File: SubsetHoisting.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (553 lines) | stat: -rw-r--r-- 24,883 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
//===- SubsetHoisting.cpp - Linalg hoisting transformations----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with hoisting invariant subset
// operations in the context of Linalg transformations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/LoopInvariantCodeMotionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"

#define DEBUG_TYPE "subset-hoisting"

#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")

using namespace mlir;
using namespace mlir::linalg;

/// Return true if the location of the subset defined by the op is invariant of
/// the loop iteration.
static bool
isSubsetLocationLoopInvariant(scf::ForOp forOp,
                              vector::TransferWriteOp transferWriteOp) {
  for (Value operand : transferWriteOp.getIndices())
    if (!forOp.isDefinedOutsideOfLoop(operand))
      return false;
  return true;
}

/// Return true if the location of the subset defined by the op is invariant of
/// the loop iteration.
static bool isSubsetLocationLoopInvariant(scf::ForOp forOp,
                                          tensor::InsertSliceOp insertSliceOp) {
  for (Value operand : insertSliceOp->getOperands().drop_front(
           tensor::InsertSliceOp::getOffsetSizeAndStrideStartOperandIndex()))
    if (!forOp.isDefinedOutsideOfLoop(operand))
      return false;
  return true;
}

/// Given an `srcTensor` that is a block argument belong to a loop.
/// Greedily look for the first read that can be hoisted out of the loop (i.e.
/// that satisfied the conditions):
///   - The read is of type `tensor.extract_slice`.
///   - The read is one of the uses of `srcTensor`.
///   - The read is to the same subset that `tensor.insert_slice` writes.
// TODO: Unify implementations once the "bypassing behavior" is the same.
static FailureOr<tensor::ExtractSliceOp>
findHoistableMatchingExtractSlice(RewriterBase &rewriter,
                                  tensor::InsertSliceOp insertSliceOp,
                                  BlockArgument srcTensor) {
  assert(isa<RankedTensorType>(srcTensor.getType()) && "not a ranked tensor");

  auto forOp = cast<scf::ForOp>(srcTensor.getOwner()->getParentOp());

  LLVM_DEBUG(DBGS() << "--find matching read for: " << insertSliceOp << "\n";
             DBGS() << "--amongst users of: " << srcTensor << "\n");

  SmallVector<Operation *> users(srcTensor.getUsers());
  if (forOp.isDefinedOutsideOfLoop(insertSliceOp.getDest()))
    llvm::append_range(users, insertSliceOp.getDest().getUsers());

  for (Operation *user : users) {
    LLVM_DEBUG(DBGS() << "----inspect user: " << *user << "\n");
    auto extractSliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
    // Skip ops other than extract_slice with an exact matching of their tensor
    // subset.
    if (extractSliceOp) {
      auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
      if (extractSliceOp.getResultType() != insertSliceOp.getSourceType() ||
          !extractSliceOp.isSameAs(insertSliceOp, isSame)) {
        LLVM_DEBUG(DBGS() << "------not a matching extract_slice\n";
                   DBGS() << *user << " vs " << *insertSliceOp << "\n");
        continue;
      }

      // Skip insert_slice whose vector is defined within the loop: we need to
      // hoist that definition first otherwise dominance violations trigger.
      if (!isa<BlockArgument>(extractSliceOp.getSource()) &&
          !forOp.isDefinedOutsideOfLoop(extractSliceOp.getSource())) {
        LLVM_DEBUG(DBGS() << "------transfer_read vector is loop-dependent\n");
        continue;
      }
      return extractSliceOp;
    }

    // TODO: Look through disjoint subsets, similar to vector.transfer_write
    // and unify implementations.
  }

  LLVM_DEBUG(DBGS() << "----no matching extract_slice");
  return failure();
}

/// Given an `srcTensor` that is a block argument belong to a loop.
/// Greedily look for the first read that can be hoisted out of the loop (i.e.
/// that satisfied the conditions):
///   - The read is of type `tensor.transfer_read`.
///   - The read is one of the uses of `srcTensor`.
///   - The read is to the same subset that `tensor.transfer_write` writes.
// TODO: Unify implementations once the "bypassing behavior" is the same.
static FailureOr<vector::TransferReadOp>
findHoistableMatchingTransferRead(RewriterBase &rewriter,
                                  vector::TransferWriteOp transferWriteOp,
                                  BlockArgument srcTensor) {
  if (!isa<RankedTensorType>(srcTensor.getType()))
    return failure();

  auto forOp = cast<scf::ForOp>(srcTensor.getOwner()->getParentOp());

  LLVM_DEBUG(DBGS() << "--find matching read for: " << transferWriteOp << "\n";
             DBGS() << "--amongst users of: " << srcTensor << "\n";);

  // vector.transfer_write is a bit peculiar: we look through dependencies
  // to disjoint tensor subsets. This requires a while loop.
  // TODO: Look through disjoint subsets for tensor.insert_slice and unify
  // implementations.
  SmallVector<Operation *> users(srcTensor.getUsers());
  // TODO: transferWriteOp.getSource is actually the destination tensor!!
  if (forOp.isDefinedOutsideOfLoop(transferWriteOp.getSource()))
    llvm::append_range(users, transferWriteOp.getSource().getUsers());
  while (!users.empty()) {
    Operation *user = users.pop_back_val();
    LLVM_DEBUG(DBGS() << "----inspect user: " << *user << "\n");
    auto read = dyn_cast<vector::TransferReadOp>(user);
    if (read) {
      // Skip ops other than transfer_read with an exact matching subset.
      if (read.getIndices() != transferWriteOp.getIndices() ||
          read.getVectorType() != transferWriteOp.getVectorType()) {
        LLVM_DEBUG(DBGS() << "------not a transfer_read that matches the "
                             "transfer_write: "
                          << *user << "\n\t(vs " << *transferWriteOp << ")\n");
        continue;
      }

      // transfer_read may be of a vector that is defined within the loop: we
      // traverse it by virtue of bypassing disjoint subset operations rooted at
      // a bbArg and yielding a matching yield.
      if (!isa<BlockArgument>(read.getSource()) &&
          !forOp.isDefinedOutsideOfLoop(read.getSource())) {
        LLVM_DEBUG(DBGS() << "------transfer_read vector appears loop "
                             "dependent but will be tested for disjointness as "
                             "part of the bypass analysis\n");
      }
      LLVM_DEBUG(DBGS() << "------found match\n");
      return read;
    }

    // As an optimization, we look further through dependencies to disjoint
    // tensor subsets. This creates more opportunities to find a matching read.
    if (isa<vector::TransferWriteOp>(user)) {
      // If we find a write with disjoint indices append all its uses.
      // TODO: Generalize areSubsetsDisjoint and allow other bypass than
      // just vector.transfer_write - vector.transfer_write.
      if (vector::isDisjointTransferIndices(
              cast<VectorTransferOpInterface>(user),
              cast<VectorTransferOpInterface>(
                  transferWriteOp.getOperation()))) {
        LLVM_DEBUG(DBGS() << "----follow through disjoint write\n");
        users.append(user->getUsers().begin(), user->getUsers().end());
      } else {
        LLVM_DEBUG(DBGS() << "----skip non-disjoint write\n");
      }
    }
  }

  LLVM_DEBUG(DBGS() << "--no matching transfer_read\n");
  return rewriter.notifyMatchFailure(transferWriteOp,
                                     "no matching transfer_read");
}

/// Return the `vector.transfer_write` that produces `yieldOperand`, if:
///   - The write operates on tensors.
///   - All indices are defined outside of the loop.
/// Return failure otherwise.
///
/// This is sufficient condition to hoist the `vector.transfer_write`; other
/// operands can always be yielded by the loop where needed.
// TODO: generalize beyond scf::ForOp.
// TODO: Unify implementations once the "bypassing behavior" is the same.
static FailureOr<vector::TransferWriteOp>
getLoopInvariantTransferWriteDefining(RewriterBase &rewriter, scf::ForOp forOp,
                                      BlockArgument bbArg,
                                      OpOperand &yieldOperand) {
  assert(bbArg.getArgNumber() ==
             forOp.getNumInductionVars() + yieldOperand.getOperandNumber() &&
         "bbArg and yieldOperand must match");
  assert(isa<scf::YieldOp>(yieldOperand.getOwner()) && "must be an scf.yield");

  Value v = yieldOperand.get();
  auto transferWriteOp = v.getDefiningOp<vector::TransferWriteOp>();
  if (!transferWriteOp)
    return rewriter.notifyMatchFailure(v.getLoc(), "not a transfer_write");

  if (transferWriteOp->getNumResults() == 0) {
    return rewriter.notifyMatchFailure(v.getLoc(),
                                       "unsupported transfer_write on buffers");
  }

  // We do not explicitly check that the destination is a BBarg that matches the
  // yield operand as this would prevent us from bypassing other non-conflicting
  // writes.

  // Indexing must not depend on `forOp`.
  if (!isSubsetLocationLoopInvariant(forOp, transferWriteOp))
    return rewriter.notifyMatchFailure(
        v.getLoc(), "transfer_write indexing is loop-dependent");

  return transferWriteOp;
}

/// Return the `tensor.insert_slice` that produces `yieldOperand`, if:
///   1. Its destination tensor is a block argument of the `forOp`.
///   2. The unique use of its result is a yield with operand number matching
///   the block argument.
///   3. All indices are defined outside of the loop.
/// Return failure otherwise.
///
/// This is sufficient condition to hoist the `tensor.insert_slice`; other
/// operands can always be yielded by the loop where needed.
/// Note: 1. + 2. ensure that the yield / iter_args cycle results in proper
/// semantics (i.e. no ping-ping between iter_args across iterations).
// TODO: generalize beyond scf::ForOp.
// TODO: Unify implementations once the "bypassing behavior" is the same.
static FailureOr<tensor::InsertSliceOp>
getLoopInvariantInsertSliceDefining(RewriterBase &rewriter, scf::ForOp forOp,
                                    BlockArgument bbArg,
                                    OpOperand &yieldOperand) {
  assert(bbArg.getArgNumber() ==
             forOp.getNumInductionVars() + yieldOperand.getOperandNumber() &&
         "bbArg and yieldOperand must match");
  assert(isa<scf::YieldOp>(yieldOperand.getOwner()) && "must be an scf.yield");

  Value v = yieldOperand.get();
  auto insertSliceOp = v.getDefiningOp<tensor::InsertSliceOp>();
  if (!insertSliceOp)
    return rewriter.notifyMatchFailure(v.getLoc(), "not an insert_slice");

  // Tensor inserted into must be a BBArg at position matching yield operand.
  // TODO: In the future we should not perform this check if we want to bypass
  // other non-conflicting writes.
  if (bbArg != insertSliceOp.getDest())
    return rewriter.notifyMatchFailure(v.getLoc(), "not a matching bbarg");

  // Indexing inserted into must not depend on `forOp`.
  if (!isSubsetLocationLoopInvariant(forOp, insertSliceOp))
    return rewriter.notifyMatchFailure(
        v.getLoc(), "insert_slice indexing is loop-dependent");

  return insertSliceOp;
}

/// Check if the chunk of data inserted by the `writeOp` is read by any other
/// op than the candidateReadOp. This conflicting operation prevents hoisting,
/// return it or nullptr if none is found.
// TODO: Generalize subset disjunction analysis/interface.
// TODO: Support more subset op types.
static Operation *isTensorChunkAccessedByUnknownOp(Operation *writeOp,
                                                   Operation *candidateReadOp,
                                                   BlockArgument tensorArg) {
  // Make sure none of the other uses read the part of the tensor modified
  // by the transfer_write.
  llvm::SmallVector<Value::use_range, 1> uses;
  uses.push_back(tensorArg.getUses());
  while (!uses.empty()) {
    for (OpOperand &use : uses.pop_back_val()) {
      Operation *user = use.getOwner();
      // Skip the candidate use, only inspect the "other" uses.
      if (user == candidateReadOp || user == writeOp)
        continue;

      // TODO: Consider all transitive uses through
      // extract_slice/insert_slice. Atm we just bail because a stronger
      // analysis is needed for these cases.
      if (isa<tensor::ExtractSliceOp, tensor::InsertSliceOp>(user))
        return user;

      // Consider all transitive uses through a vector.transfer_write.
      if (isa<vector::TransferWriteOp>(writeOp)) {
        if (auto writeUser = dyn_cast<vector::TransferWriteOp>(user)) {
          uses.push_back(writeUser->getResult(0).getUses());
          continue;
        }
      }

      // Consider all nested uses through an scf::ForOp. We may have
      // pass-through tensor arguments left from previous level of
      // hoisting.
      if (auto forUser = dyn_cast<scf::ForOp>(user)) {
        Value arg = forUser.getLoopBody().getArgument(
            use.getOperandNumber() - forUser.getNumControlOperands() +
            /*iv value*/ 1);
        uses.push_back(arg.getUses());
        continue;
      }

      // Follow the use yield, only if it doesn't escape the original region.
      scf::YieldOp yieldUser = dyn_cast<scf::YieldOp>(user);
      if (yieldUser &&
          writeOp->getParentOp()->isAncestor(yieldUser->getParentOp())) {
        Value ret = yieldUser->getParentOp()->getResult(use.getOperandNumber());
        uses.push_back(ret.getUses());
        continue;
      }

      // If the write is a vector::TransferWriteOp, it may have been bypassed
      // and we need to check subset disjunction
      if (isa<vector::TransferWriteOp>(writeOp)) {
        auto read = dyn_cast<vector::TransferReadOp>(user);
        if (!read || !vector::isDisjointTransferIndices(
                         cast<VectorTransferOpInterface>(read.getOperation()),
                         cast<VectorTransferOpInterface>(writeOp))) {
          return user;
        }
      }
    }
  }
  return nullptr;
}

/// Mechanical hoisting of a matching read / write pair.
/// Return the newly created scf::ForOp with an extra yields.
// TODO: Unify implementations once the "bypassing behavior" is the same.
static scf::ForOp hoistTransferReadWrite(
    RewriterBase &rewriter, vector::TransferReadOp transferReadOp,
    vector::TransferWriteOp transferWriteOp, BlockArgument tensorBBArg) {
  scf::ForOp forOp = cast<scf::ForOp>(tensorBBArg.getOwner()->getParentOp());
  LLVM_DEBUG(DBGS() << "--Start hoisting\n";
             DBGS() << "--Hoist read : " << transferReadOp << "\n";
             DBGS() << "--Hoist write: " << transferWriteOp << "\n";
             DBGS() << "--Involving  : " << tensorBBArg << "\n");

  // TODO: don't hardcode /*numIvs=*/1.
  assert(tensorBBArg.getArgNumber() >= /*numIvs=*/1);
  int64_t initArgNumber = tensorBBArg.getArgNumber() - /*numIvs=*/1;

  // 1. Hoist the read op. Thanks to our previous checks we know this will not
  // trigger dominance violations once BBArgs are updated.
  // TODO: should the rewriter ever want to track this move ?
  transferReadOp->moveBefore(forOp);
  if (!forOp.isDefinedOutsideOfLoop(transferReadOp.getSource())) {
    rewriter.startRootUpdate(transferReadOp);
    transferReadOp.getSourceMutable().assign(
        forOp.getInitArgs()[initArgNumber]);
    rewriter.finalizeRootUpdate(transferReadOp);
  }

  // 2. Rewrite `loop` with an additional yield. This is the quantity that is
  // computed iteratively but whose storage has become loop-invariant.
  NewYieldValueFn yieldFn = [&](OpBuilder &b, Location loc,
                                ArrayRef<BlockArgument> newBBArgs) {
    return SmallVector<Value>{transferWriteOp.getVector()};
  };
  auto newForOp = replaceLoopWithNewYields(
      rewriter, forOp, {transferReadOp.getVector()}, yieldFn);
  rewriter.eraseOp(forOp);

  // 3. Update the yield. Invariant: initArgNumber is the destination tensor.
  auto yieldOp =
      cast<scf::YieldOp>(newForOp.getRegion().front().getTerminator());
  // TODO: transferWriteOp.getSource is actually the destination tensor!!
  rewriter.startRootUpdate(yieldOp);
  yieldOp->setOperand(initArgNumber, transferWriteOp.getSource());
  rewriter.finalizeRootUpdate(yieldOp);

  // 4. Hoist write after and make uses of newForOp.getResult(initArgNumber)
  // flow through it.
  // TODO: should the rewriter ever want to track this move ?
  transferWriteOp->moveAfter(newForOp);
  rewriter.startRootUpdate(transferWriteOp);
  transferWriteOp.getVectorMutable().assign(newForOp.getResults().back());
  // TODO: transferWriteOp.getSource is actually the destination tensor!!
  transferWriteOp.getSourceMutable().assign(newForOp.getResult(initArgNumber));
  rewriter.finalizeRootUpdate(transferWriteOp);
  rewriter.replaceAllUsesExcept(newForOp.getResult(initArgNumber),
                                transferWriteOp.getResult(), transferWriteOp);
  return newForOp;
}

/// Mechanical hoisting of a matching read / write pair.
/// Return the newly created scf::ForOp with an extra yields.
// TODO: Unify implementations once the "bypassing behavior" is the same.
static scf::ForOp hoistExtractInsertSlice(RewriterBase &rewriter,
                                          tensor::ExtractSliceOp extractSliceOp,
                                          tensor::InsertSliceOp insertSliceOp,
                                          BlockArgument tensorBBArg) {
  scf::ForOp forOp = cast<scf::ForOp>(tensorBBArg.getOwner()->getParentOp());
  LLVM_DEBUG(DBGS() << "--Start hoisting\n";
             DBGS() << "--Hoist read : " << extractSliceOp << "\n";
             DBGS() << "--Hoist write: " << insertSliceOp << "\n";
             DBGS() << "--Involving  : " << tensorBBArg << "\n");

  // TODO: don't hardcode /*numIvs=*/1.
  assert(tensorBBArg.getArgNumber() >= /*numIvs=*/1);
  int64_t initArgNumber = tensorBBArg.getArgNumber() - /*numIvs=*/1;

  // 1. Hoist the read op. Thanks to our previous checks we know this will not
  // trigger dominance violations once BBArgs are updated.
  // TODO: should the rewriter ever want to track this move ?
  extractSliceOp->moveBefore(forOp);
  if (!forOp.isDefinedOutsideOfLoop(extractSliceOp.getSource())) {
    assert(extractSliceOp.getSource() == tensorBBArg &&
           "extractSlice source not defined above must be the tracked bbArg");
    rewriter.startRootUpdate(extractSliceOp);
    extractSliceOp.getSourceMutable().assign(
        forOp.getInitArgs()[initArgNumber]);
    rewriter.finalizeRootUpdate(extractSliceOp);
  }

  // 2. Rewrite `loop` with an additional yield. This is the quantity that is
  // computed iteratively but whose storage has become loop-invariant.
  NewYieldValueFn yieldFn = [&](OpBuilder &b, Location loc,
                                ArrayRef<BlockArgument> newBBArgs) {
    return SmallVector<Value>{insertSliceOp.getSource()};
  };
  auto newForOp = replaceLoopWithNewYields(rewriter, forOp,
                                           extractSliceOp.getResult(), yieldFn);
  rewriter.eraseOp(forOp);

  // 3. Update the yield. Invariant: initArgNumber is the destination tensor.
  auto yieldOp =
      cast<scf::YieldOp>(newForOp.getRegion().front().getTerminator());
  // TODO: should the rewriter ever want to track this ?
  rewriter.startRootUpdate(yieldOp);
  yieldOp->setOperand(initArgNumber, insertSliceOp.getDest());
  rewriter.finalizeRootUpdate(yieldOp);

  // 4. Hoist write after and make uses of newForOp.getResult(initArgNumber)
  // flow through it.
  // TODO: should the rewriter ever want to track this move ?
  insertSliceOp->moveAfter(newForOp);
  rewriter.startRootUpdate(insertSliceOp);
  insertSliceOp.getSourceMutable().assign(newForOp.getResults().back());
  insertSliceOp.getDestMutable().assign(newForOp.getResult(initArgNumber));
  rewriter.finalizeRootUpdate(insertSliceOp);
  rewriter.replaceAllUsesExcept(newForOp.getResult(initArgNumber),
                                insertSliceOp.getResult(), insertSliceOp);
  return newForOp;
}

/// Greedily hoist redundant subset extract/insert operations on tensors
/// outside `forOp`.
/// Return the unmodified `forOp` if no hoisting occurred.
/// Return a new scf::ForOp if hoisting on tensors occurred.
scf::ForOp
mlir::linalg::hoistRedundantSubsetExtractInsert(RewriterBase &rewriter,
                                                scf::ForOp forOp) {
  LLVM_DEBUG(DBGS() << "Enter hoistRedundantSubsetExtractInsert scf.for\n");
  Operation *yield = forOp.getBody()->getTerminator();

  LLVM_DEBUG(DBGS() << "\n"; DBGS() << "Consider " << forOp << "\n");

  scf::ForOp newForOp = forOp;
  do {
    forOp = newForOp;
    for (const auto &it : llvm::enumerate(forOp.getRegionIterArgs())) {
      LLVM_DEBUG(DBGS() << "Consider " << it.value() << "\n");

      // 1. Find a loop invariant subset write yielding `ret` that we can
      // consider for hoisting.
      // TODO: TypeSwitch when we add more cases.
      OpOperand &ret = yield->getOpOperand(it.index());
      FailureOr<vector::TransferWriteOp> transferWriteOp =
          getLoopInvariantTransferWriteDefining(rewriter, forOp, it.value(),
                                                ret);
      FailureOr<tensor::InsertSliceOp> insertSliceOp =
          getLoopInvariantInsertSliceDefining(rewriter, forOp, it.value(), ret);
      if (failed(transferWriteOp) && failed(insertSliceOp)) {
        LLVM_DEBUG(DBGS() << "no loop invariant write defining iter_args "
                          << it.value() << "\n");
        continue;
      }

      Operation *writeOp = succeeded(transferWriteOp)
                               ? transferWriteOp->getOperation()
                               : insertSliceOp->getOperation();

      // 2. Only accept writes with a single use (i.e. the yield).
      if (!writeOp->hasOneUse()) {
        LLVM_DEBUG(DBGS() << "write with more than 1 use " << *writeOp << "\n");
        continue;
      }

      LLVM_DEBUG(DBGS() << "Write to hoist: " << *writeOp << "\n");

      // 3. Find a matching read that can also be hoisted.
      Operation *matchingReadOp = nullptr;
      // TODO: TypeSwitch.
      if (succeeded(transferWriteOp)) {
        auto maybeTransferRead = findHoistableMatchingTransferRead(
            rewriter, *transferWriteOp, it.value());
        if (succeeded(maybeTransferRead))
          matchingReadOp = maybeTransferRead->getOperation();
      } else if (succeeded(insertSliceOp)) {
        auto maybeExtractSlice = findHoistableMatchingExtractSlice(
            rewriter, *insertSliceOp, it.value());
        if (succeeded(maybeExtractSlice))
          matchingReadOp = maybeExtractSlice->getOperation();
      } else {
        llvm_unreachable("unexpected case");
      }
      if (!matchingReadOp) {
        LLVM_DEBUG(DBGS() << "No matching read\n");
        continue;
      }

      // 4. Make sure no other use reads the part of the modified tensor.
      // This is necessary to guard against hazards when non-conflicting subset
      // ops are bypassed.
      Operation *maybeUnknownOp =
          isTensorChunkAccessedByUnknownOp(writeOp, matchingReadOp, it.value());
      if (maybeUnknownOp) {
        LLVM_DEBUG(DBGS() << "Tensor chunk accessed by unknown op, skip: "
                          << *maybeUnknownOp << "\n");
        continue;
      }

      // 5. Perform the actual mechanical hoisting.
      // TODO: TypeSwitch.
      LLVM_DEBUG(DBGS() << "Read to hoist: " << *matchingReadOp << "\n");
      if (succeeded(transferWriteOp)) {
        newForOp = hoistTransferReadWrite(
            rewriter, cast<vector::TransferReadOp>(matchingReadOp),
            *transferWriteOp, it.value());
      } else if (succeeded(insertSliceOp)) {
        newForOp = hoistExtractInsertSlice(
            rewriter, cast<tensor::ExtractSliceOp>(matchingReadOp),
            *insertSliceOp, it.value());
      } else {
        llvm_unreachable("unexpected case");
      }
      break;
    }
  } while (forOp != newForOp);

  return newForOp;
}