1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
|
//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Tiling pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include <utility>
namespace mlir {
#define GEN_PASS_DEF_LINALGTILINGPASS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::affine;
using namespace mlir::linalg;
using namespace mlir::scf;
#define DEBUG_TYPE "linalg-tiling"
std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
mlir::linalg::makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map,
ArrayRef<OpFoldResult> allShapeSizes,
ArrayRef<OpFoldResult> allTileSizes) {
assert(allTileSizes.size() == map.getNumResults());
// Apply `map` to get shape sizes in loop order.
SmallVector<OpFoldResult> shapeSizes =
makeComposedFoldedMultiResultAffineApply(b, loc, map, allShapeSizes);
SmallVector<OpFoldResult> tileSizes(allTileSizes.begin(), allTileSizes.end());
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
if (getConstantIntValue(tileSizes[idx - zerosCount]) ==
static_cast<int64_t>(0)) {
shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
++zerosCount;
continue;
}
loopIndexToRangeIndex[idx] = idx - zerosCount;
}
// Create a new range with the applied tile sizes.
SmallVector<Range, 4> res;
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
res.push_back(Range{b.getIndexAttr(0), shapeSizes[idx], tileSizes[idx]});
return std::make_tuple(res, loopIndexToRangeIndex);
}
void mlir::linalg::transformIndexOps(
RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
for (auto en : enumerate(allIvs)) {
auto rangeIndex = loopIndexToRangeIndex.find(en.index());
if (rangeIndex == loopIndexToRangeIndex.end())
continue;
en.value() = ivs[rangeIndex->second];
}
offsetIndices(b, op, getAsOpFoldResult(allIvs));
}
/// Asserts that the given index-typed value is strictly positive. If the value
/// is an attribute, asserts at compile time, otherwise emits an assertion
/// checked at runtime.
static void emitIsPositiveIndexAssertion(ImplicitLocOpBuilder &b,
OpFoldResult value) {
if (auto attr = llvm::dyn_cast_if_present<Attribute>(value)) {
assert(cast<IntegerAttr>(attr).getValue().isStrictlyPositive() &&
"expected strictly positive tile size and divisor");
return;
}
Value zero = b.create<arith::ConstantIndexOp>(0);
Value condition = b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt,
value.get<Value>(), zero);
b.create<cf::AssertOp>(
condition,
b.getStringAttr("expected strictly positive tile size and divisor"));
}
FailureOr<StaticMultiSizeSpecification>
mlir::linalg::computeStaticMultiTileSizes(LinalgOp op, unsigned dimension,
int64_t targetSize, int64_t divisor) {
assert(!op.hasDynamicShape() &&
"cannot compute static multi-tile sizes for an op with dynamic shape");
assert(targetSize > 0 && "target size must be non-negative");
assert(divisor > 0 && "divisor must be non-negative");
assert(dimension < op.getNumLoops() && "dimension overflow");
StaticMultiSizeSpecification spec;
int64_t tripCount = op.getStaticLoopRanges()[dimension];
int64_t a = tripCount / divisor;
int64_t t = (targetSize + divisor - 1) / divisor;
int64_t totalTripCount = (a + t - 1) / t;
spec.lowTileSize = (a / totalTripCount) * divisor;
spec.highTileSize = spec.lowTileSize + divisor;
spec.highTripCount = a % totalTripCount;
spec.lowTripCount = totalTripCount - spec.highTripCount;
if (spec.lowTileSize * spec.lowTripCount +
spec.highTileSize * spec.highTripCount !=
tripCount) {
return failure();
}
return spec;
}
FailureOr<MultiSizeSpecification>
mlir::linalg::computeMultiTileSizes(OpBuilder &builder, LinalgOp op,
unsigned dimension, OpFoldResult targetSize,
OpFoldResult divisor, bool emitAssertions) {
// Bail out on dimension overflow.
if (dimension >= op.getNumLoops())
return failure();
// The code below works only on values.
Location loc = op.getLoc();
ImplicitLocOpBuilder b(loc, builder);
if (emitAssertions) {
emitIsPositiveIndexAssertion(b, targetSize);
emitIsPositiveIndexAssertion(b, divisor);
}
Value targetSizeValue =
getValueOrCreateConstantIndexOp(builder, loc, targetSize);
Value divisorValue = getValueOrCreateConstantIndexOp(builder, loc, divisor);
// Find the trip count of the iteration space dimension for which the tile
// sizes are computed.
SmallVector<OpFoldResult> allShapes =
op.createFlatListOfOperandDims(b, b.getLoc());
AffineMap shapesToLoops = op.getShapesToLoopsMap();
SmallVector<OpFoldResult> loopRanges =
makeComposedFoldedMultiResultAffineApply(b, op.getLoc(), shapesToLoops,
allShapes);
Value tripCount =
getValueOrCreateConstantIndexOp(b, op.getLoc(), loopRanges[dimension]);
// Compute the tile sizes and the respective numbers of tiles.
AffineExpr s0 = b.getAffineSymbolExpr(0);
AffineExpr s1 = b.getAffineSymbolExpr(1);
AffineExpr s2 = b.getAffineSymbolExpr(2);
auto apply = [&](AffineExpr expr, ArrayRef<OpFoldResult> ofrs) -> Value {
return affine::makeComposedAffineApply(b, b.getLoc(), expr, ofrs);
};
Value a = apply(s0.floorDiv(s1), {tripCount, divisorValue});
Value t = apply((s0 + s1 - 1).floorDiv(s1), {targetSizeValue, divisorValue});
Value d = apply((s0 + s1 - 1).floorDiv(s1), {a, t});
Value s = apply(s0.floorDiv(s1) * s2, {a, d, divisorValue});
Value v = apply(s0 % s1, {a, d});
Value u = apply(s0 - s1, {d, v});
MultiSizeSpecification spec;
spec.lowTileSize = s;
spec.highTileSize = apply(s0 + s1, {s, divisorValue});
spec.lowTripCount = u;
spec.highTripCount = v;
// If requested, emit the check that the tile sizes are computed correctly.
// For example, for iteration dimension size of 15 and the target size 8 it is
// impossible to find two tile sizes both divisible by 8 that fully cover the
// original space dimension.
if (emitAssertions) {
AffineExpr s3 = builder.getAffineSymbolExpr(3);
Value coveredSize =
apply(s0 * s1 + s2 * s3, {spec.lowTileSize, spec.lowTripCount,
spec.highTileSize, spec.highTripCount});
Value equals = b.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
coveredSize, tripCount);
b.create<cf::AssertOp>(
equals, builder.getStringAttr(
"could not compute dynamic multi-size tile shapes"));
}
return spec;
}
/// Returns true if the maximum tile offset `tileSize * numThreads-1` is less
/// than `iterationSize`.
static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize,
OpFoldResult numThreads,
OpFoldResult iterationSize) {
std::optional<int64_t> tileSizeConst = getConstantIntValue(tileSize);
std::optional<int64_t> numThreadsConst = getConstantIntValue(numThreads);
std::optional<int64_t> iterSizeConst = getConstantIntValue(iterationSize);
if (!tileSizeConst || !numThreadsConst || !iterSizeConst)
return false;
return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst;
}
/// Build an `affine_max` of all the `vals`.
static OpFoldResult buildMax(OpBuilder &b, Location loc,
ArrayRef<OpFoldResult> vals) {
return affine::makeComposedFoldedAffineMax(
b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
vals);
}
/// Build an `affine_min` of all the `vals`.
static OpFoldResult buildMin(OpBuilder &b, Location loc,
ArrayRef<OpFoldResult> vals) {
return affine::makeComposedFoldedAffineMin(
b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
vals);
}
/// Fill out the `tiledOffsets` and `tiledSizes` to be used to tile to a given
/// number of threads.
static void calculateTileOffsetsAndSizes(
RewriterBase &b, Location loc, scf::ForallOp forallOp,
ArrayRef<OpFoldResult> numThreads, SmallVector<Range> loopRanges,
bool omitTileOffsetBoundsCheck,
std::optional<ArrayRef<OpFoldResult>> nominalTileSizes,
SmallVector<OpFoldResult> &tiledOffsets,
SmallVector<OpFoldResult> &tiledSizes) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(forallOp.getBody(0));
ValueRange threadIds = forallOp.getInductionVars();
SmallVector<OpFoldResult> nonZeroNumThreads =
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
return !isConstantIntValue(ofr, 0);
}));
int64_t nLoops = loopRanges.size();
tiledOffsets.reserve(nLoops);
tiledSizes.reserve(nLoops);
for (unsigned loopIdx = 0, threadIdIdx = 0; loopIdx < nLoops; ++loopIdx) {
bool overflow = loopIdx >= numThreads.size();
bool isZero = !overflow && isConstantIntValue(numThreads[loopIdx], 0);
// Degenerate case: take the whole domain.
if (overflow || isZero) {
tiledOffsets.push_back(loopRanges[loopIdx].offset);
tiledSizes.push_back(loopRanges[loopIdx].size);
continue;
}
// Tiled case: compute the offset and size.
AffineExpr i, j, m, n, o;
bindDims(b.getContext(), i, j);
bindSymbols(b.getContext(), m, n, o);
OpFoldResult size = loopRanges[loopIdx].size;
OpFoldResult offset = loopRanges[loopIdx].offset;
OpFoldResult threadId = threadIds[threadIdIdx];
// Symbolic fixed max size per thread.
// TODO: floor + 0/1 depending on case for better load-balancing.
OpFoldResult tileSizePerThread =
nominalTileSizes.has_value()
? (*nominalTileSizes)[loopIdx]
: makeComposedFoldedAffineApply(
b, loc, m.ceilDiv(n),
ArrayRef<OpFoldResult>{size, nonZeroNumThreads[threadIdIdx]});
// Dynamic offset shifted by threadId * maxSizePerThread.
OpFoldResult offsetPerThread = makeComposedFoldedAffineApply(
b, loc, i + j * m, {offset, threadId, tileSizePerThread});
// Dynamic upper-bound depending on the threadId.
OpFoldResult residualTileSize = makeComposedFoldedAffineApply(
b, loc, i + j * m - n,
{offset, nonZeroNumThreads[threadIdIdx], tileSizePerThread, size});
if (!isConstantIntValue(residualTileSize, 0)) {
OpFoldResult sizeMinusOffsetPerThread = makeComposedFoldedAffineApply(
b, loc, -i + m, {offsetPerThread, size});
tileSizePerThread =
buildMin(b, loc, {sizeMinusOffsetPerThread, tileSizePerThread});
}
tiledOffsets.push_back(offsetPerThread);
// TODO: if tileSizePerThread <= 0 early exit.
if (!omitTileOffsetBoundsCheck &&
!canOmitTileOffsetInBoundsCheck(tileSizePerThread,
nonZeroNumThreads[threadIdIdx], size))
tileSizePerThread =
buildMax(b, loc, {b.getIndexAttr(0), tileSizePerThread});
tiledSizes.push_back(tileSizePerThread);
++threadIdIdx;
}
}
/// Rewrite a TilingInterface `op` to a tiled `scf.forall`. The
/// tiling is specified by the number of tiles/threads `numThreads` and the
/// optional nominal tile size `nominalTileSizes`. If `nominalTilSizes` is
/// not specified, then it is derived from `numThreads` as `ceilDiv(dimSize[i],
/// numThreads[i])`. If non-empty, the `mapping` is added as an
/// attribute to the resulting `scf.forall`. A zero tile sizes indicate
/// that the dimension is not tiled, and can be thought of as tiling by the full
/// size of data.
/// It is the user's responsibility to ensure that `numThreads` is a valid
/// tiling specification (i.e. that only tiles parallel dimensions, e.g. in the
/// Linalg case). If `omitTileOffsetBoundsCheck` is true, then the function will
/// assume that `tileSize[i] * (numThread[i] -1) <= dimSize[i]` holds.
static FailureOr<ForallTilingResult> tileToForallOpImpl(
RewriterBase &b, TilingInterface op, ArrayRef<OpFoldResult> numThreads,
std::optional<ArrayRef<OpFoldResult>> nominalTileSizes,
std::optional<ArrayAttr> mapping, bool omitTileOffsetBoundsCheck) {
Location loc = op->getLoc();
OpBuilder::InsertionGuard g(b);
SmallVector<Range> loopRanges = op.getIterationDomain(b);
if (loopRanges.empty())
return op->emitOpError("expected non-empty loop ranges");
auto hasStrideOne = [](Range r) { return !isConstantIntValue(r.stride, 1); };
if (llvm::any_of(loopRanges, hasStrideOne))
return op->emitOpError("only stride-1 supported atm");
// Gather destination tensors.
SmallVector<Value> dest;
if (failed(tensor::getOrCreateDestinations(b, loc, op, dest)))
return op->emitOpError("failed to get destination tensors");
SmallVector<OpFoldResult> nonZeroNumThreads =
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
return !isConstantIntValue(ofr, 0);
}));
SmallVector<Value> materializedNonZeroNumThreads =
llvm::to_vector(llvm::map_range(nonZeroNumThreads, [&](OpFoldResult ofr) {
return getValueOrCreateConstantIndexOp(b, loc, ofr);
}));
// 1. Create the ForallOp. We don't use the lambda body-builder
// version because we require the use of RewriterBase in the body, so we
// manually move the insertion point to the body below.
scf::ForallOp forallOp = b.create<scf::ForallOp>(
loc, getAsOpFoldResult((materializedNonZeroNumThreads)), dest, mapping);
// 2. Fill out the ForallOp body.
SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
calculateTileOffsetsAndSizes(b, loc, forallOp, numThreads, loopRanges,
omitTileOffsetBoundsCheck, nominalTileSizes,
tiledOffsets, tiledSizes);
// 3. Clone the tileable op and update its destination operands to use the
// output bbArgs of the ForallOp.
ArrayRef<BlockArgument> destBbArgs = forallOp.getOutputBlockArguments();
Operation *tiledOp = nullptr;
SmallVector<Value> tiledValues;
{
// 3.a. RAII guard, inserting within forallOp, before terminator.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(forallOp.getTerminator());
Operation *clonedOp = b.clone(*op.getOperation());
auto destinationStyleOp = dyn_cast<DestinationStyleOpInterface>(clonedOp);
if (destinationStyleOp) {
for (OpOperand *outOperand : destinationStyleOp.getDpsInitOperands()) {
// Swap tensor inits with the corresponding block argument of the
// scf.forall op. Memref inits remain as is.
if (outOperand->get().getType().isa<TensorType>()) {
auto *it = llvm::find(dest, outOperand->get());
assert(it != dest.end() && "could not find destination tensor");
unsigned destNum = std::distance(dest.begin(), it);
outOperand->set(destBbArgs[destNum]);
}
}
}
// 4. Tile the cloned op and delete the clone.
FailureOr<TilingResult> tilingResult =
cast<TilingInterface>(clonedOp).getTiledImplementation(b, tiledOffsets,
tiledSizes);
if (failed(tilingResult))
return clonedOp->emitError("Failed to tile op: ");
if (tilingResult->tiledOps.size() != 1) {
return clonedOp->emitError("expected a single produced tiled op, got ")
<< tilingResult->tiledOps.size();
}
b.eraseOp(clonedOp);
tiledOp = tilingResult->tiledOps.front();
tiledValues = tilingResult->tiledValues;
}
// 5. Parallel insert back into the result tensor.
for (auto it : llvm::zip(llvm::seq(unsigned(0), unsigned(dest.size())),
tiledValues, destBbArgs)) {
// 5.a. Partial subset information is inserted just before the terminator.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(forallOp.getTerminator());
SmallVector<OpFoldResult> resultOffsets, resultSizes;
if (failed(op.getResultTilePosition(b, std::get<0>(it), tiledOffsets,
tiledSizes, resultOffsets,
resultSizes)))
return op->emitOpError("output offsets couldn't be calculated");
SmallVector<OpFoldResult> strides(resultSizes.size(), b.getIndexAttr(1));
// 5.b. Parallel insertions are inserted at the end of the combining
// terminator.
b.setInsertionPointToEnd(forallOp.getTerminator().getBody());
b.create<tensor::ParallelInsertSliceOp>(loc, std::get<1>(it),
std::get<2>(it), resultOffsets,
resultSizes, strides);
}
return ForallTilingResult{forallOp, tiledOp};
}
FailureOr<ForallTilingResult>
linalg::tileToForallOp(RewriterBase &b, TilingInterface op,
ArrayRef<OpFoldResult> numThreads,
std::optional<ArrayAttr> mapping) {
return tileToForallOpImpl(b, op, numThreads,
/*nominalTileSizes=*/std::nullopt, mapping,
/*omitTileOffsetBoundsCheck=*/false);
}
FailureOr<ForallTilingResult>
linalg::tileToForallOpUsingTileSizes(RewriterBase &b, TilingInterface op,
ArrayRef<OpFoldResult> tileSizes,
std::optional<ArrayAttr> mapping) {
SmallVector<Range> loopRanges = op.getIterationDomain(b);
unsigned nLoops = loopRanges.size();
SmallVector<OpFoldResult> numThreads;
numThreads.reserve(nLoops);
AffineExpr s0, s1;
bindSymbols(b.getContext(), s0, s1);
AffineExpr divExpr = s0.ceilDiv(s1);
for (const auto &it : llvm::zip(tileSizes, loopRanges)) {
OpFoldResult numTiles = std::get<0>(it);
if (!isConstantIntValue(numTiles, 0))
numTiles = makeComposedFoldedAffineApply(
b, op.getLoc(), divExpr, {std::get<1>(it).size, std::get<0>(it)});
numThreads.push_back(numTiles);
}
return tileToForallOpImpl(b, op, numThreads,
/*nominalTileSizes=*/tileSizes, mapping,
/*omitTileOffsetBoundsCheck=*/true);
}
template <typename LoopTy>
static FailureOr<TiledLinalgOp>
tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ArrayRef<OpFoldResult> tileSizes,
const LinalgTilingOptions &options) {
OpBuilder::InsertionGuard g(b);
auto nLoops = op.getNumLoops();
// Initial tile sizes may be too big, only take the first nLoops.
tileSizes = tileSizes.take_front(nLoops);
if (llvm::all_of(tileSizes, [](OpFoldResult ofr) {
return getConstantIntValue(ofr) == static_cast<int64_t>(0);
})) {
TiledLinalgOp tiledOp;
tiledOp.op = cast<LinalgOp>(b.clone(*op.getOperation()));
tiledOp.tensorResults.assign(tiledOp.op->result_begin(),
tiledOp.op->result_end());
return tiledOp;
}
// 1. Build the tiled loop ranges.
SmallVector<OpFoldResult> allShapeSizes =
op.createFlatListOfOperandDims(b, op.getLoc());
AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
if (!shapeSizesToLoopsMap)
return failure();
auto [loopRanges, loopIndexToRangeIndex] = makeTiledLoopRanges(
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
SmallVector<utils::IteratorType, 4> iteratorTypes;
for (const auto &attr : enumerate(op.getIteratorTypesArray())) {
if (loopIndexToRangeIndex.count(attr.index()))
iteratorTypes.push_back(attr.value());
}
// If interchangeVector is empty, use the identity. Build the permutation map
// otherwise.
auto invPermutationMap =
AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
if (!options.interchangeVector.empty()) {
// Based on the pruned iterations (due to zero tile size), recompute the
// interchange vector.
SmallVector<unsigned, 4> interchangeVector;
interchangeVector.reserve(options.interchangeVector.size());
for (auto pos : options.interchangeVector) {
auto it = loopIndexToRangeIndex.find(pos);
if (it == loopIndexToRangeIndex.end())
continue;
interchangeVector.push_back(it->second);
}
// Interchange vector is guaranteed to be a permutation,
// `inversePermutation` must succeed.
invPermutationMap = inversePermutation(
AffineMap::getPermutationMap(interchangeVector, b.getContext()));
assert(invPermutationMap);
SmallVector<int64_t> permutation(interchangeVector.begin(),
interchangeVector.end());
applyPermutationToVector(loopRanges, permutation);
applyPermutationToVector(iteratorTypes, permutation);
}
// Handle distribution. Create a vector of the same size of loops that are to
// be tiled.
SmallVector<linalg::ProcInfo> procInfo;
if (options.distribution) {
procInfo.resize(
iteratorTypes.size(),
linalg::ProcInfo{nullptr, nullptr, linalg::DistributionMethod::None});
// Collect loop ranges of tiled loops, loops that are parallel.
SmallVector<Range> parallelLoopRanges;
for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
if (!isParallelIterator(iteratorType.value()))
break;
parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
}
auto returnedProcInfo =
options.distribution->procInfo(b, op.getLoc(), parallelLoopRanges);
unsigned procIdIdx = 0;
// Update the distribution information for the loops.
for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
if (!isParallelIterator(iteratorType.value()))
break;
procInfo[iteratorType.index()] = returnedProcInfo[procIdIdx++];
}
}
// 2. Create the tiled loops.
LinalgOp res = op;
SmallVector<Value, 4> ivs, tensorResults;
auto tiledLoopBodyBuilder =
[&](OpBuilder &builder, Location loc, ValueRange localIvs,
ValueRange operandValuesToUse) -> scf::ValueVector {
ivs.assign(localIvs.begin(), localIvs.end());
// When an `interchangeVector` is present, it has been applied to the
// loop ranges and the iterator types. Apply its inverse to the
// resulting loop `ivs` to match the op definition.
SmallVector<Value, 4> interchangedIvs;
if (!options.interchangeVector.empty()) {
for (AffineExpr result : invPermutationMap.getResults())
interchangedIvs.push_back(
ivs[result.cast<AffineDimExpr>().getPosition()]);
} else {
interchangedIvs.assign(ivs.begin(), ivs.end());
}
// Tile the `operandValuesToUse` that either match the `op` operands
// themselves or the tile loop arguments forwarding them.
assert(operandValuesToUse.size() ==
static_cast<size_t>(op->getNumOperands()) &&
"expect the number of operands and inputs and outputs to match");
SmallVector<Value> valuesToTile = operandValuesToUse;
SmallVector<OpFoldResult> sizeBounds =
makeComposedFoldedMultiResultAffineApply(b, loc, shapeSizesToLoopsMap,
allShapeSizes);
SmallVector<Value> tiledOperands = makeTiledShapes(
b, loc, op, valuesToTile, getAsOpFoldResult(interchangedIvs), tileSizes,
sizeBounds,
/*omitPartialTileCheck=*/false);
SmallVector<Type> resultTensorTypes =
getTensorOutputTypes(op, tiledOperands);
res = clone(b, op, resultTensorTypes, tiledOperands);
tensorResults =
insertSlicesBack(builder, loc, op, tiledOperands, res->getResults());
return scf::ValueVector(tensorResults.begin(), tensorResults.end());
};
GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
tiledLoopBodyBuilder, procInfo);
// 3. Transform IndexOp results w.r.t. the tiling.
transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
// 4. Gather the newly created loops and return them with the new op.
SmallVector<Operation *, 8> loops;
loops.reserve(ivs.size());
for (auto iv : ivs) {
if (isa<BlockArgument>(iv)) {
loops.push_back(cast<BlockArgument>(iv).getOwner()->getParentOp());
assert(loops.back() && "no owner found for induction variable!");
} else {
// TODO: Instead of doing this, try to recover the ops used instead of the
// loop.
loops.push_back(nullptr);
}
}
// 5. Get the tensor results from the outermost loop if available. Otherwise
// use the previously captured `tensorResults`.
Operation *outermostLoop = nullptr;
for (Operation *loop : loops)
if ((outermostLoop = loop))
break;
return TiledLinalgOp{
res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
}
FailureOr<linalg::ForallReductionTilingResult> linalg::tileReductionUsingForall(
RewriterBase &b, PartialReductionOpInterface op,
ArrayRef<OpFoldResult> numThreads, ArrayRef<OpFoldResult> tileSizes,
std::optional<ArrayAttr> mapping) {
Location loc = op.getLoc();
OpBuilder::InsertionGuard g(b);
// Ops implementing PartialReductionOpInterface are expected to implement
// TilingInterface.
// TODO: proper core mechanism to tie interfaces together.
auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
// Ops implementing PartialReductionOpInterface are not necessarily expected
// to implement TilingInterface.. This cast is unsafe atm.
// TODO: proper core mechanism to tie interfaces together.
// TODO: this function requires a pair of interfaces ..
auto destinationStyleOp =
dyn_cast<DestinationStyleOpInterface>(op.getOperation());
if (!destinationStyleOp)
return b.notifyMatchFailure(op, "not a destination style op");
// Actually this only work for Linalg ops atm.
auto linalgOp = dyn_cast<linalg::LinalgOp>(op.getOperation());
if (!linalgOp)
return b.notifyMatchFailure(op, "not a linalg op");
SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
if (op->getNumResults() != 1)
return b.notifyMatchFailure(
op, "don't support ops with multiple results for now");
SmallVector<utils::IteratorType> iterators =
tilingInterfaceOp.getLoopIteratorTypes();
SmallVector<unsigned> redDims;
linalgOp.getReductionDims(redDims);
if (redDims.size() != 1)
return b.notifyMatchFailure(
op, "only support ops with one reduction dimension.");
if (!tileSizes.empty() && tileSizes.size() != numThreads.size())
return b.notifyMatchFailure(op, "if tile sizes are present it must have as "
"many elements as number of threads");
int reductionDim = static_cast<int>(redDims.front());
if (redDims.front() >= numThreads.size())
return b.notifyMatchFailure(
op, "reduction dimension must be mapped to threads");
// 1. Create the inital tensor value.
FailureOr<Operation *> identityTensor =
op.generateInitialTensorForPartialReduction(b, loc, numThreads,
reductionDim);
if (failed(identityTensor))
return b.notifyMatchFailure(op,
"cannot create a tensor of identity value.");
// Gather destination tensors.
SmallVector<Value> dest;
if (failed(tensor::getOrCreateDestinations(b, loc, op, dest)))
return b.notifyMatchFailure(op, "failed to get destination tensors");
Operation *tiledOp = nullptr;
SmallVector<OpFoldResult> nonZeroNumThreads =
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
return !isConstantIntValue(ofr, 0);
}));
SmallVector<Value> materializedNonZeroNumThreads =
getValueOrCreateConstantIndexOp(b, loc, nonZeroNumThreads);
// 2. Create the ForallOp with an empty region.
scf::ForallOp forallOp = b.create<scf::ForallOp>(
loc, getAsOpFoldResult(materializedNonZeroNumThreads),
(*identityTensor)->getResults(), mapping);
// 3. Calculate the tile offsets and sizes for the subsequent loop that will
// be nested under `forallOp`.
SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
calculateTileOffsetsAndSizes(b, loc, forallOp, numThreads, iterationDomain,
/*omitTileOffsetBoundsCheck =*/false,
/*nominalTileSizes=*/std::nullopt, tiledOffsets,
tiledSizes);
// 4. Clone the tileable op and update its destination operands to use the
// output bbArgs of the ForallOp.
SmallVector<Value> tilingResults;
ArrayRef<BlockArgument> destBbArgs = forallOp.getOutputBlockArguments();
{
// 4.a. RAII guard, inserting within forallOp, before terminator.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(forallOp.getTerminator());
SmallVector<Value> tiledDpsInitOperands;
for (OpOperand *initOperand : destinationStyleOp.getDpsInitOperands()) {
auto *it = llvm::find(dest, initOperand->get());
assert(it != dest.end() && "dest operand not found in dest");
unsigned destNum = std::distance(dest.begin(), it);
SmallVector<OpFoldResult> strides(numThreads.size(), b.getIndexAttr(1));
SmallVector<OpFoldResult> outOffsets(numThreads.size(),
b.getIndexAttr(0));
SmallVector<OpFoldResult> sizes = tiledSizes;
sizes[reductionDim] = b.getIndexAttr(1);
outOffsets[reductionDim] = forallOp.getInductionVars().front();
// TODO: use SubsetExtractOpInterface once it is available.
tiledDpsInitOperands.push_back(b.create<tensor::ExtractSliceOp>(
loc, cast<RankedTensorType>(initOperand->get().getType()),
destBbArgs[destNum], outOffsets, sizes, strides));
}
// 4.b. Clone the op and update init operands.
// We cannot use a IRMapping here because it can replace
// different OpOperands with the same value.
Operation *clonedOp = b.clone(*op.getOperation());
b.updateRootInPlace(clonedOp, [&]() {
for (auto [initOperandPtr, tiledInitValue] : llvm::zip_equal(
cast<DestinationStyleOpInterface>(clonedOp).getDpsInitOperands(),
tiledDpsInitOperands)) {
initOperandPtr->set(tiledInitValue);
}
});
// 5. Tile the cloned op and delete the clone.
if (tileSizes.empty()) {
FailureOr<TilingResult> tilingResult =
cast<TilingInterface>(clonedOp).getTiledImplementation(
b, tiledOffsets, tiledSizes);
if (failed(tilingResult))
return clonedOp->emitError("Failed to tile op: ");
if (tilingResult->tiledOps.size() != 1) {
return clonedOp->emitError("expected a single produced tiled op, got ")
<< tilingResult->tiledOps.size();
}
tiledOp = tilingResult->tiledOps.front();
tilingResults = tilingResult->tiledValues;
} else {
LinalgTilingOptions options;
FailureOr<TiledLinalgOp> maybeTiled = tileLinalgOpImpl<scf::ForOp>(
b, cast<LinalgOp>(clonedOp), tileSizes, options);
if (failed(maybeTiled))
return b.notifyMatchFailure(op, "failed tileLinalgOpImpl");
SmallVector<Value> ids = forallOp.getInductionVars();
mapLoopToProcessorIds(cast<scf::ForOp>(maybeTiled->loops.back()), ids,
materializedNonZeroNumThreads);
if (maybeTiled->loops.size() != 1) {
return clonedOp->emitError("expected a single produced loop");
}
tiledOp = maybeTiled->op;
tilingResults = maybeTiled->loops.front()->getResults();
}
b.eraseOp(clonedOp);
}
// 6. Insert the partial reductions back into a new tensor.
for (auto [index, result, bbArg] : llvm::zip(
llvm::seq<unsigned>(0, dest.size()), tilingResults, destBbArgs)) {
// 6.a. Partial subset information is inserted just before the terminator.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(forallOp.getTerminator());
SmallVector<OpFoldResult> resultOffsets, resultSizes;
if (failed(tilingInterfaceOp.getResultTilePosition(
b, index, tiledOffsets, tiledSizes, resultOffsets, resultSizes)))
return op->emitOpError("output offsets couldn't be calculated");
SmallVector<OpFoldResult> resultOffsetsRank, resultSizesRank;
int64_t offIdx = 0;
int64_t sizeIdx = 0;
for (int64_t i = 0, e = numThreads.size(); i < e; ++i) {
if (i == reductionDim) {
resultOffsetsRank.push_back(forallOp.getInductionVars().front());
resultSizesRank.push_back(b.getIndexAttr(1));
continue;
}
resultOffsetsRank.push_back(resultOffsets[offIdx++]);
resultSizesRank.push_back(resultSizes[sizeIdx++]);
}
SmallVector<OpFoldResult> strides(resultSizesRank.size(),
b.getIndexAttr(1));
// 6.b. Parallel insertions are inserted at the end of the combining
// terminator.
b.setInsertionPointToEnd(forallOp.getTerminator().getBody());
b.create<tensor::ParallelInsertSliceOp>(
loc, result, bbArg, resultOffsetsRank, resultSizesRank, strides);
}
// 7. Merge the partial reductions.
b.setInsertionPointAfter(forallOp);
Operation *mergeOp =
op.mergeReductions(b, loc, forallOp->getResults(), reductionDim);
b.replaceOp(op, mergeOp->getResults());
// 8. Return.
ForallReductionTilingResult results;
results.initialOp = *identityTensor;
results.loops = forallOp;
results.parallelTiledOp = tiledOp;
results.mergeOp = mergeOp;
return results;
}
template <typename LoopTy>
FailureOr<TiledLinalgOp> static tileLinalgOpImpl(
RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
if (!options.tileSizeComputationFunction)
return failure();
// Enforce the convention that "tiling by zero" skips tiling a particular
// dimension. This convention is significantly simpler to handle instead of
// adjusting affine maps to account for missing dimensions.
auto nLoops = op.getNumLoops();
SmallVector<OpFoldResult> tileSizeVector =
getAsOpFoldResult(options.tileSizeComputationFunction(b, op));
if (tileSizeVector.size() < nLoops) {
tileSizeVector.append(nLoops - tileSizeVector.size(), b.getIndexAttr(0));
}
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
}
FailureOr<TiledLinalgOp>
mlir::linalg::tileLinalgOp(RewriterBase &b, LinalgOp op,
const LinalgTilingOptions &options) {
switch (options.loopType) {
case LinalgTilingLoopType::Loops:
return tileLinalgOpImpl<scf::ForOp>(b, op, options);
case LinalgTilingLoopType::ParallelLoops:
return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
default:;
}
return failure();
}
namespace {
/// Helper classes for type list expansion.
template <typename... OpTypes>
class CanonicalizationPatternList;
template <>
class CanonicalizationPatternList<> {
public:
static void insert(RewritePatternSet &patterns) {}
};
template <typename OpTy, typename... OpTypes>
class CanonicalizationPatternList<OpTy, OpTypes...> {
public:
static void insert(RewritePatternSet &patterns) {
OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
CanonicalizationPatternList<OpTypes...>::insert(patterns);
}
};
} // namespace
RewritePatternSet
mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
RewritePatternSet patterns(ctx);
populateLinalgTilingCanonicalizationPatterns(patterns);
return patterns;
}
void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
RewritePatternSet &patterns) {
auto *ctx = patterns.getContext();
affine::AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
affine::AffineForOp::getCanonicalizationPatterns(patterns, ctx);
affine::AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
affine::AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, ctx);
tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
tensor::PadOp::getCanonicalizationPatterns(patterns, ctx);
ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
CanonicalizationPatternList<
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>::insert(patterns);
}
|