File: SplitReduction.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (453 lines) | stat: -rw-r--r-- 20,108 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
//===-------- SplitReduction.cpp - Split reduction dimesion ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements linalg transformation to break a reduction dimension
// between a parallel and a reduction dimension.
//
//===----------------------------------------------------------------------===//

#include <optional>
#include <utility>

#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/IR/PatternMatch.h"

using namespace mlir;
using namespace mlir::linalg;

FailureOr<SplitReductionResult> mlir::linalg::splitReduction(
    RewriterBase &b, LinalgOp op,
    const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc) {
  OpBuilder::InsertionGuard guard(b);
  b.setInsertionPoint(op);

  SplitReductionOptions control = controlSplitReductionFn(op);
  int64_t ratio = control.ratio;
  unsigned insertSplitIndex = control.index;
  unsigned insertSplitDimension = control.index;
  if (ratio <= 1)
    return b.notifyMatchFailure(op, "split ratio needs to be greater than 1");

  SmallVector<unsigned> dims;
  op.getReductionDims(dims);

  if (dims.size() != 1)
    return b.notifyMatchFailure(op, "needs a single reduction dimension");
  unsigned reductionDim = dims[0];
  if (control.innerParallel) {
    insertSplitDimension = reductionDim + 1;
  }
  SmallVector<int64_t, 4> loopRanges = op.getStaticLoopRanges();
  int64_t reductionDimSize = loopRanges[reductionDim];
  if (reductionDimSize == ShapedType::kDynamic || reductionDimSize % ratio != 0)
    return b.notifyMatchFailure(
        op, "Reduction dimension not divisible by split ratio");
  if (op.getNumDpsInits() != 1)
    return b.notifyMatchFailure(op, "More than one output in split reduction");
  if (insertSplitIndex > op.getShape(op.getDpsInitOperand(0)).size())
    return b.notifyMatchFailure(op, "Insert dimension position too large "
                                    "compared to intermediate tensor size");

  SmallVector<Operation *, 4> combinerOps;
  if (!matchReduction(op.getRegionOutputArgs(), 0, combinerOps) ||
      combinerOps.size() != 1)
    return b.notifyMatchFailure(op, "Cannot match the reduction pattern");

  Operation *reductionOp = combinerOps[0];
  std::optional<TypedAttr> identity = arith::getNeutralElement(reductionOp);
  if (!identity.has_value())
    return b.notifyMatchFailure(op, "Unknown identity value for the reduction");

  Location loc = op->getLoc();
  SmallVector<Value> newInputs;
  SmallVector<AffineMap> newMaps;
  // Calculate the new shapes and indexing maps of the input operands.
  for (OpOperand *operand : op.getDpsInputOperands()) {
    AffineMap map = op.getMatchingIndexingMap(operand);
    SmallVector<int64_t> newShape;
    SmallVector<AffineExpr> exprs;
    SmallVector<ReassociationIndices> reassociation;
    unsigned index = 0;
    for (unsigned idx : llvm::seq<unsigned>(0, map.getNumResults())) {
      unsigned dim = map.getDimPosition(idx);
      if (reductionDim == dim) {
        if (control.innerParallel) {
          newShape.push_back(op.getShape(operand)[idx] / ratio); // reduce
          newShape.push_back(ratio); // parallel (insert)
          exprs.push_back(
              b.getAffineDimExpr(dim < insertSplitDimension ? dim : dim + 1));
          exprs.push_back(b.getAffineDimExpr(insertSplitDimension));
        } else {
          newShape.push_back(ratio); // parallel (insert)
          newShape.push_back(op.getShape(operand)[idx] / ratio); // reduce
          exprs.push_back(b.getAffineDimExpr(insertSplitDimension));
          exprs.push_back(
              b.getAffineDimExpr(dim < insertSplitDimension ? dim : dim + 1));
        }
        reassociation.push_back({index++, index++});
        continue;
      }
      newShape.push_back(op.getShape(operand)[idx]);
      exprs.push_back(
          b.getAffineDimExpr(dim < insertSplitDimension ? dim : dim + 1));
      reassociation.push_back({index++});
    }
    newMaps.push_back(
        AffineMap::get(map.getNumDims() + 1, 0, exprs, op.getContext()));
    // If the shape is unchanged the input doesn't change.
    if (newShape == op.getShape(operand)) {
      newInputs.push_back(operand->get());
      continue;
    }
    Type newType = RankedTensorType::get(
        newShape,
        cast<RankedTensorType>(operand->get().getType()).getElementType());
    Value newInput = b.create<tensor::ExpandShapeOp>(
        loc, newType, operand->get(), reassociation);
    newInputs.push_back(newInput);
  }

  // Calculate the new output map and shape, we insert the new dimension based
  // on the index returned by `controlSplitReductionFn`.
  SmallVector<int64_t> newOutputShape;
  AffineMap oldOutputMap = op.getMatchingIndexingMap(op.getDpsInitOperand(0));
  ArrayRef<int64_t> oldShape = op.getShape(op.getDpsInitOperand(0));
  SmallVector<AffineExpr> outputExpr;
  for (unsigned idx : llvm::seq<unsigned>(0, oldShape.size() + 1)) {
    if (insertSplitIndex == idx) {
      newOutputShape.push_back(ratio);
      outputExpr.push_back(b.getAffineDimExpr(insertSplitDimension));
    }
    if (idx < oldShape.size()) {
      newOutputShape.push_back(oldShape[idx]);
      unsigned dim = oldOutputMap.getDimPosition(idx);
      outputExpr.push_back(
          b.getAffineDimExpr(dim < insertSplitDimension ? dim : dim + 1));
    }
  }
  Value emptyOrAllocTensor;
  if (useAlloc) {
    emptyOrAllocTensor = b.create<bufferization::AllocTensorOp>(
        loc,
        RankedTensorType::get(newOutputShape,
                              op.getRegionOutputArgs()[0].getType()),
        ValueRange{});
  } else {
    emptyOrAllocTensor = b.create<tensor::EmptyOp>(
        loc, newOutputShape, op.getRegionOutputArgs()[0].getType());
  }
  Value constantOp = b.create<arith::ConstantOp>(loc, *identity);
  Value identityTensor =
      b.create<linalg::FillOp>(op->getLoc(), constantOp, emptyOrAllocTensor)
          .getResult(0);

  newMaps.push_back(AffineMap::get(oldOutputMap.getNumDims() + 1, 0, outputExpr,
                                   op.getContext()));
  SmallVector<utils::IteratorType> newIteratorTypes;
  for (auto [index, iteratorType] :
       llvm::enumerate(op.getIteratorTypesArray())) {
    if (insertSplitDimension == index)
      newIteratorTypes.push_back(utils::IteratorType::parallel);
    newIteratorTypes.push_back(iteratorType);
  }
  if (insertSplitDimension == op.getIteratorTypesArray().size()) {
    newIteratorTypes.push_back(utils::IteratorType::parallel);
  }
  // Create the new op matching the original op with an extra parallel
  // dimension.
  GenericOp genericOp = b.create<GenericOp>(
      loc, TypeRange({emptyOrAllocTensor.getType()}), newInputs,
      ValueRange({identityTensor}), newMaps, newIteratorTypes);
  b.inlineRegionBefore(op->getRegion(0), genericOp.getRegion(),
                       genericOp.getRegion().begin());

  // Then create a new reduction that only reduce the newly added dimension
  // from the previous op.
  unsigned intermRank = newOutputShape.size();
  AffineMap inputMap = b.getMultiDimIdentityMap(intermRank);
  SmallVector<utils::IteratorType> reductionIteratorTypes;
  SmallVector<AffineExpr> exprs;
  for (unsigned i : llvm::seq<unsigned>(0, intermRank)) {
    if (insertSplitIndex == i) {
      reductionIteratorTypes.push_back(utils::IteratorType::reduction);
    } else {
      exprs.push_back(b.getAffineDimExpr(i));
      reductionIteratorTypes.push_back(utils::IteratorType::parallel);
    }
  }
  AffineMap outputMap = AffineMap::get(intermRank, 0, exprs, op.getContext());
  SmallVector<AffineMap> reductionMaps = {inputMap, outputMap};

  auto reduction = b.create<GenericOp>(
      loc, op->getResultTypes(), ValueRange({genericOp.getResult(0)}),
      SmallVector<Value>{op.getDpsInitOperands()}, reductionMaps,
      reductionIteratorTypes,
      [reductionOp](OpBuilder &b, Location loc, ValueRange inputs) {
        Operation *clonedReductionOp = b.clone(*reductionOp);
        clonedReductionOp->setOperand(0, inputs[0]);
        clonedReductionOp->setOperand(1, inputs[1]);
        b.create<linalg::YieldOp>(loc, clonedReductionOp->getResult(0));
      });
  b.replaceOp(op, reduction.getResults());

  return SplitReductionResult{emptyOrAllocTensor.getDefiningOp(),
                              identityTensor.getDefiningOp<FillOp>(),
                              cast<LinalgOp>(genericOp.getOperation()),
                              reduction};
}

/// Rewrite f(i, j, k, ...) into f(i, j, k * ratio + kk, ...)
/// TODO: Additional pattern to rewrite f(i, j, k * ratio + kk, ...) into
/// f(i, j, k, kk, ...) with a proper ExpandShapeOp. This is probably better
/// done as a transform to enable better vectorization.
static AffineMap scaleReductionDim(LinalgOp op, OpOperand &opOperand,
                                   unsigned reductionDimPos,
                                   int64_t reductionRatio) {
  auto reductionDim = getAffineDimExpr(reductionDimPos, op.getContext());
  auto reductionDimP1 = getAffineDimExpr(reductionDimPos + 1, op.getContext());
  AffineMap map = op.getMatchingIndexingMap(&opOperand);
  AffineMap idMap =
      AffineMap::getMultiDimIdentityMap(map.getNumDims(), op.getContext());
  AffineMap shiftedIdMap = idMap.shiftDims(1, /*offset=*/reductionDimPos + 1);
  AffineMap composeMap = shiftedIdMap.replace(
      reductionDim, reductionDim * reductionRatio + reductionDimP1,
      shiftedIdMap.getNumDims(), /*numSymbols=*/0);
  return map.compose(composeMap);
}

static AffineMap insertParallelDim(LinalgOp op, OpOperand &opOperand,
                                   unsigned reductionDimPos, int64_t size) {
  auto reductionDim = getAffineDimExpr(reductionDimPos, op.getContext());
  AffineMap map = op.getMatchingIndexingMap(&opOperand);
  AffineMap idMap =
      AffineMap::getMultiDimIdentityMap(map.getNumDims(), op.getContext());
  AffineMap shiftedIdMap = idMap.shiftDims(1, /*offset=*/reductionDimPos + 1);
  return map.compose(shiftedIdMap).insertResult(reductionDim, reductionDimPos);
}

/// Core rewrite implementation.
FailureOr<SplitReductionResult> mlir::linalg::splitReductionByScaling(
    RewriterBase &b, LinalgOp op,
    const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc) {
  OpBuilder::InsertionGuard guard(b);
  b.setInsertionPoint(op);

  // Matcher part, enforce preconditions.
  SplitReductionOptions control = controlSplitReductionFn(op);
  if (control.innerParallel)
    return b.notifyMatchFailure(op, "innerParallel not supported");

  int64_t splitFactor = control.ratio;
  unsigned insertSplitDimension = control.index;
  if (splitFactor <= 1)
    return b.notifyMatchFailure(op, "split factor needs to be greater than 1");

  SmallVector<unsigned> dims;
  op.getReductionDims(dims);
  if (dims.empty())
    return b.notifyMatchFailure(op, "needs at least 1 reduction dimension");

  unsigned reductionDimPos = dims[0];
  SmallVector<int64_t> loopRanges = op.getStaticLoopRanges();
  int64_t reductionDimSize = loopRanges[reductionDimPos];
  if (reductionDimSize == ShapedType::kDynamic ||
      reductionDimSize % splitFactor != 0 ||
      insertSplitDimension >= loopRanges.size())
    return b.notifyMatchFailure(
        op, "first reduction dimension not divisible by split factor");

  SmallVector<Operation *> combinerOps;
  if (!matchReduction(op.getRegionOutputArgs(), 0, combinerOps))
    return b.notifyMatchFailure(op, "cannot match a reduction pattern");

  SmallVector<TypedAttr> neutralElements;
  for (Operation *reductionOp : combinerOps) {
    std::optional<TypedAttr> neutralElement =
        arith::getNeutralElement(reductionOp);
    if (!neutralElement.has_value())
      return b.notifyMatchFailure(op, "cannot find neutral element.");
    neutralElements.push_back(*neutralElement);
  }
  if (!llvm::all_of(neutralElements, [](Attribute attr) { return attr; }))
    return b.notifyMatchFailure(op, "unknown reduction neutral");

  // TODO: relax this when multi-reduction support is available.
  if (op.getNumDpsInits() != static_cast<int64_t>(neutralElements.size()))
    return b.notifyMatchFailure(op, "expect one reduction per output");

  // Rewrite part.
  // Step 1. Build the intermediate outputs filled with the proper
  // neutralElements. Such outputs are of the same shape with an extra dimension
  // inserted at `insertSplitDimension`.
  //
  // Consider a minimal example where `k` is reduced:
  //     O(i, j) += I(i, j, k)
  // Assume i=3, j=5, k=128, splitFactor=16 and insertSplitDimension=0.
  // The compute is rewritten as:
  //   a. O_i(kk, i, j) += I(i, j, 16 * k + kk)
  //   b. O(i, j) += O_i(kk, i, j)
  // The intermediate tensor O_i is of shape (128/16)x3x5 == 8x3x5.
  Location loc = op->getLoc();
  MLIRContext *context = op.getContext();
  // For now assume outputs are 1-1 with reduction neutralElements.
  // TODO: generalize when multi-reduction support is available.
  SmallVector<Value> newOutputs;
  newOutputs.reserve(op.getNumDpsInits());
  SmallVector<Operation *> emptyOrAllocTensorOps;
  SmallVector<linalg::FillOp> fillOps;
  fillOps.reserve(op.getNumDpsInits());
  for (auto it : llvm::zip(op.getDpsInitOperands(), neutralElements)) {
    Value rankedTensor = std::get<0>(it)->get();
    auto t = cast<RankedTensorType>(rankedTensor.getType());
    RankedTensorType newT = RankedTensorType::Builder(t).insertDim(
        reductionDimSize / splitFactor, insertSplitDimension);
    SmallVector<Value> dims =
        tensor::createDynamicDimValues(b, loc, rankedTensor);
    Value emptyOrAllocTensor;
    if (useAlloc) {
      emptyOrAllocTensor =
          b.create<bufferization::AllocTensorOp>(loc, newT, dims);
    } else {
      emptyOrAllocTensor = b.create<tensor::EmptyOp>(loc, newT.getShape(),
                                                     t.getElementType(), dims);
    }
    Value constantOp = b.create<arith::ConstantOp>(loc, std::get<1>(it));
    fillOps.push_back(
        b.create<linalg::FillOp>(op->getLoc(), constantOp, emptyOrAllocTensor));
    newOutputs.push_back(fillOps.back().getResult(0));
    emptyOrAllocTensorOps.push_back(emptyOrAllocTensor.getDefiningOp());
  }

  // Step 2. Reindex / expand indexing maps.
  // Reindex existing input indexings: k -> k * splitFactor + k'.
  SmallVector<AffineMap> newMaps;
  newMaps.reserve(op->getNumOperands() + 1);
  for (OpOperand *o : op.getDpsInputOperands())
    newMaps.push_back(scaleReductionDim(op, *o, reductionDimPos, splitFactor));
  // Provision a new indexing for the shape-only tensor.
  auto nDims = op.getNumLoops() + 1;
  auto redDim = getAffineDimExpr(reductionDimPos, context);
  auto redDimP1 = getAffineDimExpr(reductionDimPos + 1, context);
  newMaps.push_back(AffineMap::get(nDims, 0, {redDim, redDimP1}, context));
  // Expand existing output indexings.
  // TODO: a subset of these may not reduce along reducePos and should be
  // reindexed: k -> k * splitFactor + k', when multi-reduction support is
  // available.
  for (OpOperand *o : op.getDpsInitOperands())
    newMaps.push_back(insertParallelDim(op, *o, reductionDimPos,
                                        reductionDimSize / splitFactor));

  // Step 3. Handle operands.
  // Compute the new input tensors.
  SmallVector<Value> newInputs(op.getDpsInputOperands());
  // Add a single shape-only tensor to carry the dimensions without resorting to
  // more complex inversions.
  newInputs.push_back(b.create<tensor::EmptyOp>(
      loc, ArrayRef<int64_t>{reductionDimSize / splitFactor, splitFactor},
      b.getIntegerType(1)));
  // Output tensors are already good to go.

  // Step 4. Create the new op matching the original op with an extra parallel
  // dimension.
  auto iteratorTypes = op.getIteratorTypesArray();
  iteratorTypes.insert(iteratorTypes.begin() + reductionDimPos,
                       utils::IteratorType::parallel);
  GenericOp genericOp =
      b.create<GenericOp>(loc, ValueRange(newOutputs).getTypes(), newInputs,
                          newOutputs, newMaps, iteratorTypes);
  b.inlineRegionBefore(op->getRegion(0), genericOp.getRegion(),
                       genericOp.getRegion().begin());
  genericOp.getRegion().front().insertArgument(reductionDimPos,
                                               b.getIntegerType(1), loc);

  // Step 5. Create new reduction ops that only reduce the newly added
  // dimensions from the previous op.
  // For now assume outputs are 1-1 with reduction ops.
  // TODO: a subset of these may not reduce in the first place and do not
  // require a new op, when multi-reduction support is available.
  // TODO: all results can be handled in a single GenericOp, when
  // multi-reduction support is available.
  SmallVector<LinalgOp> results;
  for (auto it : llvm::zip(genericOp->getResults(), op.getDpsInitOperands(),
                           combinerOps)) {
    Value reindexedOutput = std::get<0>(it);
    Value originalOutput = std::get<1>(it)->get();
    auto originalOutputType = cast<RankedTensorType>(originalOutput.getType());
    Operation *combinerOp = std::get<2>(it);

    AffineMap map = b.getMultiDimIdentityMap(originalOutputType.getRank() + 1);
    SmallVector<AffineMap> indexingMaps = {
        map, map.dropResult(insertSplitDimension)};
    SmallVector<utils::IteratorType> reductionIteratorTypes(
        originalOutputType.getRank() + 1, utils::IteratorType::parallel);
    reductionIteratorTypes[insertSplitDimension] =
        utils::IteratorType::reduction;

    // clang-format off
    auto reductionOp = b.create<GenericOp>(
        loc,
        originalOutputType,
        reindexedOutput,
        originalOutput,
        indexingMaps,
        reductionIteratorTypes,
        [combinerOp](OpBuilder &b, Location loc, ValueRange bbArgs) {
          Operation *clonedReductionOp = b.clone(*combinerOp);
          clonedReductionOp->setOperand(0, bbArgs[0]);
          clonedReductionOp->setOperand(1, bbArgs[1]);
          b.create<linalg::YieldOp>(loc, clonedReductionOp->getResult(0));
        });
    // clang-format on

    results.push_back(reductionOp);
  }

  // TODO: extend when multi-reduction support is available.
  assert(fillOps.size() == results.size() && results.size() == 1);
  b.replaceOp(op, results.front()->getResults());
  return SplitReductionResult{emptyOrAllocTensorOps.front(), fillOps.front(),
                              cast<LinalgOp>(genericOp.getOperation()),
                              results.front()};
}

namespace {

struct LinalgSplitReduction : public OpInterfaceRewritePattern<LinalgOp> {
  /// Construct a generic pattern applied to all LinalgOp that verify `filter`.
  LinalgSplitReduction(MLIRContext *context,
                       ControlSplitReductionFn controlSplitReductionFn,
                       bool useAlloc = false, PatternBenefit benefit = 1)
      : OpInterfaceRewritePattern<LinalgOp>(context, benefit),
        controlSplitReductionFn(std::move(controlSplitReductionFn)),
        useAlloc(useAlloc) {}

  LogicalResult matchAndRewrite(LinalgOp op,
                                PatternRewriter &rewriter) const override {
    return splitReduction(rewriter, op, controlSplitReductionFn, useAlloc);
  }

private:
  ControlSplitReductionFn controlSplitReductionFn;
  bool useAlloc;
};

} // namespace

void linalg::populateSplitReductionPattern(
    RewritePatternSet &patterns,
    const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc) {
  patterns.add<LinalgSplitReduction>(patterns.getContext(),
                                     controlSplitReductionFn, useAlloc);
}