &en : llvm::enumerate(paddedOp->getResults())) {
Value paddedResult = en.value();
int64_t resultNumber = en.index();
int64_t rank = cast<RankedTensorType>(paddedResult.getType()).getRank();
SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
paddedSubtensorResults.push_back(rewriter.create<tensor::ExtractSliceOp>(
loc, paddedResult, offsets, reifiedResultShapes[resultNumber],
strides));
}
if (!copyBack) {
replacements = std::move(paddedSubtensorResults);
return success();
}
// Copy back unpadded results to the original destination (i.e., inits of the
// linalg op), so that the destination buffer of the computation does not
// change. If the padding folds away, this will materizalize as a memcpy
// between two identical buffers, which will then also fold away.
assert(static_cast<int64_t>(paddedSubtensorResults.size()) ==
opToPad.getNumDpsInits() &&
"expected matching number of results");
for (auto it :
llvm::zip(paddedSubtensorResults, opToPad.getDpsInitOperands())) {
replacements.push_back(rewriter.create<bufferization::CopyTensorOp>(
loc, std::get<0>(it), std::get<1>(it)->get()));
}
return success();
}
FailureOr<LinalgOp>
mlir::linalg::padAndHoistLinalgOp(RewriterBase &rewriter, LinalgOp linalgOp,
const LinalgPaddingOptions &options) {
if (!linalgOp.hasTensorSemantics())
return rewriter.notifyMatchFailure(
linalgOp, "only applies to Linalg ops with tensor semantics");
// Pad the operation.
LinalgOp paddedOp;
SmallVector<Value> newResults;
SmallVector<tensor::PadOp> padOps;
if (failed(rewriteAsPaddedOp(rewriter, linalgOp, options, paddedOp,
newResults, padOps, /*copyBack=*/false)))
return rewriter.notifyMatchFailure(linalgOp,
"failed to rewrite as a padded op");
// Hoist the padding.
for (const auto &en : enumerate(options.hoistPaddings)) {
if (static_cast<int64_t>(en.index()) >= paddedOp->getNumOperands())
break;
OpOperand &opOperand = paddedOp->getOpOperand(en.index());
auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>();
if (!padOp || en.value() == 0) {
(void)rewriter.notifyMatchFailure(linalgOp, "not a tensor.pad -- skip");
continue;
}
// Fail hoisting if the operand shape is not fully static.
if (llvm::any_of(paddedOp.getShape(&opOperand), ShapedType::isDynamic)) {
(void)rewriter.notifyMatchFailure(linalgOp,
"non static padding shape -- skip");
continue;
}
tensor::PadOp hoistedOp;
SmallVector<GenericOp> transposeOps;
SmallVector<int64_t> transposeVector =
en.index() < options.transposePaddings.size()
? options.transposePaddings[en.index()]
: SmallVector<int64_t>{};
FailureOr<Value> newResult = hoistPaddingOnTensors(
padOp, en.value(), transposeVector, hoistedOp, transposeOps);
if (failed(newResult)) {
(void)rewriter.notifyMatchFailure(linalgOp,
"failed to apply hoistPadding");
continue;
}
rewriter.replaceOp(padOp, *newResult);
}
// Replace the original operation to pad.
rewriter.replaceOp(linalgOp, newResults);
return paddedOp;
}
|