1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
|
//===- Transforms.cpp - Linalg transformations as patterns ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic and helpers to expose Linalg transforms as rewrite
// patterns.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>
#include <utility>
#define DEBUG_TYPE "linalg-transforms"
using namespace mlir;
using namespace mlir::linalg;
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
#define DBGSNL() (llvm::dbgs() << "\n")
//===----------------------------------------------------------------------===//
// Transformations exposed as functional-style API calls.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// peelLoop transformation.
//===----------------------------------------------------------------------===//
/// Try to peel and canonicalize loop `op` and return the new result.
/// Also applies affine_min/max bounds simplification on the fly where relevant.
// TODO: Add support for scf.parallel and affine.for loops.
SmallVector<Value> mlir::linalg::peelLoop(RewriterBase &rewriter,
Operation *op) {
return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op)
.Case<scf::ForOp>([&](scf::ForOp forOp) {
scf::ForOp partialIteration;
if (succeeded(scf::peelForLoopAndSimplifyBounds(rewriter, forOp,
partialIteration)))
return partialIteration->getResults();
assert(!partialIteration && "expected that loop was not peeled");
return forOp->getResults();
})
.Default([&](Operation *op) { return op->getResults(); });
}
/// Peel 'loops' and applies affine_min/max bounds simplification on the fly
/// where relevant.
void mlir::linalg::peelLoops(RewriterBase &rewriter,
ArrayRef<scf::ForOp> loops) {
for (auto loopOp : loops)
peelLoop(rewriter, loopOp);
}
//===----------------------------------------------------------------------===//
// pack transformation.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
/// Return true if `map` has 0 or 1 result function of AffineDimExpr(dim).
static bool hasAtMostOneResultFunctionOfDim(AffineMap map, int64_t dim) {
bool found = false;
for (AffineExpr e : map.getResults()) {
if (!e.isFunctionOfDim(dim))
continue;
if (found)
return false;
found = true;
}
return true;
}
#endif // NDEBUG
/// Return the index of the first result of `map` that is a function of
/// AffineDimExpr(dim), std::nullopt otherwise.
static std::optional<int64_t> getFirstResultIndexFunctionOf(AffineMap map,
int64_t dim) {
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
AffineExpr expr = map.getResult(i);
if (!expr.isFunctionOfDim(dim))
continue;
return i;
}
return std::nullopt;
}
/// Perform one step of packing of a LinalgOp's metadata along `dim` into the
/// `newDim` at `iteratorTypes.size()` by:
/// 1. Appending `iteratorTypes[newDim]`, equal to `iteratorTypes[dim]`.
/// 2. Appending a `newDim` to the domain of every indexing map.
/// 3. For each operand (i.e. for each map in `indexingMaps`), perform packing
/// by potentially adding a `newDim` result to `map`.
/// The preserved invariant is that `iteratorTypes.size()` is always equal to
/// `map.getNumDims()` for every map in `indexingMaps`.
///
/// Update `indexingMaps` and `iteratorTypes` inplace as one step of the update.
/// Return a vector that records the optional packing for each operand.
/// Return failure if the packed indexing cannot be represented with a LinalgOp.
///
/// Further details:
/// ================
/// The current implementation of packing (i.e. data tiling) consists of
/// rewriting a linearized strip-mined form into a higher-dimensional access.
/// e.g. consider an access `A[I][f(j, k, l)]` and packing by 4; we rewrite
/// `I` into `4 * i + ii`, where `0 <= ii < 4`.
/// The access is further rewritten as `A[i][f(j, k, l)][ii]`.
///
/// This rewrite into higher dimensional access is not possible for general
/// AffineExpr in Linalg atm, it is restricted to an AffineDimExpr:
/// e.g. consider an access `A[I + J][f(j, k, l)]` and packing by 4; we
/// rewrite `I + J` into `4 * i + ii + J`, where `0 <= ii < 4`.
/// The rewrite of the access would be a form not representable in Linalg:
/// `A[i + (ii + J) / 4][f(j, k, l)][(ii + J) % 4]`.
/// Note however that as `J` and `ii` iterate, the accesses do not have a
/// particular alignment, so packing does not achieve alignment in this case
///
/// In the future, we may want to consider a mixed-form that allows some
/// alignment in the presence of multiple accesses:
/// `A[I][f(j, k, l)]` and `B[I + J][f(j, k, l)]`
/// And would rewrite accesses as:
/// `A[i][f(j, k, l)][ii]` and `B[4 * i + ii + J][f(j, k, l)]`
static FailureOr<SmallVector<std::optional<int64_t>>>
packLinalgMetadataOnce(SmallVectorImpl<AffineMap> &indexingMaps,
SmallVectorImpl<utils::IteratorType> &iteratorTypes,
int64_t dim) {
int64_t newDim = iteratorTypes.size();
iteratorTypes.push_back(iteratorTypes[dim]);
SmallVector<std::optional<int64_t>> packedDimPerIndexingMap(
indexingMaps.size(), std::nullopt);
SmallVector<AffineMap> newMaps;
for (int64_t operandIdx = 0, e = indexingMaps.size(); operandIdx < e;
++operandIdx) {
AffineMap map = indexingMaps[operandIdx];
// Add the `newDim` to map whatever the case.
assert(map.getNumDims() == newDim && "num dims invariant violation");
map = map.shiftDims(1, newDim);
// Get the at-most-1 index of the result that is a function of `dim`.
// If we can find one, we insert `AffineDimExpr(newDim)` to the map, which
// logically chunks dimension `dim` into `K * dim + newDim`, where the
// packing factor `K` is specified separately.
assert(hasAtMostOneResultFunctionOfDim(map, dim) &&
"num results invariant violation");
auto maybeOperandDimensionToPack = getFirstResultIndexFunctionOf(map, dim);
if (!maybeOperandDimensionToPack.has_value()) {
newMaps.push_back(map);
continue;
}
// We can only pack AffineDimExpr atm.
if (!map.getResult(maybeOperandDimensionToPack.value())
.isa<AffineDimExpr>())
return failure();
// Add `newDim` to the results of the map.
map = map.insertResult(Builder(map.getContext()).getAffineDimExpr(newDim),
map.getNumResults());
newMaps.push_back(map);
// Record the that `operandIdx` is packed.
packedDimPerIndexingMap[operandIdx] = maybeOperandDimensionToPack;
}
indexingMaps = newMaps;
return packedDimPerIndexingMap;
}
namespace {
/// Helper struct to encode packing along one dimension of a LinalgOp.
struct PackedOperandsDim {
OpFoldResult packedSize;
SmallVector<std::optional<int64_t>> packedDimForEachOperand;
};
/// Helper struct to encode packing along all dimensions of a LinalgOp.
struct PackedOperandsDimList {
void push_back(PackedOperandsDim &&packedOperandsDims) {
spec.emplace_back(packedOperandsDims);
}
/// Return all the dims that have been packed for operand @ `operandPos`.
SmallVector<int64_t> extractPackedDimsForOperand(int64_t operandPos);
/// Return all the pack sizes by which an operand @ `operandPos` is packed.
SmallVector<OpFoldResult> extractPackSizesForOperand(int64_t operandPos);
private:
SmallVector<PackedOperandsDim> spec;
};
} // namespace
FailureOr<LowerPackResult> linalg::lowerPack(RewriterBase &rewriter,
tensor::PackOp packOp) {
// 1. Filter out NYI cases.
auto packedTensorType =
cast<RankedTensorType>(packOp->getResultTypes().front());
if (llvm::any_of(packOp.getStaticInnerTiles(),
[](int64_t size) { return ShapedType::isDynamic(size); })) {
return rewriter.notifyMatchFailure(
packOp,
"non-static shape NYI, needs a more powerful tensor.expand_shape op");
}
Location loc = packOp->getLoc();
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(packOp);
// 2. Compute the permutation vector to shuffle packed shape into the shape
// before any outer or inner permutations have been applied. The permutation
// can be obtained from two permutations:
// a) Compute the permutation vector to move the last `numPackedDims` into
// the `innerPosDims` of a shape of rank `packedRank`.
// b) Compute the permutation vector to move outer dims if the pack op
// has outer_dims_perm.
// Apply (b) permutation on (a) permutation to get the final permutation.
int64_t numPackedDims = packOp.getInnerDimsPos().size();
int64_t packedRank = packedTensorType.getRank();
auto lastDims = llvm::to_vector(
llvm::seq<int64_t>(packedRank - numPackedDims, packedRank));
PackingMetadata packingMetadata = computePackingMetadata(
packedTensorType.getRank(), packOp.getInnerDimsPos());
SmallVector<int64_t> innerPositionsPerm = computePermutationVector(
packedRank, lastDims, packingMetadata.insertPositions);
SmallVector<int64_t> outerPos = packingMetadata.outerPositions;
ArrayRef<int64_t> outerPerm = packOp.getOuterDimsPerm();
if (!outerPerm.empty())
applyPermutationToVector(outerPos, outerPerm);
SmallVector<int64_t> outerPositionPerm = computePermutationVector(
packedRank, packingMetadata.outerPositions, outerPos);
SmallVector<int64_t> packedToStripMinedShapePerm = innerPositionsPerm;
applyPermutationToVector(packedToStripMinedShapePerm, outerPositionPerm);
// 3. Compute the stripMinedShape: this is the packed shape before any outer
// or inner permutations have been applied.
SmallVector<int64_t> stripMinedShape(packedTensorType.getShape());
applyPermutationToVector(stripMinedShape, packedToStripMinedShapePerm);
// 4. Pad the source of packOp to a shape we can expand into stripMinedShape.
SmallVector<OpFoldResult> lows(packOp.getSourceRank(),
rewriter.getIndexAttr(0));
SmallVector<OpFoldResult> highs(packOp.getSourceRank(),
rewriter.getIndexAttr(0));
for (auto [pos, innerSize] :
llvm::zip_equal(packOp.getInnerDimsPos(), packOp.getMixedTiles())) {
int outerPos =
packedToStripMinedShapePerm[packingMetadata.outerPositions[pos]];
OpFoldResult origSize =
tensor::getMixedSize(rewriter, loc, packOp.getSource(), pos);
OpFoldResult outerSize =
tensor::getMixedSize(rewriter, loc, packOp.getDest(), outerPos);
AffineExpr s0, d0, d1;
bindDims(rewriter.getContext(), d0, d1);
bindSymbols(rewriter.getContext(), s0);
auto map = AffineMap::get(/*dimCount=*/2, /*symbolCount=*/1, d0 * s0 - d1);
highs[pos] = affine::makeComposedFoldedAffineApply(
rewriter, loc, map, {outerSize, origSize, innerSize});
}
RankedTensorType collapsed = tensor::CollapseShapeOp::inferCollapsedType(
RankedTensorType::Builder(packedTensorType).setShape(stripMinedShape),
packingMetadata.reassociations);
Value paddingValue = packOp.getPaddingValue();
if (!paddingValue) {
paddingValue = rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(getElementTypeOrSelf(collapsed)));
}
auto padOp =
rewriter.create<tensor::PadOp>(loc, collapsed, packOp.getSource(), lows,
highs, paddingValue, /*nofold=*/false);
LLVM_DEBUG(
DBGSNL(); DBGSNL(); llvm::interleaveComma(packingMetadata.insertPositions,
DBGS() << "insertPositions: ");
DBGSNL(); llvm::interleaveComma(packingMetadata.outerPositions,
DBGS() << "outerPositions: ");
DBGSNL(); llvm::interleaveComma(packedTensorType.getShape(),
DBGS() << "packedShape: ");
DBGSNL();
llvm::interleaveComma(outerPositionPerm, DBGS() << "outerPositionPerm: ");
DBGSNL(); llvm::interleaveComma(innerPositionsPerm,
DBGS() << "innerPositionsPerm: ");
DBGSNL();
llvm::interleaveComma(packedToStripMinedShapePerm,
DBGS() << "packedToStripMinedShapePerm: ");
DBGSNL(); llvm::interleaveComma(
packingMetadata.reassociations, DBGS() << "reassociations: ",
[&](ReassociationIndices ri) {
llvm::interleaveComma(ri, llvm::dbgs() << "|");
});
DBGSNL();
llvm::interleaveComma(stripMinedShape, DBGS() << "stripMinedShape: ");
DBGSNL(); DBGS() << "collapsed type: " << collapsed; DBGSNL(););
if (packOp.isLikePad()) {
// This pack is just a plain pad.
// Just insert the pad in the higher ranked tensor.
auto emptyOp =
rewriter.create<tensor::EmptyOp>(loc, packedTensorType, ValueRange{});
// Offsets.
SmallVector<OpFoldResult> zeros(packedRank, rewriter.getIndexAttr(0));
// Strides.
SmallVector<OpFoldResult> ones(packedRank, rewriter.getIndexAttr(1));
SmallVector<OpFoldResult> sizes =
tensor::getMixedSizes(rewriter, loc, packOp.getDest());
auto insertSliceOp = rewriter.create<tensor::InsertSliceOp>(
loc, /*source=*/padOp, /*dest=*/emptyOp,
/*offsets=*/zeros, sizes,
/*strides=*/ones);
LLVM_DEBUG(DBGS() << "insert_slice op: " << insertSliceOp; DBGSNL(););
rewriter.replaceOp(packOp, insertSliceOp->getResults());
return LowerPackResult{padOp, /*reshapeOp=*/nullptr,
/*transposeOp=*/nullptr};
}
// 5. Expand from the padded result to the stripMinedShape.
auto reshapeOp = rewriter.create<tensor::ExpandShapeOp>(
loc,
RankedTensorType::Builder(packedTensorType).setShape(stripMinedShape),
padOp.getResult(), packingMetadata.reassociations);
// 6. Transpose stripMinedShape to packedShape.
SmallVector<int64_t> transpPerm =
invertPermutationVector(packedToStripMinedShapePerm);
auto transposeOp = rewriter.create<linalg::TransposeOp>(
loc, reshapeOp.getResult(), packOp.getDest(), transpPerm);
LLVM_DEBUG(DBGSNL(); DBGSNL(); DBGSNL();
DBGS() << "reshape op: " << reshapeOp; DBGSNL();
llvm::interleaveComma(transpPerm, DBGS() << "transpPerm: ");
DBGSNL(); DBGS() << "transpose op: " << transposeOp; DBGSNL(););
// 7. Replace packOp by transposeOp.
rewriter.replaceOp(packOp, transposeOp->getResults());
return LowerPackResult{padOp, reshapeOp, transposeOp};
}
FailureOr<LowerUnPackOpResult> linalg::lowerUnPack(RewriterBase &rewriter,
tensor::UnPackOp unPackOp) {
// 1. Filter out NYI cases.
if (!unPackOp.getOuterDimsPerm().empty())
return rewriter.notifyMatchFailure(unPackOp, "outer dims perm NYI");
RankedTensorType packedTensorType = unPackOp.getSourceType();
if (!packedTensorType.hasStaticShape()) {
return rewriter.notifyMatchFailure(
unPackOp,
"non-static shape NYI, needs a more powerful tensor.expand_shape op");
}
Location loc = unPackOp->getLoc();
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(unPackOp);
int64_t packedRank = packedTensorType.getRank();
OpFoldResult zero = rewriter.getIndexAttr(0), one = rewriter.getIndexAttr(1);
auto destTensorType = cast<RankedTensorType>(unPackOp.getDest().getType());
if (unPackOp.isLikeUnPad()) {
// This unpack is just a plain unpad.
// Just extract the slice from the higher ranked tensor.
ArrayRef<int64_t> destShape = destTensorType.getShape();
// The inner dimensions stay the same as the destination tensor, but the
// outer ones are additional 1s.
SmallVector<OpFoldResult> sizes(packedRank - destShape.size(), one);
sizes.append(tensor::getMixedSizes(rewriter, loc, unPackOp.getDest()));
auto extractSliceOp = rewriter.create<tensor::ExtractSliceOp>(
loc, destTensorType, unPackOp.getSource(),
SmallVector<OpFoldResult>(packedRank, zero), sizes,
SmallVector<OpFoldResult>(packedRank, one));
rewriter.replaceOp(unPackOp, extractSliceOp->getResults());
return LowerUnPackOpResult{/*emptyOp=*/nullptr, /*transposeOp=*/nullptr,
/*reshapeOp=*/nullptr, extractSliceOp};
}
// 2. Compute the permutation vector to move the last `numPackedDims` into
// the `innerPosDims` of a shape of rank `packedRank`.
int64_t numPackedDims = unPackOp.getInnerDimsPos().size();
auto lastDims = llvm::to_vector(
llvm::seq<int64_t>(packedRank - numPackedDims, packedRank));
PackingMetadata packingMetadata =
computePackingMetadata(packedRank, unPackOp.getInnerDimsPos());
SmallVector<int64_t> lastDimsToInsertPositionsPerm = computePermutationVector(
packedRank, lastDims, packingMetadata.insertPositions);
// 3. Compute the stripMinedShape: this is the packed shape without outer and
// inner permutations.
SmallVector<int64_t> stripMinedShape(packedTensorType.getShape());
applyPermutationToVector(stripMinedShape, lastDimsToInsertPositionsPerm);
// 4. Transpose packedShape to stripMinedShape.
RankedTensorType stripMinedTensorType =
RankedTensorType::Builder(packedTensorType).setShape(stripMinedShape);
RankedTensorType collapsedType = tensor::CollapseShapeOp::inferCollapsedType(
stripMinedTensorType, packingMetadata.reassociations);
auto emptyOp =
rewriter.create<tensor::EmptyOp>(loc, stripMinedTensorType, ValueRange{});
auto transposeOp = rewriter.create<linalg::TransposeOp>(
loc, unPackOp.getSource(), emptyOp, lastDimsToInsertPositionsPerm);
LLVM_DEBUG(
DBGSNL(); DBGSNL(); llvm::interleaveComma(packingMetadata.insertPositions,
DBGS() << "insertPositions: ");
DBGSNL(); llvm::interleaveComma(packedTensorType.getShape(),
DBGS() << "packedShape: ");
DBGSNL();
llvm::interleaveComma(lastDimsToInsertPositionsPerm,
DBGS() << "lastDimsToInsertPositionsPerm: ");
DBGSNL(); llvm::interleaveComma(
packingMetadata.reassociations, DBGS() << "reassociations: ",
[&](ReassociationIndices ri) {
llvm::interleaveComma(ri, llvm::dbgs() << "|");
});
DBGSNL();
llvm::interleaveComma(stripMinedShape, DBGS() << "stripMinedShape: ");
DBGSNL(); DBGS() << "collapsed type: " << collapsedType; DBGSNL(););
// 5. Collapse from the stripMinedShape to the padded result.
auto reshapeOp = rewriter.create<tensor::CollapseShapeOp>(
loc, collapsedType, transposeOp->getResult(0),
packingMetadata.reassociations);
// 6. ExtractSlice
int64_t destRank = destTensorType.getRank();
auto extractSliceOp = rewriter.create<tensor::ExtractSliceOp>(
loc, destTensorType, reshapeOp->getResult(0),
SmallVector<OpFoldResult>(destRank, zero),
tensor::getMixedSizes(rewriter, loc, unPackOp->getResult(0)),
SmallVector<OpFoldResult>(destRank, one));
// 7. Replace unPackOp by extractSliceOp.
rewriter.replaceOp(unPackOp, extractSliceOp->getResults());
return LowerUnPackOpResult{emptyOp, transposeOp, reshapeOp, extractSliceOp};
}
SmallVector<int64_t>
PackedOperandsDimList::extractPackedDimsForOperand(int64_t operandPos) {
SmallVector<int64_t> res;
for (int64_t i = 0, e = spec.size(); i < e; ++i) {
if (!spec[i].packedDimForEachOperand[operandPos].has_value())
continue;
res.push_back(spec[i].packedDimForEachOperand[operandPos].value());
}
return res;
}
SmallVector<OpFoldResult>
PackedOperandsDimList::extractPackSizesForOperand(int64_t operandPos) {
SmallVector<OpFoldResult> res;
for (int64_t i = 0, e = spec.size(); i < e; ++i) {
if (!spec[i].packedDimForEachOperand[operandPos].has_value())
continue;
res.push_back(spec[i].packedSize);
}
return res;
}
/// Implement packing of a single LinalgOp by performing packing by
/// `packedSizes`. There must be one packedSizes entry per `linalgOp` iterator.
/// Return the packed Linalg op on success, failure otherwise.
FailureOr<PackResult> linalg::pack(RewriterBase &rewriter,
linalg::LinalgOp linalgOp,
ArrayRef<OpFoldResult> packedSizes) {
if (packedSizes.size() != linalgOp.getNumLoops()) {
return rewriter.notifyMatchFailure(linalgOp,
"incorrect number of pack sizes");
}
Location loc = linalgOp->getLoc();
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
SmallVector<utils::IteratorType> iteratorTypes =
linalgOp.getIteratorTypesArray();
LLVM_DEBUG(DBGS() << "Start packing: " << linalgOp << "\n";
llvm::interleaveComma(indexingMaps, DBGS() << "maps: "); DBGSNL();
llvm::interleaveComma(iteratorTypes, DBGS() << "iterators: ");
DBGSNL(););
SmallVector<tensor::PackOp> packOps;
SmallVector<tensor::UnPackOp> unPackOps;
// Step 1. Pack each dim of the LinalgOp metadata by packedSizes[i].
PackedOperandsDimList listOfPackedOperandsDim;
for (int64_t i = 0, e = packedSizes.size(); i < e; ++i) {
std::optional<int64_t> maybeConstant = getConstantIntValue(packedSizes[i]);
// Skip tile sizes explicitly set to 0.
if (maybeConstant.has_value() && maybeConstant.value() == 0)
continue;
PackedOperandsDim packedOperandsDims;
packedOperandsDims.packedSize = packedSizes[i];
FailureOr<SmallVector<std::optional<int64_t>>>
maybePackedDimForEachOperand =
packLinalgMetadataOnce(indexingMaps, iteratorTypes, i);
if (failed(maybePackedDimForEachOperand))
return failure();
packedOperandsDims.packedDimForEachOperand = *maybePackedDimForEachOperand;
listOfPackedOperandsDim.push_back(std::move(packedOperandsDims));
LLVM_DEBUG(
DBGS() << "++++ After pack size #" << i << ": " << packedSizes[i]
<< "\n";
llvm::interleaveComma(indexingMaps, DBGS() << "maps: "); DBGSNL();
llvm::interleaveComma(iteratorTypes, DBGS() << "iterators: "); DBGSNL();
llvm::interleaveComma(packedOperandsDims.packedDimForEachOperand,
DBGS() << "packedDimForEachOperand: ");
DBGSNL(););
}
// Step 2. Propagate packing to all LinalgOp operands.
SmallVector<Value> inputsAndInits, results;
for (const auto &operandsList :
{linalgOp.getDpsInputOperands(), linalgOp.getDpsInitOperands()}) {
for (OpOperand *opOperandPtr : operandsList) {
int64_t pos = opOperandPtr->getOperandNumber();
Value operand = opOperandPtr->get();
SmallVector<int64_t> innerPos =
listOfPackedOperandsDim.extractPackedDimsForOperand(pos);
SmallVector<OpFoldResult> innerPackSizes =
listOfPackedOperandsDim.extractPackSizesForOperand(pos);
LLVM_DEBUG(
DBGS() << "operand: " << operand << "\n";
llvm::interleaveComma(innerPos, DBGS() << "innerPos: "); DBGSNL();
llvm::interleaveComma(innerPackSizes, DBGS() << "innerPackSizes: ");
DBGSNL(););
if (innerPackSizes.empty()) {
inputsAndInits.push_back(operand);
continue;
}
Value dest = tensor::PackOp::createDestinationTensor(
rewriter, loc, operand, innerPackSizes, innerPos,
/*outerDimsPerm=*/{});
ShapedType operandType = operand.getType().cast<ShapedType>();
bool areConstantTiles =
llvm::all_of(innerPackSizes, [](OpFoldResult tile) {
return getConstantIntValue(tile).has_value();
});
if (areConstantTiles && operandType.hasStaticShape() &&
!tensor::PackOp::requirePaddingValue(operandType.getShape(), innerPos,
innerPackSizes)) {
packOps.push_back(rewriter.create<tensor::PackOp>(
loc, operand, dest, innerPos, innerPackSizes));
} else {
// TODO: value of the padding attribute should be determined by
// consumers.
auto zeroAttr =
rewriter.getZeroAttr(getElementTypeOrSelf(dest.getType()));
Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr);
packOps.push_back(rewriter.create<tensor::PackOp>(
loc, operand, dest, innerPos, innerPackSizes, zero));
}
inputsAndInits.push_back(packOps.back());
}
}
// Step 3. Build the packed op, use the type of `inits` as result types.
ValueRange inputs =
ValueRange{inputsAndInits}.take_front(linalgOp.getNumDpsInputs());
ValueRange inits =
ValueRange{inputsAndInits}.take_back(linalgOp.getNumDpsInits());
auto packedLinalgOp = rewriter.create<linalg::GenericOp>(
linalgOp.getLoc(), inits.getTypes(), inputs, inits, indexingMaps,
iteratorTypes);
packedLinalgOp.getRegion().takeBody(linalgOp->getRegion(0));
// Step 4. Propagate packing to all the op results.
for (OpResult result : packedLinalgOp->getResults()) {
int64_t resultNum = result.getResultNumber();
tensor::PackOp maybePackedInit =
inits[resultNum].getDefiningOp<tensor::PackOp>();
if (!maybePackedInit) {
results.push_back(result);
continue;
}
// Build the symmetrical UnPackOp to the existing PackOp.
unPackOps.push_back(rewriter.create<tensor::UnPackOp>(
packedLinalgOp->getLoc(), result, maybePackedInit.getSource(),
maybePackedInit.getInnerDimsPos(), maybePackedInit.getMixedTiles()));
results.push_back(unPackOps.back());
}
// Step 5. Replace `linalgOp`.
rewriter.replaceOp(linalgOp, results);
// Return packedLinalgOp.
return PackResult{packOps,
cast<linalg::LinalgOp>(packedLinalgOp.getOperation()),
unPackOps};
}
//===----------------------------------------------------------------------===//
// packTranspose transformation.
//===----------------------------------------------------------------------===//
/// Return a copy of `tensorType` after permutation by `permutationVector`.
// Note: Should be a new method in of MemRef/RankedTensor/VectorType::Builder
// but this would introduce a dependence on Dialect in IR.
// TODO: Restructure.
static RankedTensorType permuteShape(RankedTensorType tensorType,
ArrayRef<int64_t> permutationVector) {
SmallVector<int64_t> shape(tensorType.getShape());
applyPermutationToVector(shape, permutationVector);
return RankedTensorType::Builder(tensorType).setShape(shape);
}
/// Return a new GenericOp obtained by transposing opOperand by the permutation
/// vector:
/// - the corresponding indexing map is transposed by `permutation`
/// - the corresponding operand value is replaced by `transposedValue`
/// `linalgOp` is replaced by the return op in the process.
/// Asserts that `transposedValue` is of the proper transposed ShapedType.
static LinalgOp transposeOneLinalgOperandAndReplace(
RewriterBase &rewriter, LinalgOp linalgOp, OpOperand &opOperand,
ArrayRef<int64_t> permutation, Value transposedValue) {
// Sanity check the operand.
assert(linalgOp == opOperand.getOwner() && "linalg op must own the operand");
// Sanity check of the expected transposed tensor type.
auto tensorType = permuteShape(
cast<RankedTensorType>(opOperand.get().getType()), permutation);
(void)tensorType;
assert(tensorType == transposedValue.getType() &&
"expected tensor type mismatch");
// Compute the transposed indexing map.
// Sigh unsigned pollution.
SmallVector<unsigned> tmpTransposition = llvm::to_vector(
llvm::map_range(permutation, [](int64_t i) -> unsigned { return i; }));
AffineMap permutationMap =
AffineMap::getPermutationMap(tmpTransposition, rewriter.getContext());
AffineMap transposedMap =
permutationMap.compose(linalgOp.getMatchingIndexingMap(&opOperand));
// Set the transposed indexing map in the proper position.
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
indexingMaps[linalgOp.getIndexingMapIndex(&opOperand)] = transposedMap;
// Set the transposedValue in the proper operand position.
SmallVector<Value> operands = linalgOp->getOperands();
operands[opOperand.getOperandNumber()] = transposedValue;
ValueRange operandsRef(operands);
auto transposedGenericOp = rewriter.create<linalg::GenericOp>(
/*location=*/linalgOp->getLoc(),
/*resultTensorTypes=*/
operandsRef.drop_front(linalgOp.getNumDpsInputs()).getTypes(),
/*inputs=*/operandsRef.take_front(linalgOp.getNumDpsInputs()),
/*outputs=*/operandsRef.drop_front(linalgOp.getNumDpsInputs()),
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/linalgOp.getIteratorTypesArray());
transposedGenericOp.getRegion().takeBody(linalgOp->getRegion(0));
rewriter.replaceOp(linalgOp, transposedGenericOp->getResults());
return cast<linalg::LinalgOp>(transposedGenericOp.getOperation());
}
FailureOr<PackTransposeResult>
linalg::packTranspose(RewriterBase &rewriter, tensor::PackOp packOp,
linalg::LinalgOp linalgOp, tensor::UnPackOp maybeUnPackOp,
ArrayRef<int64_t> outerPerm,
ArrayRef<int64_t> innerPerm) {
Location loc = linalgOp.getLoc();
// Step 1. Transpose packOp.
rewriter.setInsertionPoint(packOp);
tensor::PackOp transposedPackOp =
packOp.createTransposedClone(rewriter, loc, innerPerm, outerPerm);
if (!packOp.getResult().hasOneUse())
return rewriter.notifyMatchFailure(linalgOp, "expect single pack use");
OpOperand &packUse = *packOp->getUses().begin();
if (packUse.getOwner() != linalgOp) {
return rewriter.notifyMatchFailure(
linalgOp, "not a single use by the LinalgOp target");
}
if (maybeUnPackOp &&
(!linalgOp.isDpsInit(&packUse) ||
maybeUnPackOp.getSource() != linalgOp.getTiedOpResult(&packUse))) {
return rewriter.notifyMatchFailure(linalgOp,
"not produced by the LinalgOp target");
}
// Step 2. Transpose linalgOp.
// transposedPackOp.getOuterDimsPerm() may be empty, in which case it is the
// identity. Don't rely on it.
int64_t numLeadingDims = packOp.getSourceRank();
int64_t numTrailingDims = packOp.getInnerDimsPos().size();
// Step 2.a. Compute the permutation on the whole operand.
// Leading part just reuse the outerPerm.
SmallVector<int64_t> permutation(outerPerm);
if (permutation.empty())
llvm::append_range(permutation, llvm::seq<int64_t>(0, numLeadingDims));
// Trailing part needs to reindex positions by `numLeadingDims`.
if (innerPerm.empty()) {
llvm::append_range(
permutation,
llvm::seq<int64_t>(numLeadingDims, numLeadingDims + numTrailingDims));
} else {
llvm::append_range(permutation,
llvm::map_range(innerPerm, [&](int64_t pos) {
return numLeadingDims + pos;
}));
}
if (!isPermutationVector(permutation))
return rewriter.notifyMatchFailure(linalgOp, "invalid permutation");
// Step 2.b. Save the transposedPackUse operand number in case we need to
// get the tied OpResult after `linalgOp` has been replaced.
int64_t packUseOperandNumber = packUse.getOperandNumber();
// Step 2.c. Actually perform the transposition.
rewriter.setInsertionPoint(linalgOp);
linalg::LinalgOp transposedLinalgOp = transposeOneLinalgOperandAndReplace(
rewriter, linalgOp, packUse, permutation, transposedPackOp.getResult());
// Step 3. Maybe transpose unPackOp.
tensor::UnPackOp transposedUnPackOp;
if (maybeUnPackOp) {
OpOperand &opOperand =
transposedLinalgOp->getOpOperand(packUseOperandNumber);
OpResult transposedResult = transposedLinalgOp.getTiedOpResult(&opOperand);
rewriter.setInsertionPoint(maybeUnPackOp);
transposedUnPackOp = maybeUnPackOp.createTransposedClone(
rewriter, loc, transposedResult, innerPerm, outerPerm);
rewriter.replaceOp(maybeUnPackOp, transposedUnPackOp->getResults());
}
// Step 4. Finally, replace packOp now that we don't need it anymore.
rewriter.replaceOp(packOp, transposedPackOp->getResults());
return PackTransposeResult{transposedPackOp, transposedLinalgOp,
transposedUnPackOp};
}
//===----------------------------------------------------------------------===//
// packMatmulGreedily transformation.
//===----------------------------------------------------------------------===//
/// Pack a LinalgOp by greedily inferring matmul dimensions (m, n, k) where m
/// and n are proper parallel dimensions and k is a proper reduction
/// dimension. Packing occurs by rewriting the op as a linalg.generic and
/// calling linalg::pack by `mnkPackedSizes`. The order of the packed
/// dimensions is customizable: the `mnkOrder` is a permutation of {0, 1, 2}
/// to reorder {m, n, k} into one of the 8 possible forms. The outer
/// dimensions of the operands are not permuted at this time, this is left for
/// future work.
FailureOr<PackResult>
linalg::packMatmulGreedily(RewriterBase &rewriter, LinalgOp linalgOp,
ArrayRef<OpFoldResult> mnkPackedSizes,
ArrayRef<int64_t> mnkPaddedSizesNextMultipleOf,
ArrayRef<int64_t> mnkOrder) {
assert(mnkPackedSizes.size() == 3 && "unexpected num of packing sizes");
assert((mnkPaddedSizesNextMultipleOf.empty() ||
mnkPaddedSizesNextMultipleOf.size() == 3) &&
"num of packing sizes next multiple should be empty or of size 3");
assert(mnkOrder.size() == 3 && "unexpected mnkOrder size");
assert(isPermutationVector(mnkOrder) && "expected a permutation");
int64_t numLoops = linalgOp.getNumLoops();
if (numLoops <= 2) {
LLVM_DEBUG(DBGS() << "need 3+ loops to find a matmul to pack, got "
<< numLoops << "\nin: " << linalgOp << "\n");
return rewriter.notifyMatchFailure(
linalgOp, "need 3+ loops to find a matmul to pack");
}
// Locally adjust the desired iterator position of mnk and packing sizes.
int64_t numPackedDims = mnkPackedSizes.size();
SmallVector<int64_t> mmnnkkPos(numPackedDims);
for (int64_t i = 0, e = numPackedDims; i < e; ++i)
mmnnkkPos[i] = numLoops - numPackedDims + mnkOrder[i];
SmallVector<OpFoldResult> packedSizes(numPackedDims);
for (int64_t i = 0, e = numPackedDims; i < e; ++i)
packedSizes[mnkOrder[i]] = mnkPackedSizes[i];
SmallVector<int64_t> paddedSizesNextMultipleOf(numPackedDims);
for (int64_t i = 0, e = numPackedDims; i < e; ++i) {
paddedSizesNextMultipleOf[mnkOrder[i]] =
mnkPaddedSizesNextMultipleOf.empty() ? 0
: mnkPaddedSizesNextMultipleOf[i];
}
// 1. Infer dims that are important for matmul.
FailureOr<ContractionDimensions> maybeDimensions =
inferContractionDims(linalgOp);
if (failed(maybeDimensions)) {
LLVM_DEBUG(DBGS() << "couldn't infer matmul iterators in: " << linalgOp
<< "\n");
return rewriter.notifyMatchFailure(linalgOp,
"couldn't infer matmul iterators");
}
// 2. Normalize linalgOp to an kmn-matmul-like with [red, par, par] most
// minor iterators. In cases with multiple options for m, n, k bias towards
// the most minor embedding.
// If we wanted a different normalization order, this is where it would have
// to plug a heuristic.
int64_t mPos = maybeDimensions->m.back(), nPos = maybeDimensions->n.back(),
kPos = maybeDimensions->k.back();
LLVM_DEBUG(DBGSNL(); DBGSNL(); DBGSNL();
DBGS() << "Start packing generic op greedily with (m@" << mPos
<< ", n@" << nPos << ", k@" << kPos << "): " << linalgOp
<< "\n";);
// 2.a. Rewrite as a generic.
auto genericOp = dyn_cast<GenericOp>(linalgOp.getOperation());
if (!genericOp) {
FailureOr<GenericOp> generalizeResult =
generalizeNamedOp(rewriter, linalgOp);
assert(succeeded(generalizeResult) && "unexpected failure generalizing op");
genericOp = *generalizeResult;
}
// 2.b. Interchange to move the dimensions (k, m, n) as most-minor
// iterators. Note that this only normalized the iteration order and does
// not change the indexings of any operand.
SmallVector<int64_t> permutation =
computePermutationVector(numLoops, {mPos, nPos, kPos}, mmnnkkPos);
LLVM_DEBUG(llvm::interleaveComma(permutation, DBGS() << "perm: "); DBGSNL(););
// Sign .. unsigned pollution.
SmallVector<unsigned> unsignedPerm(permutation.begin(), permutation.end());
FailureOr<GenericOp> interchangeResult =
interchangeGenericOp(rewriter, genericOp, unsignedPerm);
assert(succeeded(interchangeResult) && "unexpected failure interchanging op");
genericOp = *interchangeResult;
LLVM_DEBUG(DBGS() << "Generalized Op to pack: " << genericOp << "\n";);
// At this point, the op iterators are normalized to {leading, k, m, n}.
// The layouts induced by packing will always be:
// - LHS{leading_lhs, kk, mm}
// - RHS{leading_rhs, kk, nn}
// - RES{leading_res, mm, nn}
// If we wanted to change the packed order, we would reorder (k, m, n) to
// something else above.
//
// Additional permutations of the outer dims of the operands (i.e.
// leading_lhs, leading_rhs and leading_res) could follow by computing the
// desired outerPerm for each operand.
// This is left for future work.
// TODO: this creates too much IR, go use reifyResultShapes.
SmallVector<Range, 4> loopRanges =
cast<LinalgOp>(genericOp.getOperation())
.createLoopRanges(rewriter, genericOp.getLoc());
// Add leading zeros to match numLoops, we only pack the last 3 dimensions
// post interchange.
LLVM_DEBUG(llvm::interleaveComma(paddedSizesNextMultipleOf,
DBGS() << "paddedSizesNextMultipleOf: ");
DBGSNL(););
LLVM_DEBUG(llvm::interleaveComma(loopRanges, DBGS() << "loopRanges: ",
[](Range r) { llvm::dbgs() << r.size; });
DBGSNL(););
SmallVector<OpFoldResult> adjustedPackedSizes(numLoops - packedSizes.size(),
rewriter.getIndexAttr(0));
for (int64_t i = 0, e = numPackedDims; i < e; ++i) {
if (paddedSizesNextMultipleOf[i] == 0) {
adjustedPackedSizes.push_back(packedSizes[i]);
continue;
}
AffineExpr d0, s0;
bindDims(rewriter.getContext(), d0);
bindSymbols(rewriter.getContext(), s0);
adjustedPackedSizes.push_back(affine::makeComposedFoldedAffineApply(
rewriter, genericOp->getLoc(), d0.ceilDiv(s0) * s0,
{loopRanges[adjustedPackedSizes.size()].size,
rewriter.getIndexAttr(paddedSizesNextMultipleOf[i])}));
}
LLVM_DEBUG(llvm::interleaveComma(adjustedPackedSizes,
DBGS() << "adjustedPackedSizes: ");
DBGSNL(););
// TODO: If we wanted to give the genericOp a name after packing, after
// calling `pack` would be a good time. One would still need to check that
// `containsMostMinorMatmul(packingRes->packedLinalgOp)` is true, since we
// also allow degenerate matmul cases (i.e. matvec, dot).
return pack(rewriter, genericOp, adjustedPackedSizes);
}
//===----------------------------------------------------------------------===//
// Transformations exposed as rewrite patterns.
//===----------------------------------------------------------------------===//
LinalgTilingOptions &
mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
assert(!tileSizeComputationFunction && "tile sizes already set");
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPointToStart(
&op->getParentOfType<func::FuncOp>().getBody().front());
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
return v;
}));
};
return *this;
}
LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite(
memref::CopyOp copyOp, PatternRewriter &rewriter) const {
return vectorizeCopy(rewriter, copyOp);
}
/// Filling `dest` using FillOp constant padding value if possible.
/// Otherwise, generate a tensor::GenerateOp.
Value GeneralizePadOpPattern::createFillOrGenerateOp(
RewriterBase &rewriter, tensor::PadOp padOp, Value dest,
const SmallVector<Value> &dynSizes) const {
auto padValue = padOp.getConstantPaddingValue();
if (padValue)
return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result();
// Fill could not be optimized: Lower to tensor::GenerateOp with region.
auto generateOp = rewriter.create<tensor::GenerateOp>(
padOp.getLoc(), padOp.getResultType(), dynSizes);
// Copy region to new op.
IRMapping bvm;
padOp.getRegion().cloneInto(&generateOp.getRegion(), bvm);
return generateOp;
}
LogicalResult
GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const {
// Given an OpFoldResult, return an index-typed value.
auto getIdxValue = [&](OpFoldResult ofr) {
if (auto val = llvm::dyn_cast_if_present<Value>(ofr))
return val;
return rewriter
.create<arith::ConstantIndexOp>(
padOp.getLoc(), cast<IntegerAttr>(ofr.get<Attribute>()).getInt())
.getResult();
};
auto resultType = padOp.getResultType();
// Compute size of EmptyOp. Any combination of static/dynamic is supported.
SmallVector<Value> dynSizes;
SmallVector<int64_t> staticSizes;
for (unsigned dim = 0; dim < resultType.getRank(); ++dim) {
if (resultType.isDynamicDim(dim)) {
auto srcSize = getIdxValue(tensor::getMixedSize(rewriter, padOp.getLoc(),
padOp.getSource(), dim));
// Add low and high padding value.
auto plusLow = rewriter.createOrFold<arith::AddIOp>(
padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim]));
auto plusHigh = rewriter.createOrFold<arith::AddIOp>(
padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim]));
dynSizes.push_back(plusHigh);
}
staticSizes.push_back(resultType.getDimSize(dim));
}
// Init tensor and fill it with padding.
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
padOp.getLoc(), staticSizes, resultType.getElementType(), dynSizes);
Value fill = createFillOrGenerateOp(rewriter, padOp, emptyTensor, dynSizes);
// Try optimize the copy of source.
if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded())
return success();
// tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead
// for copying the PadOp source.
auto sourceType = padOp.getSourceType();
// Compute size of source of tensor::PadOp.
SmallVector<OpFoldResult> srcSizes =
tensor::getMixedSizes(rewriter, padOp.getLoc(), padOp.getSource());
// Strides of InsertSliceOp are all 1.
SmallVector<OpFoldResult> strides(sourceType.getRank(),
rewriter.getIndexAttr(1));
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
padOp, padOp.getSource(), fill, padOp.getMixedLowPad(), srcSizes,
strides);
return success();
}
LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
if (!sliceOp.hasUnitStride())
return failure();
auto padOp = sliceOp.getSource().getDefiningOp<tensor::PadOp>();
if (!padOp)
return failure();
bool zeroSliceGuard = true;
if (controlFn) {
if (std::optional<bool> control = controlFn(sliceOp))
zeroSliceGuard = *control;
else
return failure();
}
FailureOr<TilingResult> tilingResult =
tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(),
sliceOp.getMixedSizes(), zeroSliceGuard);
if (failed(tilingResult))
return failure();
// All shapes are static and the data source is actually used. Rewrite into
// pad(extract_slice(x)).
rewriter.replaceOp(sliceOp, tilingResult->tiledValues);
return success();
}
/// Returns a tensor.pad op if padding value is set. Otherwise, returns the
/// source directly. The method assumes that the `packOp` has static shapes.
static Value getPackOpSourceOrPaddedSource(OpBuilder &builder,
tensor::PackOp packOp) {
Value input = packOp.getSource();
if (!packOp.getPaddingValue()) {
return input;
}
Location loc = packOp.getLoc();
ShapedType inputType = packOp.getSourceType();
int64_t inputRank = inputType.getRank();
assert(llvm::all_of(packOp.getDestType().getShape().take_front(inputRank),
[](int64_t val) { return val == 1; }));
SmallVector<int64_t> paddedShape;
DenseMap<int64_t, OpFoldResult> tileAndPosMapping =
packOp.getDimAndTileMapping();
for (int64_t dim = 0; dim < inputRank; ++dim) {
int64_t size = inputType.getDimSize(dim);
if (!tileAndPosMapping.count(dim)) {
paddedShape.push_back(size);
continue;
}
// The size is less than or equal to tileSize because outer dims are all 1s.
std::optional<int64_t> tileSize =
getConstantIntValue(tileAndPosMapping.lookup(dim));
assert(tileSize.has_value() && "dynamic inner tile size is not supported");
paddedShape.push_back(tileSize.value());
}
auto resultType =
RankedTensorType::get(paddedShape, inputType.getElementType());
return tensor::createPadHighOp(resultType, input, packOp.getPaddingValue(),
/*nofold=*/false, loc, builder);
}
// Normalizes a permutation on a higher rank space to its actual size, e.g.
// perm = [1, 4, 2]
// becomes
// norm = [0, 2, 1]
static SmallVector<int64_t>
getPackUnpackNormalizedPerm(int rank, ArrayRef<int64_t> perm) {
constexpr int64_t kNonTiledMarker = -1;
SmallVector<int64_t> vec(rank, kNonTiledMarker);
for (auto [index, value] : llvm::enumerate(perm))
vec[value] = index;
SmallVector<int64_t> normalizedPerm = llvm::to_vector(llvm::make_filter_range(
vec, [&](int64_t v) { return v != kNonTiledMarker; }));
// This inverts the permutation in addition to normalizing so invert back.
return invertPermutationVector(normalizedPerm);
}
// Gets the normalized permutation implied by innerDimsPos and outerDimsPerm
// assuming rank reduction of unit outer dims.
static SmallVector<int64_t>
getPackUnpackRankReducedPerm(ArrayRef<int64_t> shape,
ArrayRef<int64_t> innerDimsPos,
ArrayRef<int64_t> outerDimsPerm) {
SmallVector<int64_t> rankReducedOuterDimsPerm;
SmallVector<int64_t> outerDims;
SmallVector<int64_t> innerDims;
int64_t dim = 0;
int64_t unpackedRank = shape.size();
for (auto i : llvm::seq<unsigned>(0, unpackedRank)) {
if (llvm::is_contained(innerDimsPos, i)) {
innerDims.push_back(dim++);
continue;
}
if (shape[i] == 1)
continue;
outerDims.push_back(dim++);
if (!outerDimsPerm.empty())
rankReducedOuterDimsPerm.push_back(outerDimsPerm[i]);
}
// Get the position of the inner dims after permutation.
SmallVector<int64_t> innerPerm =
getPackUnpackNormalizedPerm(unpackedRank, innerDimsPos);
applyPermutationToVector<int64_t>(innerDims, innerPerm);
// Ditto for the outer dims.
SmallVector<int64_t> perm = outerDims;
rankReducedOuterDimsPerm =
getPackUnpackNormalizedPerm(unpackedRank, rankReducedOuterDimsPerm);
if (!rankReducedOuterDimsPerm.empty())
applyPermutationToVector<int64_t>(perm, rankReducedOuterDimsPerm);
// The tile always ends up as the inner most dims after packing.
perm.append(innerDims);
return perm;
}
LogicalResult GeneralizeOuterUnitDimsPackOpPattern::matchAndRewrite(
tensor::PackOp packOp, PatternRewriter &rewriter) const {
if (llvm::any_of(packOp.getMixedTiles(),
[](OpFoldResult tile) { return tile.is<Value>(); })) {
return rewriter.notifyMatchFailure(packOp,
"require inner tile sizes being static");
}
// TODO: support the case that outer dimensions are not all 1s. A
// tensor.expand_shape will be generated in this case.
auto innerDimsPos = packOp.getInnerDimsPos();
int64_t srcRank = packOp.getSourceRank();
auto destShape = packOp.getDestType().getShape();
if (llvm::any_of(innerDimsPos, [destShape](int64_t index) {
return destShape[index] != 1;
})) {
return rewriter.notifyMatchFailure(
packOp, "require the tiled outer dimensions of the result are all 1s");
}
// 1. Use rank-reduced tensor.extract_slice op to extract the tile and untiled
// outer dims.
Location loc = packOp.getLoc();
Value input = getPackOpSourceOrPaddedSource(rewriter, packOp);
auto inputShape = packOp.getSourceType().getShape();
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
packOp.getDimAndTileMapping();
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);
SmallVector<OpFoldResult> readSizes;
SmallVector<int64_t> readShape;
for (auto i : llvm::seq<unsigned>(0, srcRank)) {
if (dimAndTileMapping.count(i)) {
readShape.push_back(getConstantIntValue(dimAndTileMapping[i])
.value_or(ShapedType::kDynamic));
readSizes.push_back(dimAndTileMapping[i]);
continue;
}
if (ShapedType::isDynamic(inputShape[i])) {
readSizes.push_back(
rewriter.create<tensor::DimOp>(loc, input, i).getResult());
} else {
readSizes.push_back(rewriter.getIndexAttr(inputShape[i]));
}
if (inputShape[i] != 1)
readShape.push_back(inputShape[i]);
}
Type elemType = packOp.getSourceType().getElementType();
auto readType = RankedTensorType::get(readShape, elemType);
Value tile = rewriter.create<tensor::ExtractSliceOp>(
loc, readType, input, readOffsets, readSizes, readStrides);
// 2. Transpose the tile to match the inner tile order.
SmallVector<int64_t> perm = getPackUnpackRankReducedPerm(
inputShape, innerDimsPos, packOp.getOuterDimsPerm());
LLVM_DEBUG(DBGS() << "Pack permutation: " << packOp << "\n";
llvm::interleaveComma(perm, DBGS() << "perm: "); DBGSNL(););
SmallVector<int64_t> transpShape = readShape;
applyPermutationToVector<int64_t>(transpShape, perm);
Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
auto transposedOp =
rewriter.create<linalg::TransposeOp>(loc, tile, empty, perm);
// 3. Insert the inner tile to the destination.
int64_t destRank = packOp.getDestRank();
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
SmallVector<OpFoldResult> writeSizes =
tensor::getMixedSizes(rewriter, loc, packOp.getDest());
auto insert = rewriter.create<tensor::InsertSliceOp>(
loc, transposedOp.getResult()[0], packOp.getDest(), writeOffsets,
writeSizes, writeStrides);
rewriter.replaceOp(packOp, insert.getResult());
return success();
}
LogicalResult GeneralizeOuterUnitDimsUnPackOpPattern::matchAndRewrite(
tensor::UnPackOp unpackOp, PatternRewriter &rewriter) const {
int64_t srcRank = unpackOp.getSourceRank();
int64_t destRank = unpackOp.getDestRank();
ArrayRef<int64_t> srcShape = unpackOp.getSourceType().getShape();
ArrayRef<int64_t> innerDimsPos = unpackOp.getInnerDimsPos();
if (llvm::any_of(innerDimsPos, [srcShape](int64_t index) {
return srcShape[index] != 1;
})) {
return rewriter.notifyMatchFailure(
unpackOp,
"require the tiled outer dimensions of the result are all 1s");
}
// 1. Use rank-reduced tensor.extract_slice op to extract the tile.
Location loc = unpackOp.getLoc();
Value source = unpackOp.getSource();
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
unpackOp.getDimAndTileMapping();
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);
SmallVector<OpFoldResult> readSizes;
SmallVector<int64_t> readShape;
for (auto i : llvm::seq<unsigned>(0, destRank)) {
if (dimAndTileMapping.count(i)) {
readSizes.push_back(oneIdxAttr);
continue;
}
if (ShapedType::isDynamic(srcShape[i])) {
readSizes.push_back(
rewriter.create<tensor::DimOp>(loc, source, i).getResult());
} else {
readSizes.push_back(rewriter.getIndexAttr(srcShape[i]));
}
if (srcShape[i] != 1)
readShape.push_back(srcShape[i]);
}
auto mixedTiles = unpackOp.getMixedTiles();
readSizes.append(mixedTiles.begin(), mixedTiles.end());
// Explicitly create the type for extract_slice op because the inner tile
// size could be 1. We want to represent the whole inner tile in this case.
auto tileShape = srcShape.drop_front(destRank);
// Append the inner tile shape to the permuted and rank-reduced outer shape.
readShape.append(tileShape.begin(), tileShape.end());
Type elemType = unpackOp.getSourceType().getElementType();
auto readType = RankedTensorType::get(readShape, elemType);
Value innerTile = rewriter.create<tensor::ExtractSliceOp>(
loc, readType, unpackOp.getSource(), readOffsets, readSizes, readStrides);
// 2. Transpose the tile to match the outer corresponding tile order.
SmallVector<int64_t> perm = getPackUnpackRankReducedPerm(
srcShape.take_front(destRank), innerDimsPos, unpackOp.getOuterDimsPerm());
// Unpack is a transition out of packed space so we invert the permutation.
perm = invertPermutationVector(perm);
SmallVector<int64_t> transpShape(readShape);
applyPermutationToVector<int64_t>(transpShape, perm);
Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
auto transposedOp =
rewriter.create<linalg::TransposeOp>(loc, innerTile, empty, perm);
// 3. Handle in-complete tiles if needed. It truncates trailing data from the
// transposed tile.
int numLoops = transpShape.size();
SmallVector<OpFoldResult> tileStrides(numLoops, oneIdxAttr);
SmallVector<OpFoldResult> tileOffsets(numLoops, zeroIdxAttr);
SmallVector<OpFoldResult> tileSizes;
ArrayRef<int64_t> destShape = unpackOp.getDestType().getShape();
for (auto i : llvm::seq<unsigned>(0, destRank)) {
if (dimAndTileMapping.count(i) || destShape[i] != 1)
tileSizes.push_back(
tensor::getMixedSize(rewriter, loc, unpackOp.getDest(), i));
}
auto partialTile = rewriter.create<tensor::ExtractSliceOp>(
loc, transposedOp.getResult()[0], tileOffsets, tileSizes, tileStrides);
// 4. Insert the result to the destination tensor.
SmallVector<OpFoldResult> writeSizes;
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
for (int i = 0, idx = 0; i < destRank; ++i) {
if (dimAndTileMapping.count(i) || destShape[i] != 1)
writeSizes.push_back(tileSizes[idx++]);
else
writeSizes.push_back(oneIdxAttr);
}
auto insert = rewriter.create<tensor::InsertSliceOp>(
loc, partialTile, unpackOp.getDest(), writeOffsets, writeSizes,
writeStrides);
rewriter.replaceOp(unpackOp, insert.getResult());
return success();
}
// The following are patterns for downscaling convolution ops with size-1
// window dimensions.
//
// Note that we'd eventually want to write such transformations in a generic
// way, e.g., converting to linalg.generic, removing the size-1 dimensions,
// and then turning back to named ops. But for now it's fine to have a few
// patterns matching special ops to get started.
template <typename Conv2DOp, typename Conv1DOp>
FailureOr<Conv1DOp> DownscaleSizeOneWindowed2DConvolution<Conv2DOp, Conv1DOp>::
returningMatchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const {
if (convOp.hasBufferSemantics())
return failure(); // To be implemented.
Value input = convOp.getInputs().front();
Value kernel = convOp.getInputs().back();
Value output = convOp.getOutputs().front();
auto inputType = dyn_cast<RankedTensorType>(input.getType());
auto kernelType = dyn_cast<RankedTensorType>(kernel.getType());
auto outputType = dyn_cast<RankedTensorType>(output.getType());
auto kernelShape = kernelType.getShape();
auto outputShape = outputType.getShape();
// Get domain indices based on conv2D layout.
auto [khIndex, kwIndex, ohIndex, owIndex] =
TypeSwitch<Operation *, std::tuple<int64_t, int64_t, int64_t, int64_t>>(
convOp)
.Case([&](linalg::Conv2DNhwcHwcfOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::Conv2DNchwFchwOp op) {
return std::make_tuple(2, 3, 2, 3);
})
.Case([&](linalg::PoolingNhwcSumOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNchwSumOp op) {
return std::make_tuple(0, 1, 2, 3);
})
.Case([&](linalg::PoolingNhwcMaxOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMaxUnsignedOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMinOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMinUnsignedOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNchwMaxOp op) {
return std::make_tuple(0, 1, 2, 3);
})
.Default([&](Operation *op) {
llvm_unreachable("unexpected conv2d/pool2d operation.");
return std::make_tuple(0, 0, 0, 0);
});
// Only handle the case where at least one of the window dimensions is
// of size 1. Other cases can rely on tiling to reduce to such cases.
int64_t khSize = kernelShape[khIndex], kwSize = kernelShape[kwIndex];
int64_t ohSize = outputShape[ohIndex], owSize = outputShape[owIndex];
bool removeH = (khSize == 1 && ohSize == 1);
bool removeW = (kwSize == 1 && owSize == 1);
if (!removeH && !removeW)
return failure();
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType newInputType =
RTTBuilder(inputType).dropDim((removeH ? ohIndex : owIndex));
RankedTensorType newKernelType =
RTTBuilder(kernelType).dropDim((removeH ? khIndex : kwIndex));
RankedTensorType newOutputType =
RTTBuilder(outputType).dropDim((removeH ? ohIndex : owIndex));
// Rank-reduce operands.
Location loc = convOp.getLoc();
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, input, newInputType);
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, kernel, newKernelType);
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, output, newOutputType);
// Rank-reduce strides and dilations too.
// TODO: dropDim 1-liner helper.
auto strides =
llvm::to_vector<4>(convOp.getStrides().template getValues<int64_t>());
strides.erase(strides.begin() + (removeH ? 0 : 1));
auto stridesAttr = rewriter.getI64VectorAttr(strides);
auto dilations =
llvm::to_vector<4>(convOp.getDilations().template getValues<int64_t>());
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
auto conv1DOp = rewriter.create<Conv1DOp>(
loc, newOutputType, ValueRange{newInput, newKernel},
ValueRange{newOutput}, stridesAttr, dilationsAttr);
// Insert back.
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
rewriter, loc, conv1DOp.getResult(0), output);
rewriter.replaceOp(convOp, inserted);
return conv1DOp;
}
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNhwcHwcfOp,
Conv1DNwcWcfOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNchwFchwOp,
Conv1DNcwFcwOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcSumOp,
PoolingNwcSumOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNchwSumOp,
PoolingNcwSumOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxOp,
PoolingNwcMaxOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<
PoolingNhwcMaxUnsignedOp, PoolingNwcMaxUnsignedOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinOp,
PoolingNwcMinOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<
PoolingNhwcMinUnsignedOp, PoolingNwcMinUnsignedOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNchwMaxOp,
PoolingNcwMaxOp>;
FailureOr<DepthwiseConv1DNwcWcOp>
DownscaleDepthwiseConv2DNhwcHwcOp::returningMatchAndRewrite(
DepthwiseConv2DNhwcHwcOp convOp, PatternRewriter &rewriter) const {
if (convOp.hasBufferSemantics())
return failure(); // To be implemented.
Value input = convOp.getInputs().front();
Value kernel = convOp.getInputs().back();
Value output = convOp.getOutputs().front();
auto inputType = dyn_cast<RankedTensorType>(input.getType());
auto kernelType = dyn_cast<RankedTensorType>(kernel.getType());
auto outputType = dyn_cast<RankedTensorType>(output.getType());
auto kernelShape = kernelType.getShape();
auto outputShape = outputType.getShape();
// Only handle the case where at least one of the window dimensions is
// of size 1. Other cases can rely on tiling to reduce to such cases.
int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
int64_t ohSize = outputShape[1], owSize = outputShape[2];
bool removeH = (khSize == 1 && ohSize == 1);
bool removeW = (kwSize == 1 && owSize == 1);
if (!removeH && !removeW)
return failure();
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType newInputType =
RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
RankedTensorType newKernelType =
RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
RankedTensorType newOutputType =
RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
// Rank-reduce operands.
Location loc = convOp.getLoc();
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, input, newInputType);
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, kernel, newKernelType);
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, output, newOutputType);
// Rank-reduce strides and dilations too.
// TODO: dropDim 1-liner helper.
auto strides = llvm::to_vector<4>(convOp.getStrides().getValues<int64_t>());
strides.erase(strides.begin() + (removeH ? 0 : 1));
auto stridesAttr = rewriter.getI64VectorAttr(strides);
auto dilations =
llvm::to_vector<4>(convOp.getDilations().getValues<int64_t>());
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>(
loc, newOutputType, ValueRange{newInput, newKernel},
ValueRange{newOutput}, stridesAttr, dilationsAttr);
// Insert back.
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
rewriter, loc, conv1DOp.getResult(0), output);
rewriter.replaceOp(convOp, inserted);
return conv1DOp;
}
FailureOr<Conv1DOp>
DownscaleConv2DOp::returningMatchAndRewrite(Conv2DOp convOp,
PatternRewriter &rewriter) const {
if (convOp.hasBufferSemantics())
return failure(); // To be implemented.
Value input = convOp.getInputs().front();
Value kernel = convOp.getInputs().back();
Value output = convOp.getOutputs().front();
auto inputType = dyn_cast<RankedTensorType>(input.getType());
auto kernelType = dyn_cast<RankedTensorType>(kernel.getType());
auto outputType = dyn_cast<RankedTensorType>(output.getType());
auto kernelShape = kernelType.getShape();
auto outputShape = outputType.getShape();
// Only handle the case where at least one of the window dimensions is
// of size 1. Other cases can rely on tiling to reduce to such cases.
int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
int64_t ohSize = outputShape[0], owSize = outputShape[1];
bool removeH = (khSize == 1 && ohSize == 1);
bool removeW = (kwSize == 1 && owSize == 1);
if (!removeH && !removeW)
return failure();
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType newInputType =
RTTBuilder(inputType).dropDim((removeH ? 0 : 1));
RankedTensorType newKernelType =
RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
RankedTensorType newOutputType =
RTTBuilder(outputType).dropDim(removeH ? 0 : 1);
// Rank-reduce operands.
Location loc = convOp.getLoc();
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, input, newInputType);
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, kernel, newKernelType);
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, output, newOutputType);
auto conv1DOp = rewriter.create<Conv1DOp>(loc, newOutputType,
ValueRange{newInput, newKernel},
ValueRange{newOutput});
// Insert back.
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
rewriter, loc, conv1DOp.getResult(0), output);
rewriter.replaceOp(convOp, inserted);
return conv1DOp;
}
void linalg::populateDecomposeConvolutionPatterns(RewritePatternSet &patterns,
PatternBenefit benefit) {
patterns.add<DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNhwcHwcfOp,
Conv1DNwcWcfOp>,
DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNchwFchwOp,
Conv1DNcwFcwOp>,
DownscaleDepthwiseConv2DNhwcHwcOp, DownscaleConv2DOp>(
patterns.getContext(), benefit);
patterns.add<
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcSumOp, PoolingNwcSumOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNchwSumOp, PoolingNcwSumOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxOp, PoolingNwcMaxOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxUnsignedOp,
PoolingNwcMaxUnsignedOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinOp, PoolingNwcMinOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinUnsignedOp,
PoolingNwcMinUnsignedOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNchwMaxOp, PoolingNcwMaxOp>>(
patterns.getContext(), benefit);
}
|