1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
//===- Promotion.cpp - Implementation of linalg Promotion -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Promotion pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::scf;
using llvm::MapVector;
#define DEBUG_TYPE "linalg-promotion"
/// Alloc a new buffer of `size` * `width` i8; where `width` is given by the
/// data `layout` for `elementType`.
/// Use AllocOp or AllocaOp depending on `options`.
/// Take an optional alignment.
static Value allocBuffer(ImplicitLocOpBuilder &b,
const LinalgPromotionOptions &options,
Type elementType, Value allocSize, DataLayout &layout,
std::optional<unsigned> alignment = std::nullopt) {
auto width = layout.getTypeSize(elementType);
IntegerAttr alignmentAttr;
if (alignment.has_value())
alignmentAttr = b.getI64IntegerAttr(alignment.value());
// Static buffer.
if (std::optional<int64_t> cst = getConstantIntValue(allocSize)) {
auto staticBufferType =
MemRefType::get(width * cst.value(), b.getIntegerType(8));
if (options.useAlloca) {
return b.create<memref::AllocaOp>(staticBufferType, ValueRange{},
alignmentAttr);
}
return b.create<memref::AllocOp>(staticBufferType, ValueRange{},
alignmentAttr);
}
// Fallback dynamic buffer.
auto dynamicBufferType =
MemRefType::get(ShapedType::kDynamic, b.getIntegerType(8));
Value mul = b.createOrFold<arith::MulIOp>(
b.create<arith::ConstantIndexOp>(width), allocSize);
if (options.useAlloca)
return b.create<memref::AllocaOp>(dynamicBufferType, mul, alignmentAttr);
return b.create<memref::AllocOp>(dynamicBufferType, mul, alignmentAttr);
}
/// Default allocation callback function. This allocates a promoted buffer when
/// no call back to do so is provided. The default is to allocate a
/// memref<..xi8> and return a view to get a memref type of shape
/// boundingSubViewSize.
static std::optional<Value> defaultAllocBufferCallBack(
const LinalgPromotionOptions &options, OpBuilder &builder,
memref::SubViewOp subView, ArrayRef<Value> boundingSubViewSize,
std::optional<unsigned> alignment, DataLayout &layout) {
ShapedType viewType = subView.getType();
ImplicitLocOpBuilder b(subView.getLoc(), builder);
auto zero = b.create<arith::ConstantIndexOp>(0);
auto one = b.create<arith::ConstantIndexOp>(1);
Value allocSize = one;
for (const auto &size : llvm::enumerate(boundingSubViewSize))
allocSize = b.createOrFold<arith::MulIOp>(allocSize, size.value());
Value buffer = allocBuffer(b, options, viewType.getElementType(), allocSize,
layout, alignment);
SmallVector<int64_t, 4> dynSizes(boundingSubViewSize.size(),
ShapedType::kDynamic);
Value view = b.createOrFold<memref::ViewOp>(
MemRefType::get(dynSizes, viewType.getElementType()), buffer, zero,
boundingSubViewSize);
return view;
}
/// Default implementation of deallocation of the buffer use for promotion. It
/// expects to get the same value that the default allocation method returned,
/// i.e. result of a ViewOp.
static LogicalResult
defaultDeallocBufferCallBack(const LinalgPromotionOptions &options,
OpBuilder &b, Value fullLocalView) {
if (!options.useAlloca) {
auto viewOp = cast<memref::ViewOp>(fullLocalView.getDefiningOp());
b.create<memref::DeallocOp>(viewOp.getSource().getLoc(),
viewOp.getSource());
}
return success();
}
namespace {
/// Helper struct that captures the information required to apply the
/// transformation on each op. This bridges the abstraction gap with the
/// user-facing API which exposes positional arguments to control which operands
/// are promoted.
struct LinalgOpInstancePromotionOptions {
LinalgOpInstancePromotionOptions(LinalgOp op,
const LinalgPromotionOptions &options);
/// SubViews to promote.
MapVector<int64_t, Value> subViews;
/// True if the full view should be used for the promoted buffer.
DenseMap<Value, bool> useFullTileBuffers;
/// Callback functions for allocation and deallocation of promoted buffers, as
/// well as to copy the data into and out of these buffers.
AllocBufferCallbackFn allocationFn;
DeallocBufferCallbackFn deallocationFn;
CopyCallbackFn copyInFn;
CopyCallbackFn copyOutFn;
/// Alignment of promoted buffer.
std::optional<unsigned> alignment;
};
} // namespace
LinalgOpInstancePromotionOptions::LinalgOpInstancePromotionOptions(
LinalgOp linalgOp, const LinalgPromotionOptions &options)
: subViews(), alignment(options.alignment) {
assert(linalgOp.hasBufferSemantics() && "revisit usage of shaped operand");
auto vUseFullTileBuffers =
options.useFullTileBuffers.value_or(llvm::SmallBitVector());
vUseFullTileBuffers.resize(linalgOp->getNumOperands(),
options.useFullTileBuffersDefault);
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
int64_t operandNumber = opOperand.getOperandNumber();
if (options.operandsToPromote &&
!options.operandsToPromote->count(operandNumber))
continue;
Operation *op = opOperand.get().getDefiningOp();
if (auto sv = dyn_cast_or_null<memref::SubViewOp>(op)) {
subViews[operandNumber] = sv;
useFullTileBuffers[sv] = vUseFullTileBuffers[operandNumber];
}
}
if (options.allocationFn) {
allocationFn = *options.allocationFn;
} else {
allocationFn = [&](OpBuilder &b, memref::SubViewOp subViewOp,
ArrayRef<Value> boundingSubViewSize,
DataLayout &layout) -> std::optional<Value> {
return defaultAllocBufferCallBack(options, b, subViewOp,
boundingSubViewSize, alignment, layout);
};
}
if (options.deallocationFn) {
deallocationFn = *options.deallocationFn;
} else {
deallocationFn = [&](OpBuilder &b, Value buffer) {
return defaultDeallocBufferCallBack(options, b, buffer);
};
}
// Save the loc because `linalgOp` goes out of scope.
Location loc = linalgOp.getLoc();
auto defaultCopyCallBack = [loc](OpBuilder &b, Value src,
Value dst) -> LogicalResult {
b.create<memref::CopyOp>(loc, src, dst);
return success();
};
copyInFn = (options.copyInFn ? *(options.copyInFn) : defaultCopyCallBack);
copyOutFn = (options.copyOutFn ? *(options.copyOutFn) : defaultCopyCallBack);
}
// Performs promotion of a `subView` into a local buffer of the size of the
// *ranges* of the `subView`. This produces a buffer whose size may be bigger
// than the actual size of the `subView` at the boundaries.
// This is related to the full/partial tile problem.
// Returns a PromotionInfo containing a `buffer`, `fullLocalView` and
// `partialLocalView` such that:
// * `buffer` is always the size of the full tile.
// * `fullLocalView` is a dense contiguous view into that buffer.
// * `partialLocalView` is a dense non-contiguous slice of `fullLocalView`
// that corresponds to the size of `subView` and accounting for boundary
// effects.
// The point of the full tile buffer is that constant static tile sizes are
// folded and result in a buffer type with statically known size and alignment
// properties.
// To account for general boundary effects, padding must be performed on the
// boundary tiles. For now this is done with an unconditional `fill` op followed
// by a partial `copy` op.
FailureOr<PromotionInfo> mlir::linalg::promoteSubviewAsNewBuffer(
OpBuilder &b, Location loc, memref::SubViewOp subView,
const AllocBufferCallbackFn &allocationFn, DataLayout &layout) {
auto viewType = subView.getType();
auto rank = viewType.getRank();
SmallVector<Value, 4> fullSizes;
SmallVector<OpFoldResult> partialSizes;
fullSizes.reserve(rank);
partialSizes.reserve(rank);
llvm::SmallBitVector droppedDims = subView.getDroppedDims();
int64_t resultDimIdx = 0;
for (const auto &en : llvm::enumerate(subView.getOrCreateRanges(b, loc))) {
if (droppedDims[en.index()])
continue;
auto rangeValue = en.value();
// Try to extract a tight constant. If the size is known statically, no need
// to look for the bound.
LLVM_DEBUG(llvm::dbgs() << "Extract tightest: " << rangeValue.size << "\n");
Value size;
if (auto attr = llvm::dyn_cast_if_present<Attribute>(rangeValue.size)) {
size = getValueOrCreateConstantIndexOp(b, loc, rangeValue.size);
} else {
Value materializedSize =
getValueOrCreateConstantIndexOp(b, loc, rangeValue.size);
FailureOr<int64_t> upperBound =
ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::UB, materializedSize, /*dim=*/std::nullopt,
/*stopCondition=*/nullptr, /*closedUB=*/true);
size = failed(upperBound)
? materializedSize
: b.create<arith::ConstantIndexOp>(loc, *upperBound);
}
LLVM_DEBUG(llvm::dbgs() << "Extracted tightest: " << size << "\n");
fullSizes.push_back(size);
partialSizes.push_back(
b.createOrFold<memref::DimOp>(loc, subView, resultDimIdx++));
}
SmallVector<int64_t, 4> dynSizes(fullSizes.size(), ShapedType::kDynamic);
// If a callback is not specified, then use the default implementation for
// allocating the promoted buffer.
std::optional<Value> fullLocalView =
allocationFn(b, subView, fullSizes, layout);
if (!fullLocalView)
return failure();
SmallVector<OpFoldResult, 4> zeros(fullSizes.size(), b.getIndexAttr(0));
SmallVector<OpFoldResult, 4> ones(fullSizes.size(), b.getIndexAttr(1));
auto partialLocalView = b.createOrFold<memref::SubViewOp>(
loc, *fullLocalView, zeros, partialSizes, ones);
return PromotionInfo{*fullLocalView, partialLocalView};
}
static FailureOr<MapVector<int64_t, PromotionInfo>>
promoteSubViews(ImplicitLocOpBuilder &b,
LinalgOpInstancePromotionOptions options, DataLayout &layout) {
if (options.subViews.empty())
return failure();
MapVector<int64_t, PromotionInfo> promotionInfoMap;
for (auto v : options.subViews) {
memref::SubViewOp subView =
cast<memref::SubViewOp>(v.second.getDefiningOp());
auto promotionInfo = promoteSubviewAsNewBuffer(
b, b.getLoc(), subView, options.allocationFn, layout);
if (failed(promotionInfo))
return failure();
promotionInfoMap[v.first] = *promotionInfo;
// Only fill the buffer if the full local view is used
if (!options.useFullTileBuffers[v.second])
continue;
Type subviewEltType = subView.getType().getElementType();
Value fillVal =
llvm::TypeSwitch<Type, Value>(subviewEltType)
.Case([&](FloatType t) {
return b.create<arith::ConstantOp>(FloatAttr::get(t, 0.0));
})
.Case([&](IntegerType t) {
return b.create<arith::ConstantOp>(IntegerAttr::get(t, 0));
})
.Case([&](ComplexType t) {
Value tmp;
if (auto et = dyn_cast<FloatType>(t.getElementType()))
tmp = b.create<arith::ConstantOp>(FloatAttr::get(et, 0.0));
else if (auto et = cast<IntegerType>(t.getElementType()))
tmp = b.create<arith::ConstantOp>(IntegerAttr::get(et, 0));
return b.create<complex::CreateOp>(t, tmp, tmp);
})
.Default([](auto) { return Value(); });
if (!fillVal)
return failure();
b.create<linalg::FillOp>(fillVal, promotionInfo->fullLocalView);
}
// Copy data into the promoted buffers. Use callback if provided.
for (auto v : options.subViews) {
auto info = promotionInfoMap.find(v.first);
if (info == promotionInfoMap.end())
continue;
if (failed(options.copyInFn(
b, cast<memref::SubViewOp>(v.second.getDefiningOp()),
info->second.partialLocalView)))
return failure();
}
return promotionInfoMap;
}
static FailureOr<LinalgOp>
promoteSubViews(ImplicitLocOpBuilder &b, LinalgOp op,
LinalgOpInstancePromotionOptions options, DataLayout &layout) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
// 1. Promote the specified views and use them in the new op.
auto promotedBuffersAndViews = promoteSubViews(b, options, layout);
if (failed(promotedBuffersAndViews) ||
promotedBuffersAndViews->size() != options.subViews.size())
return failure();
// 2. Append all other operands as they appear, this enforces that such
// operands are not views. This is to support cases such as FillOp taking
// extra scalars etc. Keep a reference to output buffers;
SmallVector<Value, 8> opViews;
opViews.reserve(op->getNumOperands());
SmallVector<std::pair<Value, Value>, 8> writebackViews;
writebackViews.reserve(promotedBuffersAndViews->size());
for (OpOperand &opOperand : op->getOpOperands()) {
int64_t operandNumber = opOperand.getOperandNumber();
if (options.subViews.count(operandNumber) != 0) {
if (options.useFullTileBuffers[opOperand.get()])
opViews.push_back(
(*promotedBuffersAndViews)[operandNumber].fullLocalView);
else
opViews.push_back(
(*promotedBuffersAndViews)[operandNumber].partialLocalView);
if (operandNumber >= op.getNumDpsInputs())
writebackViews.emplace_back(std::make_pair(
opOperand.get(),
(*promotedBuffersAndViews)[operandNumber].partialLocalView));
} else {
opViews.push_back(opOperand.get());
}
}
op->setOperands(0, opViews.size(), opViews);
OpBuilder::InsertionGuard guard(b);
b.setInsertionPointAfter(op);
// 3. Emit write-back for the promoted output views: copy the partial view.
for (auto viewAndPartialLocalView : writebackViews) {
if (failed(options.copyOutFn(b, viewAndPartialLocalView.second,
viewAndPartialLocalView.first)))
return failure();
}
// 4. Dealloc all local buffers.
for (const auto &pi : *promotedBuffersAndViews)
(void)options.deallocationFn(b, pi.second.fullLocalView);
return op;
}
LogicalResult
mlir::linalg::promoteSubviewsPrecondition(Operation *op,
LinalgPromotionOptions options) {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
// Transformation applies to buffers only.
if (!linalgOp || !linalgOp.hasBufferSemantics())
return failure();
// Check that at least one of the requested operands is indeed a subview.
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
auto sv =
isa_and_nonnull<memref::SubViewOp>(opOperand.get().getDefiningOp());
if (sv) {
if (!options.operandsToPromote ||
options.operandsToPromote->count(opOperand.getOperandNumber()))
return success();
}
}
// TODO: Check all subviews requested are bound by a static constant.
// TODO: Check that the total footprint fits within a given size.
return failure();
}
FailureOr<LinalgOp>
mlir::linalg::promoteSubViews(OpBuilder &builder, LinalgOp linalgOp,
const LinalgPromotionOptions &options) {
LinalgOpInstancePromotionOptions linalgOptions(linalgOp, options);
auto layout = DataLayout::closest(linalgOp);
ImplicitLocOpBuilder b(linalgOp.getLoc(), builder);
auto res = ::promoteSubViews(b, linalgOp, linalgOptions, layout);
if (failed(res))
return failure();
return res;
}
/// Allocate the given subview to a memory address space in GPU by creating a
/// allocation operation and setting the memref type address space to desired
/// address space.
static std::optional<Value> allocateSubviewGPUMemoryInAddressSpace(
OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds,
gpu::AddressSpace addressSpace) {
OpBuilder::InsertionGuard guard(builder);
func::FuncOp funcOp = subview->getParentOfType<func::FuncOp>();
if (!funcOp)
return std::nullopt;
// The subview size bounds are expected to be constant; they specify the shape
// of the allocation.
SmallVector<int64_t> shape;
for (Value bound : sizeBounds) {
APInt value;
if (!matchPattern(bound, m_ConstantInt(&value)))
return std::nullopt;
shape.push_back(value.getSExtValue());
}
builder.setInsertionPoint(&funcOp.front(), funcOp.front().begin());
auto type = MemRefType::get(
shape, subview.getType().getElementType(), MemRefLayoutAttrInterface{},
gpu::AddressSpaceAttr::get(builder.getContext(), addressSpace));
Value buffer;
if (addressSpace == gpu::GPUDialect::getWorkgroupAddressSpace()) {
buffer = builder.create<memref::AllocOp>(funcOp.getLoc(), type);
} else if (addressSpace == gpu::GPUDialect::getPrivateAddressSpace()) {
buffer = builder.create<memref::AllocaOp>(funcOp.getLoc(), type);
} else {
return std::nullopt;
}
return buffer;
}
/// Allocate the subview in the GPU workgroup memory.
std::optional<Value> mlir::linalg::allocateWorkgroupMemory(
OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds,
DataLayout &) {
return allocateSubviewGPUMemoryInAddressSpace(
builder, subview, sizeBounds,
gpu::GPUDialect::getWorkgroupAddressSpace());
}
/// In case of GPU group memory there is no need to deallocate.
LogicalResult mlir::linalg::deallocateWorkgroupMemory(OpBuilder &,
Value /*buffer*/) {
return success();
}
/// Create Memref copy operations and add gpu barrier guards before and after
/// the copy operation to ensure data integrity.
LogicalResult mlir::linalg::copyToWorkgroupMemory(OpBuilder &b, Value src,
Value dst) {
b.create<gpu::BarrierOp>(src.getLoc());
Operation *copyOp = b.create<memref::CopyOp>(src.getLoc(), src, dst);
b.create<gpu::BarrierOp>(copyOp->getLoc());
return success();
}
/// Allocate the subview in the GPU private memory.
std::optional<Value> mlir::linalg::allocateGPUPrivateMemory(
OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds,
DataLayout &) {
return allocateSubviewGPUMemoryInAddressSpace(
builder, subview, sizeBounds, gpu::GPUDialect::getPrivateAddressSpace());
}
/// Normal copy to between src and dst.
LogicalResult mlir::linalg::copyToGPUPrivateMemory(OpBuilder &b, Value src,
Value dst) {
b.create<memref::CopyOp>(src.getLoc(), src, dst);
return success();
}
/// In case of GPU private memory there is no need to deallocate since the
/// memory is freed when going outside of the scope.
LogicalResult mlir::linalg::deallocateGPUPrivateMemory(OpBuilder &,
Value /*buffer*/) {
return success();
}
|