File: TilingInterfaceImpl.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (427 lines) | stat: -rw-r--r-- 18,668 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//===- TilingInterfaceImpl.cpp - Implementation of TilingInterface -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Transforms/TilingInterfaceImpl.h"

#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Interfaces/TilingInterface.h"
#include <optional>

using namespace mlir;
using namespace mlir::linalg;

//===----------------------------------------------------------------------===//
// Utility methods for implementation of Tiling Interface for Linalg ops
//===----------------------------------------------------------------------===//

/// Return the SSA values that represent the data point accessed using a given
/// `indexingMap` for a given point in the iteration space represented by `ivs`.
static SmallVector<Value> getIndicesForAccess(OpBuilder &b, Location loc,
                                              AffineMap indexingMap,
                                              ValueRange ivs) {
  SmallVector<Value> indices;
  indices.reserve(indexingMap.getNumResults());
  for (auto result : indexingMap.getResults()) {
    AffineMap m = AffineMap::get(indexingMap.getNumDims(),
                                 indexingMap.getNumSymbols(), result);
    Value v = b.create<affine::AffineApplyOp>(loc, m, ivs);
    indices.push_back(v);
  }
  return indices;
}

/// Method to inline the payload of a `linalgOp` given the iteration space
/// point and values for the arguments of the payload.
static LogicalResult inlinePayload(OpBuilder &b, LinalgOp linalgOp,
                                   ValueRange ivs, ValueRange argValues) {
  Block *body = linalgOp.getBlock();
  IRMapping map;
  map.map(body->getArguments(), argValues);
  for (auto &op : body->without_terminator()) {
    if (auto indexOp = dyn_cast<IndexOp>(&op)) {
      map.map(indexOp.getResult(), ivs[indexOp.getDim()]);
      continue;
    }
    b.clone(op, map);
  }

  Operation *terminator = body->getTerminator();
  Location loc = terminator->getLoc();
  for (const auto &operand : llvm::enumerate(terminator->getOperands())) {
    Value toStore = map.lookupOrDefault(operand.value());
    OpOperand *storeInto = linalgOp.getDpsInitOperand(operand.index());
    auto indices = getIndicesForAccess(
        b, loc, linalgOp.getMatchingIndexingMap(storeInto), ivs);
    b.create<memref::StoreOp>(
        loc, toStore, linalgOp.getDpsInitOperand(operand.index())->get(),
        indices);
  }
  return success();
}

//===----------------------------------------------------------------------===//
// External Model for implementing `TilingInterface` for `LinalgOp`s.
//===----------------------------------------------------------------------===//

namespace {
/// External model implementation of TilingInterface for LinalgOps. An external
/// model implementation is used for now till the use of `TilingInterface` is
/// on-par with the current Linalg tiling + fusion patterns. Once it is
/// maybe possible to move this into the op-definition (though there are
/// advantages to leaving it as an external model)
template <typename LinalgOpTy>
struct LinalgOpTilingInterface
    : public TilingInterface::ExternalModel<LinalgOpTilingInterface<LinalgOpTy>,
                                            LinalgOpTy> {
  /// Return the loop iterator type.
  SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
    LinalgOpTy concreteOp = cast<LinalgOpTy>(op);
    return concreteOp.getIteratorTypesArray();
  }

  /// Return the iteration domain range.
  SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
    OpBuilder::InsertionGuard g(b);
    b.setInsertionPoint(op);
    Location loc = op->getLoc();
    LinalgOp linalgOp = cast<LinalgOp>(op);
    SmallVector<OpFoldResult> allShapesSizes =
        linalgOp.createFlatListOfOperandDims(b, loc);
    AffineMap map = linalgOp.getShapesToLoopsMap();

    return llvm::to_vector(
        llvm::map_range(map.getResults(), [&](AffineExpr loopExpr) {
          OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
              b, loc, loopExpr, allShapesSizes);
          return Range{b.getIndexAttr(0), ofr, b.getIndexAttr(1)};
        }));
  }

  // Instantiate the tiled implementation of the operation.
  FailureOr<TilingResult>
  getTiledImplementation(Operation *op, OpBuilder &b,
                         ArrayRef<OpFoldResult> offsets,
                         ArrayRef<OpFoldResult> sizes) const {
    // Leave the `sizeBounds` value empty. That is only needed when the `sizes`
    // specified could lead to out of bounds accesses.
    Location loc = op->getLoc();
    LinalgOp linalgOp = cast<LinalgOp>(op);
    SmallVector<Value> valuesToTile = linalgOp->getOperands();
    SmallVector<Value, 4> tiledOperands = makeTiledShapes(
        b, loc, linalgOp, valuesToTile, offsets, sizes, {}, true);

    SmallVector<Type> resultTensorTypes =
        getTensorOutputTypes(linalgOp, tiledOperands);

    Operation *tiledOp = clone(b, linalgOp, resultTensorTypes, tiledOperands);
    offsetIndices(b, cast<LinalgOp>(tiledOp), offsets);

    return TilingResult{{tiledOp}, SmallVector<Value>(tiledOp->getResults())};
  }

  // Return the details of the output tile generated by the tiled
  // implementation.
  LogicalResult
  getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
                        ArrayRef<OpFoldResult> offsets,
                        ArrayRef<OpFoldResult> sizes,
                        SmallVector<OpFoldResult> &resultOffsets,
                        SmallVector<OpFoldResult> &resultSizes) const {
    Location loc = op->getLoc();
    LinalgOp linalgOp = cast<LinalgOp>(op);

    AffineExpr d0;
    bindDims(b.getContext(), d0);
    SmallVector<OpFoldResult> subShapeSizes =
        llvm::to_vector(llvm::map_range(sizes, [&](OpFoldResult ofr) {
          return affine::makeComposedFoldedAffineApply(b, loc, d0 - 1, ofr);
        }));

    OpOperand *outOperand = linalgOp.getDpsInitOperand(resultNumber);
    SliceParameters sliceParams = computeSliceParameters(
        b, loc, outOperand->get(), sizes,
        linalgOp.getMatchingIndexingMap(outOperand), offsets,
        /*ubs*/ {}, subShapeSizes, true);
    resultOffsets = sliceParams.offsets;
    resultSizes = sliceParams.sizes;
    return success();
  }

  FailureOr<TilingResult>
  generateResultTileValue(Operation *op, OpBuilder &b, unsigned resultNumber,
                          ArrayRef<OpFoldResult> offsets,
                          ArrayRef<OpFoldResult> sizes) const {
    auto linalgOp = cast<LinalgOp>(op);

    // Check that the indexing map used for the output is a projected
    // permutation. This could be relaxed with a more general approach that can
    // map the offsets and sizes from the result to iteration space tiles
    // (filling in full extent for dimensions not used to access the result).
    AffineMap indexingMap =
        linalgOp.getIndexingMapMatchingResult(op->getResult(resultNumber));
    if (!indexingMap.isProjectedPermutation()) {
      return op->emitOpError(
          "unhandled tiled implementation generation when result is not "
          "accessed using a permuted projection");
    }

    auto numLoops = linalgOp.getNumLoops();
    auto tilingInterfaceOp = cast<TilingInterface>(op);
    SmallVector<OpFoldResult> iterationTileOffsets(numLoops),
        iterationTileSizes(numLoops);
    if (!indexingMap.isPermutation()) {
      SmallVector<Range> iterationDomain =
          tilingInterfaceOp.getIterationDomain(b);
      for (const auto &range : llvm::enumerate(iterationDomain)) {
        iterationTileOffsets[range.index()] = range.value().offset;
        iterationTileSizes[range.index()] = range.value().size;
      }
    }
    for (const auto &resultExpr : llvm::enumerate(indexingMap.getResults())) {
      unsigned dimPosition =
          resultExpr.value().template cast<AffineDimExpr>().getPosition();
      iterationTileOffsets[dimPosition] = offsets[resultExpr.index()];
      iterationTileSizes[dimPosition] = sizes[resultExpr.index()];
    }

    FailureOr<TilingResult> tilingResult =
        tilingInterfaceOp.getTiledImplementation(b, iterationTileOffsets,
                                                 iterationTileSizes);
    if (tilingResult->tiledOps.size() != 1)
      return op->emitOpError("failed to generate tiled implementation");

    return TilingResult{
        tilingResult->tiledOps,
        SmallVector<Value>{tilingResult->tiledValues[resultNumber]}};
  }

  LogicalResult generateScalarImplementation(Operation *op, OpBuilder &builder,
                                             Location loc,
                                             ValueRange ivs) const {
    auto linalgOp = cast<LinalgOp>(op);
    if (!linalgOp.hasBufferSemantics())
      return op->emitOpError("expected operation to have buffer semantics");

    SmallVector<Value> indexedValues;
    indexedValues.reserve(linalgOp->getNumOperands());
    Location linalgOpLoc = op->getLoc();
    /// Load the data corresponding to the block arguments that
    /// represent input operands.
    for (OpOperand &operand : linalgOp->getOpOperands()) {
      if (!linalgOp.payloadUsesValueFromOperand(&operand)) {
        indexedValues.push_back(nullptr);
        continue;
      }
      if (linalgOp.isScalar(&operand)) {
        indexedValues.push_back(operand.get());
        continue;
      }
      SmallVector<Value> indices = getIndicesForAccess(
          builder, linalgOpLoc, linalgOp.getMatchingIndexingMap(&operand), ivs);
      Value load =
          builder.create<memref::LoadOp>(linalgOpLoc, operand.get(), indices);
      indexedValues.push_back(load);
    }

    /// Inline the op payload and store the result.
    return inlinePayload(builder, linalgOp, ivs, indexedValues);
  }
};

//===----------------------------------------------------------------------===//
// External Model for implementing `PartialReductionInterface` for `LinalgOp`s.
//===----------------------------------------------------------------------===//

/// External model implementation of PartialReductionInterface for LinalgOps.
template <typename LinalgOpTy>
struct LinalgOpPartialReductionInterface
    : public PartialReductionOpInterface::ExternalModel<
          LinalgOpPartialReductionInterface<LinalgOpTy>, LinalgOpTy> {
  FailureOr<Operation *> generateInitialTensorForPartialReduction(
      Operation *op, OpBuilder &b, Location loc, ArrayRef<OpFoldResult> sizes,
      ArrayRef<int> reductionDims) const {
    auto linalgOp = cast<LinalgOp>(op);
    OpBuilder::InsertionGuard guard(b);
    assert(reductionDims.size() == 1 &&
           "only support single reduction right now.");
    if (linalgOp.hasBufferSemantics())
      return op->emitOpError("expected operation to have tensor semantics");
    // Insert the new parallel dimension based on the index of the reduction
    // loop. This could be controlled by user for more flexibility.
    int64_t insertSplitDimension = reductionDims[0];
    assert(sizes.size() >= static_cast<size_t>(insertSplitDimension) &&
           "reduction dimension must be tiled");

    SmallVector<Operation *, 4> combinerOps;
    if (!matchReduction(linalgOp.getRegionOutputArgs(), 0, combinerOps) ||
        combinerOps.size() != 1)
      return op->emitOpError("Failed to anaysis the reduction operation.");

    Operation *reductionOp = combinerOps[0];
    std::optional<TypedAttr> identity = arith::getNeutralElement(reductionOp);
    if (!identity.has_value())
      return op->emitOpError(
          "Failed to get an identity value for the reduction operation.");

    // Calculate the new shape, we insert the new dimension based on the index
    // of the reduction dimension.
    SmallVector<int64_t> newOutputShape;
    ArrayRef<int64_t> oldShape =
        linalgOp.getShape(linalgOp.getDpsInitOperand(0));
    SmallVector<Value> dynamicDims;
    for (int64_t idx : llvm::seq<int64_t>(0, oldShape.size() + 1)) {
      if (idx == insertSplitDimension) {
        dispatchIndexOpFoldResults(sizes[idx], dynamicDims, newOutputShape);
        continue;
      }
      int64_t oldIdx = idx < insertSplitDimension ? idx : idx - 1;
      int64_t dim = oldShape[oldIdx];
      newOutputShape.push_back(dim);
      if (ShapedType::isDynamic(dim))
        dynamicDims.push_back(b.create<tensor::DimOp>(
            loc, linalgOp.getDpsInitOperand(0)->get(), oldIdx));
    }
    Value emptyTensor = b.create<tensor::EmptyOp>(
        loc, newOutputShape, linalgOp.getRegionOutputArgs()[0].getType(),
        dynamicDims);
    Value constantOp = b.create<arith::ConstantOp>(loc, *identity);
    auto identityTensor =
        b.create<linalg::FillOp>(loc, constantOp, emptyTensor);
    return identityTensor.getOperation();
  }

  Operation *tileToPartialReduction(Operation *op, OpBuilder &b, Location loc,
                                    ValueRange init,
                                    ArrayRef<OpFoldResult> offsets,
                                    ArrayRef<OpFoldResult> sizes,
                                    ArrayRef<int> reductionDims) const {
    OpBuilder::InsertionGuard guard(b);
    auto linalgOp = cast<LinalgOp>(op);
    assert(reductionDims.size() == 1 &&
           "only support single reduction right now.");
    int64_t insertSplitDimension = reductionDims[0];

    AffineMap oldOutputMap =
        linalgOp.getMatchingIndexingMap(linalgOp.getDpsInitOperand(0));
    SmallVector<AffineExpr> outputExpr;
    for (auto [idx, expr] : llvm::enumerate(oldOutputMap.getResults())) {
      if (static_cast<int64_t>(idx) == insertSplitDimension) {
        outputExpr.push_back(b.getAffineDimExpr(reductionDims[0]));
      }
      outputExpr.push_back(expr);
    }
    if (insertSplitDimension == oldOutputMap.getNumResults())
      outputExpr.push_back(b.getAffineDimExpr(reductionDims[0]));

    // Step 1: Extract a slice of the input operands.
    SmallVector<Value> valuesToTile = linalgOp.getDpsInputOperands();
    SmallVector<Value, 4> tiledOperands = makeTiledShapes(
        b, loc, linalgOp, valuesToTile, offsets, sizes, {}, true);

    // Step 2: Extract the accumulator operands
    SmallVector<OpFoldResult> strides(offsets.size(), b.getIndexAttr(1));
    SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0));
    // TODO: use SubsetExtractOpInterface once it is available.
    Value out = b.create<tensor::ExtractSliceOp>(loc, init[0], outOffsets,
                                                 sizes, strides);

    // Step3. create a generic op where the reduction dimension is replaced by a
    // parallel dimension of the size of reduction.
    SmallVector<utils::IteratorType> newIteratorTypes =
        linalgOp.getIteratorTypesArray();
    newIteratorTypes[reductionDims[0]] = utils::IteratorType::parallel;
    SmallVector<AffineMap> newMaps = linalgOp.getIndexingMapsArray();
    newMaps.back() = AffineMap::get(newMaps.back().getNumDims(), 0, outputExpr,
                                    linalgOp.getContext());
    auto genericOp =
        b.create<GenericOp>(loc, TypeRange({out.getType()}), tiledOperands,
                            ValueRange({out}), newMaps, newIteratorTypes);
    IRMapping mapping;
    op->getRegion(0).cloneInto(&genericOp.getRegion(),
                               genericOp.getRegion().begin(), mapping);
    return genericOp.getOperation();
  }

  Operation *mergeReductions(Operation *op, OpBuilder &b, Location loc,
                             ValueRange partialReduce,
                             ArrayRef<int> reductionDims) const {
    auto linalgOp = cast<LinalgOp>(op);
    assert(reductionDims.size() == 1 &&
           "only support single reduction right now.");
    int64_t dimToMerge = reductionDims[0];

    // Then create a new reduction that only reduce the newly added dimension
    // from the previous op.
    int64_t intermRank = cast<ShapedType>(partialReduce[0].getType()).getRank();
    AffineMap inputMap = b.getMultiDimIdentityMap(intermRank);
    SmallVector<utils::IteratorType> reductionIteratorTypes;
    SmallVector<AffineExpr> exprs;
    for (int64_t i : llvm::seq<int64_t>(0, intermRank)) {
      if (dimToMerge == i) {
        reductionIteratorTypes.push_back(utils::IteratorType::reduction);
      } else {
        exprs.push_back(b.getAffineDimExpr(i));
        reductionIteratorTypes.push_back(utils::IteratorType::parallel);
      }
    }
    AffineMap outputMap =
        AffineMap::get(intermRank, 0, exprs, op->getContext());
    SmallVector<AffineMap> reductionMaps = {inputMap, outputMap};

    SmallVector<Operation *, 4> combinerOps;
    matchReduction(linalgOp.getRegionOutputArgs(), 0, combinerOps);
    Operation *reductionOp = combinerOps[0];

    auto reduction = b.create<GenericOp>(
        loc, op->getResultTypes(), ValueRange({partialReduce[0]}),
        SmallVector<Value>{linalgOp.getDpsInitOperands()}, reductionMaps,
        reductionIteratorTypes,
        [reductionOp](OpBuilder &b, Location loc, ValueRange inputs) {
          Operation *clonedReductionOp = b.clone(*reductionOp);
          clonedReductionOp->setOperand(0, inputs[0]);
          clonedReductionOp->setOperand(1, inputs[1]);
          b.create<linalg::YieldOp>(loc, clonedReductionOp->getResult(0));
        });
    return reduction.getOperation();
  }
};

} // namespace

template <typename OpType>
static void registerOne(MLIRContext *ctx) {
  OpType::template attachInterface<LinalgOpTilingInterface<OpType>>(*ctx);
  OpType::template attachInterface<LinalgOpPartialReductionInterface<OpType>>(
      *ctx);
}

/// Variadic helper function.
template <typename... OpTypes>
static void registerAll(MLIRContext *ctx) {
  (registerOne<OpTypes>(ctx), ...);
}

#define GET_OP_LIST

void mlir::linalg::registerTilingInterfaceExternalModels(
    DialectRegistry &registry) {
  registry.addExtension(+[](MLIRContext *ctx, linalg::LinalgDialect *dialect) {
    registerOne<linalg::GenericOp>(ctx);
    registerAll<
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
        >(ctx);
  });
}