1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
//===- TilingInterfaceImpl.cpp - Implementation of TilingInterface -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/TilingInterfaceImpl.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Interfaces/TilingInterface.h"
#include <optional>
using namespace mlir;
using namespace mlir::linalg;
//===----------------------------------------------------------------------===//
// Utility methods for implementation of Tiling Interface for Linalg ops
//===----------------------------------------------------------------------===//
/// Return the SSA values that represent the data point accessed using a given
/// `indexingMap` for a given point in the iteration space represented by `ivs`.
static SmallVector<Value> getIndicesForAccess(OpBuilder &b, Location loc,
AffineMap indexingMap,
ValueRange ivs) {
SmallVector<Value> indices;
indices.reserve(indexingMap.getNumResults());
for (auto result : indexingMap.getResults()) {
AffineMap m = AffineMap::get(indexingMap.getNumDims(),
indexingMap.getNumSymbols(), result);
Value v = b.create<affine::AffineApplyOp>(loc, m, ivs);
indices.push_back(v);
}
return indices;
}
/// Method to inline the payload of a `linalgOp` given the iteration space
/// point and values for the arguments of the payload.
static LogicalResult inlinePayload(OpBuilder &b, LinalgOp linalgOp,
ValueRange ivs, ValueRange argValues) {
Block *body = linalgOp.getBlock();
IRMapping map;
map.map(body->getArguments(), argValues);
for (auto &op : body->without_terminator()) {
if (auto indexOp = dyn_cast<IndexOp>(&op)) {
map.map(indexOp.getResult(), ivs[indexOp.getDim()]);
continue;
}
b.clone(op, map);
}
Operation *terminator = body->getTerminator();
Location loc = terminator->getLoc();
for (const auto &operand : llvm::enumerate(terminator->getOperands())) {
Value toStore = map.lookupOrDefault(operand.value());
OpOperand *storeInto = linalgOp.getDpsInitOperand(operand.index());
auto indices = getIndicesForAccess(
b, loc, linalgOp.getMatchingIndexingMap(storeInto), ivs);
b.create<memref::StoreOp>(
loc, toStore, linalgOp.getDpsInitOperand(operand.index())->get(),
indices);
}
return success();
}
//===----------------------------------------------------------------------===//
// External Model for implementing `TilingInterface` for `LinalgOp`s.
//===----------------------------------------------------------------------===//
namespace {
/// External model implementation of TilingInterface for LinalgOps. An external
/// model implementation is used for now till the use of `TilingInterface` is
/// on-par with the current Linalg tiling + fusion patterns. Once it is
/// maybe possible to move this into the op-definition (though there are
/// advantages to leaving it as an external model)
template <typename LinalgOpTy>
struct LinalgOpTilingInterface
: public TilingInterface::ExternalModel<LinalgOpTilingInterface<LinalgOpTy>,
LinalgOpTy> {
/// Return the loop iterator type.
SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
LinalgOpTy concreteOp = cast<LinalgOpTy>(op);
return concreteOp.getIteratorTypesArray();
}
/// Return the iteration domain range.
SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
Location loc = op->getLoc();
LinalgOp linalgOp = cast<LinalgOp>(op);
SmallVector<OpFoldResult> allShapesSizes =
linalgOp.createFlatListOfOperandDims(b, loc);
AffineMap map = linalgOp.getShapesToLoopsMap();
return llvm::to_vector(
llvm::map_range(map.getResults(), [&](AffineExpr loopExpr) {
OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
b, loc, loopExpr, allShapesSizes);
return Range{b.getIndexAttr(0), ofr, b.getIndexAttr(1)};
}));
}
// Instantiate the tiled implementation of the operation.
FailureOr<TilingResult>
getTiledImplementation(Operation *op, OpBuilder &b,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) const {
// Leave the `sizeBounds` value empty. That is only needed when the `sizes`
// specified could lead to out of bounds accesses.
Location loc = op->getLoc();
LinalgOp linalgOp = cast<LinalgOp>(op);
SmallVector<Value> valuesToTile = linalgOp->getOperands();
SmallVector<Value, 4> tiledOperands = makeTiledShapes(
b, loc, linalgOp, valuesToTile, offsets, sizes, {}, true);
SmallVector<Type> resultTensorTypes =
getTensorOutputTypes(linalgOp, tiledOperands);
Operation *tiledOp = clone(b, linalgOp, resultTensorTypes, tiledOperands);
offsetIndices(b, cast<LinalgOp>(tiledOp), offsets);
return TilingResult{{tiledOp}, SmallVector<Value>(tiledOp->getResults())};
}
// Return the details of the output tile generated by the tiled
// implementation.
LogicalResult
getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
SmallVector<OpFoldResult> &resultOffsets,
SmallVector<OpFoldResult> &resultSizes) const {
Location loc = op->getLoc();
LinalgOp linalgOp = cast<LinalgOp>(op);
AffineExpr d0;
bindDims(b.getContext(), d0);
SmallVector<OpFoldResult> subShapeSizes =
llvm::to_vector(llvm::map_range(sizes, [&](OpFoldResult ofr) {
return affine::makeComposedFoldedAffineApply(b, loc, d0 - 1, ofr);
}));
OpOperand *outOperand = linalgOp.getDpsInitOperand(resultNumber);
SliceParameters sliceParams = computeSliceParameters(
b, loc, outOperand->get(), sizes,
linalgOp.getMatchingIndexingMap(outOperand), offsets,
/*ubs*/ {}, subShapeSizes, true);
resultOffsets = sliceParams.offsets;
resultSizes = sliceParams.sizes;
return success();
}
FailureOr<TilingResult>
generateResultTileValue(Operation *op, OpBuilder &b, unsigned resultNumber,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) const {
auto linalgOp = cast<LinalgOp>(op);
// Check that the indexing map used for the output is a projected
// permutation. This could be relaxed with a more general approach that can
// map the offsets and sizes from the result to iteration space tiles
// (filling in full extent for dimensions not used to access the result).
AffineMap indexingMap =
linalgOp.getIndexingMapMatchingResult(op->getResult(resultNumber));
if (!indexingMap.isProjectedPermutation()) {
return op->emitOpError(
"unhandled tiled implementation generation when result is not "
"accessed using a permuted projection");
}
auto numLoops = linalgOp.getNumLoops();
auto tilingInterfaceOp = cast<TilingInterface>(op);
SmallVector<OpFoldResult> iterationTileOffsets(numLoops),
iterationTileSizes(numLoops);
if (!indexingMap.isPermutation()) {
SmallVector<Range> iterationDomain =
tilingInterfaceOp.getIterationDomain(b);
for (const auto &range : llvm::enumerate(iterationDomain)) {
iterationTileOffsets[range.index()] = range.value().offset;
iterationTileSizes[range.index()] = range.value().size;
}
}
for (const auto &resultExpr : llvm::enumerate(indexingMap.getResults())) {
unsigned dimPosition =
resultExpr.value().template cast<AffineDimExpr>().getPosition();
iterationTileOffsets[dimPosition] = offsets[resultExpr.index()];
iterationTileSizes[dimPosition] = sizes[resultExpr.index()];
}
FailureOr<TilingResult> tilingResult =
tilingInterfaceOp.getTiledImplementation(b, iterationTileOffsets,
iterationTileSizes);
if (tilingResult->tiledOps.size() != 1)
return op->emitOpError("failed to generate tiled implementation");
return TilingResult{
tilingResult->tiledOps,
SmallVector<Value>{tilingResult->tiledValues[resultNumber]}};
}
LogicalResult generateScalarImplementation(Operation *op, OpBuilder &builder,
Location loc,
ValueRange ivs) const {
auto linalgOp = cast<LinalgOp>(op);
if (!linalgOp.hasBufferSemantics())
return op->emitOpError("expected operation to have buffer semantics");
SmallVector<Value> indexedValues;
indexedValues.reserve(linalgOp->getNumOperands());
Location linalgOpLoc = op->getLoc();
/// Load the data corresponding to the block arguments that
/// represent input operands.
for (OpOperand &operand : linalgOp->getOpOperands()) {
if (!linalgOp.payloadUsesValueFromOperand(&operand)) {
indexedValues.push_back(nullptr);
continue;
}
if (linalgOp.isScalar(&operand)) {
indexedValues.push_back(operand.get());
continue;
}
SmallVector<Value> indices = getIndicesForAccess(
builder, linalgOpLoc, linalgOp.getMatchingIndexingMap(&operand), ivs);
Value load =
builder.create<memref::LoadOp>(linalgOpLoc, operand.get(), indices);
indexedValues.push_back(load);
}
/// Inline the op payload and store the result.
return inlinePayload(builder, linalgOp, ivs, indexedValues);
}
};
//===----------------------------------------------------------------------===//
// External Model for implementing `PartialReductionInterface` for `LinalgOp`s.
//===----------------------------------------------------------------------===//
/// External model implementation of PartialReductionInterface for LinalgOps.
template <typename LinalgOpTy>
struct LinalgOpPartialReductionInterface
: public PartialReductionOpInterface::ExternalModel<
LinalgOpPartialReductionInterface<LinalgOpTy>, LinalgOpTy> {
FailureOr<Operation *> generateInitialTensorForPartialReduction(
Operation *op, OpBuilder &b, Location loc, ArrayRef<OpFoldResult> sizes,
ArrayRef<int> reductionDims) const {
auto linalgOp = cast<LinalgOp>(op);
OpBuilder::InsertionGuard guard(b);
assert(reductionDims.size() == 1 &&
"only support single reduction right now.");
if (linalgOp.hasBufferSemantics())
return op->emitOpError("expected operation to have tensor semantics");
// Insert the new parallel dimension based on the index of the reduction
// loop. This could be controlled by user for more flexibility.
int64_t insertSplitDimension = reductionDims[0];
assert(sizes.size() >= static_cast<size_t>(insertSplitDimension) &&
"reduction dimension must be tiled");
SmallVector<Operation *, 4> combinerOps;
if (!matchReduction(linalgOp.getRegionOutputArgs(), 0, combinerOps) ||
combinerOps.size() != 1)
return op->emitOpError("Failed to anaysis the reduction operation.");
Operation *reductionOp = combinerOps[0];
std::optional<TypedAttr> identity = arith::getNeutralElement(reductionOp);
if (!identity.has_value())
return op->emitOpError(
"Failed to get an identity value for the reduction operation.");
// Calculate the new shape, we insert the new dimension based on the index
// of the reduction dimension.
SmallVector<int64_t> newOutputShape;
ArrayRef<int64_t> oldShape =
linalgOp.getShape(linalgOp.getDpsInitOperand(0));
SmallVector<Value> dynamicDims;
for (int64_t idx : llvm::seq<int64_t>(0, oldShape.size() + 1)) {
if (idx == insertSplitDimension) {
dispatchIndexOpFoldResults(sizes[idx], dynamicDims, newOutputShape);
continue;
}
int64_t oldIdx = idx < insertSplitDimension ? idx : idx - 1;
int64_t dim = oldShape[oldIdx];
newOutputShape.push_back(dim);
if (ShapedType::isDynamic(dim))
dynamicDims.push_back(b.create<tensor::DimOp>(
loc, linalgOp.getDpsInitOperand(0)->get(), oldIdx));
}
Value emptyTensor = b.create<tensor::EmptyOp>(
loc, newOutputShape, linalgOp.getRegionOutputArgs()[0].getType(),
dynamicDims);
Value constantOp = b.create<arith::ConstantOp>(loc, *identity);
auto identityTensor =
b.create<linalg::FillOp>(loc, constantOp, emptyTensor);
return identityTensor.getOperation();
}
Operation *tileToPartialReduction(Operation *op, OpBuilder &b, Location loc,
ValueRange init,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<int> reductionDims) const {
OpBuilder::InsertionGuard guard(b);
auto linalgOp = cast<LinalgOp>(op);
assert(reductionDims.size() == 1 &&
"only support single reduction right now.");
int64_t insertSplitDimension = reductionDims[0];
AffineMap oldOutputMap =
linalgOp.getMatchingIndexingMap(linalgOp.getDpsInitOperand(0));
SmallVector<AffineExpr> outputExpr;
for (auto [idx, expr] : llvm::enumerate(oldOutputMap.getResults())) {
if (static_cast<int64_t>(idx) == insertSplitDimension) {
outputExpr.push_back(b.getAffineDimExpr(reductionDims[0]));
}
outputExpr.push_back(expr);
}
if (insertSplitDimension == oldOutputMap.getNumResults())
outputExpr.push_back(b.getAffineDimExpr(reductionDims[0]));
// Step 1: Extract a slice of the input operands.
SmallVector<Value> valuesToTile = linalgOp.getDpsInputOperands();
SmallVector<Value, 4> tiledOperands = makeTiledShapes(
b, loc, linalgOp, valuesToTile, offsets, sizes, {}, true);
// Step 2: Extract the accumulator operands
SmallVector<OpFoldResult> strides(offsets.size(), b.getIndexAttr(1));
SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0));
// TODO: use SubsetExtractOpInterface once it is available.
Value out = b.create<tensor::ExtractSliceOp>(loc, init[0], outOffsets,
sizes, strides);
// Step3. create a generic op where the reduction dimension is replaced by a
// parallel dimension of the size of reduction.
SmallVector<utils::IteratorType> newIteratorTypes =
linalgOp.getIteratorTypesArray();
newIteratorTypes[reductionDims[0]] = utils::IteratorType::parallel;
SmallVector<AffineMap> newMaps = linalgOp.getIndexingMapsArray();
newMaps.back() = AffineMap::get(newMaps.back().getNumDims(), 0, outputExpr,
linalgOp.getContext());
auto genericOp =
b.create<GenericOp>(loc, TypeRange({out.getType()}), tiledOperands,
ValueRange({out}), newMaps, newIteratorTypes);
IRMapping mapping;
op->getRegion(0).cloneInto(&genericOp.getRegion(),
genericOp.getRegion().begin(), mapping);
return genericOp.getOperation();
}
Operation *mergeReductions(Operation *op, OpBuilder &b, Location loc,
ValueRange partialReduce,
ArrayRef<int> reductionDims) const {
auto linalgOp = cast<LinalgOp>(op);
assert(reductionDims.size() == 1 &&
"only support single reduction right now.");
int64_t dimToMerge = reductionDims[0];
// Then create a new reduction that only reduce the newly added dimension
// from the previous op.
int64_t intermRank = cast<ShapedType>(partialReduce[0].getType()).getRank();
AffineMap inputMap = b.getMultiDimIdentityMap(intermRank);
SmallVector<utils::IteratorType> reductionIteratorTypes;
SmallVector<AffineExpr> exprs;
for (int64_t i : llvm::seq<int64_t>(0, intermRank)) {
if (dimToMerge == i) {
reductionIteratorTypes.push_back(utils::IteratorType::reduction);
} else {
exprs.push_back(b.getAffineDimExpr(i));
reductionIteratorTypes.push_back(utils::IteratorType::parallel);
}
}
AffineMap outputMap =
AffineMap::get(intermRank, 0, exprs, op->getContext());
SmallVector<AffineMap> reductionMaps = {inputMap, outputMap};
SmallVector<Operation *, 4> combinerOps;
matchReduction(linalgOp.getRegionOutputArgs(), 0, combinerOps);
Operation *reductionOp = combinerOps[0];
auto reduction = b.create<GenericOp>(
loc, op->getResultTypes(), ValueRange({partialReduce[0]}),
SmallVector<Value>{linalgOp.getDpsInitOperands()}, reductionMaps,
reductionIteratorTypes,
[reductionOp](OpBuilder &b, Location loc, ValueRange inputs) {
Operation *clonedReductionOp = b.clone(*reductionOp);
clonedReductionOp->setOperand(0, inputs[0]);
clonedReductionOp->setOperand(1, inputs[1]);
b.create<linalg::YieldOp>(loc, clonedReductionOp->getResult(0));
});
return reduction.getOperation();
}
};
} // namespace
template <typename OpType>
static void registerOne(MLIRContext *ctx) {
OpType::template attachInterface<LinalgOpTilingInterface<OpType>>(*ctx);
OpType::template attachInterface<LinalgOpPartialReductionInterface<OpType>>(
*ctx);
}
/// Variadic helper function.
template <typename... OpTypes>
static void registerAll(MLIRContext *ctx) {
(registerOne<OpTypes>(ctx), ...);
}
#define GET_OP_LIST
void mlir::linalg::registerTilingInterfaceExternalModels(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, linalg::LinalgDialect *dialect) {
registerOne<linalg::GenericOp>(ctx);
registerAll<
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>(ctx);
});
}
|