1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
|
//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Vectorization transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#include <type_traits>
using namespace mlir;
using namespace mlir::linalg;
#define DEBUG_TYPE "linalg-vectorization"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
/// Try to vectorize `convOp` as a convolution.
static FailureOr<Operation *> vectorizeConvolution(RewriterBase &rewriter,
LinalgOp convOp);
/// Return the unique instance of OpType in `block` if it is indeed unique.
/// Return null if none or more than 1 instances exist.
template <typename OpType>
static OpType getSingleOpOfType(Block &block) {
OpType res;
block.walk([&](OpType op) {
if (res) {
res = nullptr;
return WalkResult::interrupt();
}
res = op;
return WalkResult::advance();
});
return res;
}
/// Helper function to extract the input slices after filter is unrolled along
/// kw.
static SmallVector<Value>
extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input,
int64_t nSize, int64_t wSize, int64_t cSize,
int64_t kwSize, int strideW, int dilationW,
int64_t wSizeStep, bool isSingleChanneled) {
SmallVector<Value> result;
if (isSingleChanneled) {
// Extract input slice of size {wSizeStep} @ [w + kw] for non-channeled
// convolution.
SmallVector<int64_t> sizes{wSizeStep};
SmallVector<int64_t> strides{1};
for (int64_t kw = 0; kw < kwSize; ++kw) {
for (int64_t w = 0; w < wSize; w += wSizeStep) {
result.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
loc, input, /*offsets=*/ArrayRef<int64_t>{w + kw}, sizes, strides));
}
}
} else {
// Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0]
// for channeled convolution.
SmallVector<int64_t> sizes{nSize, wSizeStep, cSize};
SmallVector<int64_t> strides{1, 1, 1};
for (int64_t kw = 0; kw < kwSize; ++kw) {
for (int64_t w = 0; w < wSize; w += wSizeStep) {
result.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
loc, input,
/*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
sizes, strides));
}
}
}
return result;
}
/// Helper function to extract the filter slices after filter is unrolled along
/// kw.
static SmallVector<Value> extractConvFilterSlices(RewriterBase &rewriter,
Location loc, Value filter,
int64_t kwSize) {
SmallVector<Value> result;
// Extract rhs slice of size [{c, f} for channeled convolutions and {1} for
// non-chanelled convolution] @ [kw].
for (int64_t kw = 0; kw < kwSize; ++kw) {
result.push_back(rewriter.create<vector::ExtractOp>(
loc, filter, /*offsets=*/ArrayRef<int64_t>{kw}));
}
return result;
}
/// Helper function to extract the result slices after filter is unrolled along
/// kw.
static SmallVector<Value>
extractConvResultSlices(RewriterBase &rewriter, Location loc, Value res,
int64_t nSize, int64_t wSize, int64_t fSize,
int64_t wSizeStep, bool isSingleChanneled) {
SmallVector<Value> result;
if (isSingleChanneled) {
// Extract res slice: {wSizeStep} @ [w] for non-channeled convolution.
SmallVector<int64_t> sizes{wSizeStep};
SmallVector<int64_t> strides{1};
for (int64_t w = 0; w < wSize; w += wSizeStep) {
result.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
loc, res, /*offsets=*/ArrayRef<int64_t>{w}, sizes, strides));
}
} else {
// Extract res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled
// convolution.
SmallVector<int64_t> sizes{nSize, wSizeStep, fSize};
SmallVector<int64_t> strides{1, 1, 1};
for (int64_t w = 0; w < wSize; w += wSizeStep) {
result.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
loc, res, /*offsets=*/ArrayRef<int64_t>{0, w, 0}, sizes, strides));
}
}
return result;
}
/// Helper function to insert the computed result slices.
static Value insertConvResultSlices(RewriterBase &rewriter, Location loc,
Value res, int64_t wSize, int64_t wSizeStep,
SmallVectorImpl<Value> &resVals,
bool isSingleChanneled) {
if (isSingleChanneled) {
// Write back res slice: {wSizeStep} @ [w] for non-channeled convolution.
// This does not depend on kw.
SmallVector<int64_t> strides{1};
for (int64_t w = 0; w < wSize; w += wSizeStep) {
res = rewriter.create<vector::InsertStridedSliceOp>(
loc, resVals[w], res, /*offsets=*/ArrayRef<int64_t>{w}, strides);
}
} else {
// Write back res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled
// convolution. This does not depend on kw.
SmallVector<int64_t> strides{1, 1, 1};
for (int64_t w = 0; w < wSize; w += wSizeStep) {
res = rewriter.create<vector::InsertStridedSliceOp>(
loc, resVals[w], res, /*offsets=*/ArrayRef<int64_t>{0, w, 0},
strides);
}
}
return res;
}
/// Return true if the scalable vector dimensions are supported. For now, we
/// only support scalable vectors in the trailing dimension.
static bool areValidScalableVecDims(ArrayRef<bool> scalableVecDims) {
if (scalableVecDims.empty())
return true;
auto isScalable = [](bool isScalableVecSize) { return isScalableVecSize; };
if (std::any_of(scalableVecDims.begin(), scalableVecDims.end() - 1,
isScalable)) {
return false;
}
return true;
}
/// Contains the vectorization state and related methods used across the
/// vectorization process of a given operation.
struct VectorizationState {
VectorizationState(RewriterBase &rewriter) : rewriterGuard(rewriter) {}
/// Initializes the vectorization state, including the computation of the
/// canonical vector shape for vectorization.
LogicalResult initState(RewriterBase &rewriter, LinalgOp linalgOp,
ArrayRef<int64_t> inputVectorSizes,
ArrayRef<bool> inputScalableVecDims);
/// Returns the canonical vector shape used to vectorize the iteration space.
ArrayRef<int64_t> getCanonicalVecShape() const { return canonicalVecShape; }
/// Returns a vector type of the provided `elementType` with the canonical
/// vector shape and the corresponding fixed/scalable dimensions bit. If
/// `dimPermutation` is provided, the canonical vector dimensions are permuted
/// accordingly.
VectorType getCanonicalVecType(
Type elementType,
std::optional<AffineMap> dimPermutation = std::nullopt) const {
SmallVector<int64_t> vectorShape;
SmallVector<bool> scalableDims;
if (dimPermutation.has_value()) {
vectorShape =
applyPermutationMap<int64_t>(*dimPermutation, canonicalVecShape);
scalableDims =
applyPermutationMap<bool>(*dimPermutation, scalableVecDims);
} else {
vectorShape.append(canonicalVecShape.begin(), canonicalVecShape.end());
scalableDims.append(scalableVecDims.begin(), scalableVecDims.end());
}
// Make sure we don't end up with unsupported scalable vector dimensions
// after the permutation. If so, we should bail out on that operation in the
// scalable preconditions.
assert(areValidScalableVecDims(scalableDims) &&
"Permuted scalable vector dimensions are not supported");
return VectorType::get(vectorShape, elementType, scalableDims);
}
/// Masks an operation with the canonical vector mask if the operation needs
/// masking. Returns the masked operation or the original operation if masking
/// is not needed. If provided, the canonical mask for this operation is
/// permuted using `maybeMaskingMap`.
Operation *
maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp,
std::optional<AffineMap> maybeMaskingMap = std::nullopt);
private:
/// Initializes the iteration space static sizes using the Linalg op
/// information. This may become more complicated in the future.
void initIterSpaceStaticSizes(LinalgOp linalgOp) {
iterSpaceStaticSizes.append(linalgOp.getStaticLoopRanges());
}
/// Generates 'arith.constant' and 'tensor/memref.dim' operations for
/// all the static and dynamic dimensions of the iteration space to be
/// vectorized and store them in `iterSpaceValueSizes`.
LogicalResult precomputeIterSpaceValueSizes(RewriterBase &rewriter,
LinalgOp linalgOp);
/// Create or retrieve an existing mask value to mask `opToMask` in the
/// canonical vector iteration space. If `maybeMaskingMap` the mask is
/// permuted using that permutation map. If a new mask is created, it will be
/// cached for future users.
Value getOrCreateMaskFor(RewriterBase &rewriter, Operation *opToMask,
LinalgOp linalgOp,
std::optional<AffineMap> maybeMaskingMap);
// Holds the compile-time static sizes of the iteration space to vectorize.
// Dynamic dimensions are represented using ShapedType::kDynamic.
SmallVector<int64_t> iterSpaceStaticSizes;
/// Holds the value sizes of the iteration space to vectorize. Static
/// dimensions are represented by 'arith.constant' and dynamic
/// dimensions by 'tensor/memref.dim'.
SmallVector<Value> iterSpaceValueSizes;
/// Holds the canonical vector shape used to vectorize the iteration space.
SmallVector<int64_t> canonicalVecShape;
/// Holds the vector dimensions that are scalable in the canonical vector
/// shape.
SmallVector<bool> scalableVecDims;
/// Holds the active masks for permutations of the canonical vector iteration
/// space.
DenseMap<AffineMap, Value> activeMaskCache;
/// Global vectorization guard for the incoming rewriter. It's initialized
/// when the vectorization state is initialized.
OpBuilder::InsertionGuard rewriterGuard;
};
LogicalResult
VectorizationState::precomputeIterSpaceValueSizes(RewriterBase &rewriter,
LinalgOp linalgOp) {
// TODO: Support 0-d vectors.
for (int vecDim = 0, end = canonicalVecShape.size(); vecDim < end; ++vecDim) {
if (!ShapedType::isDynamic(iterSpaceStaticSizes[vecDim])) {
// Create constant index op for static dimensions.
iterSpaceValueSizes.push_back(rewriter.create<arith::ConstantIndexOp>(
linalgOp.getLoc(), iterSpaceStaticSizes[vecDim]));
continue;
}
// Find an operand defined on this dimension of the iteration space to
// extract the runtime dimension size.
Value operand;
unsigned operandDimPos;
if (failed(linalgOp.mapIterationSpaceDimToOperandDim(vecDim, operand,
operandDimPos)))
return failure();
Value dynamicDim = linalgOp.hasTensorSemantics()
? (Value)rewriter.create<tensor::DimOp>(
linalgOp.getLoc(), operand, operandDimPos)
: (Value)rewriter.create<memref::DimOp>(
linalgOp.getLoc(), operand, operandDimPos);
iterSpaceValueSizes.push_back(dynamicDim);
}
return success();
}
/// Initializes the vectorization state, including the computation of the
/// canonical vector shape for vectorization.
// TODO: Move this to the constructor when we can remove the failure cases.
LogicalResult
VectorizationState::initState(RewriterBase &rewriter, LinalgOp linalgOp,
ArrayRef<int64_t> inputVectorSizes,
ArrayRef<bool> inputScalableVecDims) {
// Initialize the insertion point.
rewriter.setInsertionPoint(linalgOp);
if (!inputVectorSizes.empty()) {
// Get the canonical vector shape from the input vector sizes provided. This
// path should be taken to vectorize code with dynamic shapes and when using
// vector sizes greater than the iteration space sizes.
canonicalVecShape.append(inputVectorSizes.begin(), inputVectorSizes.end());
scalableVecDims.append(inputScalableVecDims.begin(),
inputScalableVecDims.end());
} else {
// Compute the canonical vector shape from the operation shape. If there are
// dynamic shapes, the operation won't be vectorized. We assume all the
// vector dimensions are fixed.
canonicalVecShape = linalgOp.getStaticLoopRanges();
scalableVecDims.append(linalgOp.getNumLoops(), false);
}
LDBG("Canonical vector shape: ");
LLVM_DEBUG(llvm::interleaveComma(canonicalVecShape, llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "\n");
LDBG("Scalable vector dims: ");
LLVM_DEBUG(llvm::interleaveComma(scalableVecDims, llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "\n");
if (ShapedType::isDynamicShape(canonicalVecShape))
return failure();
// Initialize iteration space static sizes.
initIterSpaceStaticSizes(linalgOp);
// Generate 'arith.constant' and 'tensor/memref.dim' operations for
// all the static and dynamic dimensions of the iteration space, needed to
// compute a mask during vectorization.
if (failed(precomputeIterSpaceValueSizes(rewriter, linalgOp)))
return failure();
return success();
}
/// Create or retrieve an existing mask value to mask `opToMask` in the
/// canonical vector iteration space. If `maybeMaskingMap` the mask is permuted
/// using that permutation map. If a new mask is created, it will be cached for
/// future users.
Value VectorizationState::getOrCreateMaskFor(
RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp,
std::optional<AffineMap> maybeMaskingMap) {
// No mask is needed if the operation is not maskable.
auto maskableOp = dyn_cast<vector::MaskableOpInterface>(opToMask);
if (!maskableOp)
return Value();
assert(!maskableOp.isMasked() &&
"Masking an operation that is already masked");
// If no masking map was provided, use an identity map with the loop dims.
assert((!maybeMaskingMap || *maybeMaskingMap) &&
"Unexpected null mask permutation map");
AffineMap maskingMap =
maybeMaskingMap ? *maybeMaskingMap
: AffineMap::getMultiDimIdentityMap(
linalgOp.getNumLoops(), rewriter.getContext());
LDBG("Masking map: " << maskingMap << "\n");
// Return the active mask for the masking map of this operation if it was
// already created.
auto activeMaskIt = activeMaskCache.find(maskingMap);
if (activeMaskIt != activeMaskCache.end()) {
Value mask = activeMaskIt->second;
LDBG("Reusing mask: " << mask << "\n");
return mask;
}
// Compute permuted projection of the iteration space to be masked and the
// corresponding mask shape. If the resulting iteration space dimensions are
// static and identical to the mask shape, masking is not needed for this
// operation.
// TODO: Improve this check. Only projected permutation indexing maps are
// supported.
SmallVector<int64_t> permutedStaticSizes =
applyPermutationMap<int64_t>(maskingMap, iterSpaceStaticSizes);
auto maskType = getCanonicalVecType(rewriter.getI1Type(), maskingMap);
auto maskShape = maskType.getShape();
LDBG("Mask shape: ");
LLVM_DEBUG(llvm::interleaveComma(maskShape, llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "\n");
if (permutedStaticSizes == maskShape) {
LDBG("Masking is not needed for masking map: " << maskingMap << "\n");
activeMaskCache[maskingMap] = Value();
return Value();
}
// Permute the iteration space value sizes to compute the mask upper bounds.
SmallVector<Value> upperBounds =
applyPermutationMap(maskingMap, ArrayRef<Value>(iterSpaceValueSizes));
assert(!maskShape.empty() && !upperBounds.empty() &&
"Masked 0-d vectors are not supported yet");
// Create the mask based on the dimension values.
Value mask = rewriter.create<vector::CreateMaskOp>(linalgOp.getLoc(),
maskType, upperBounds);
LDBG("Creating new mask: " << mask << "\n");
activeMaskCache[maskingMap] = mask;
return mask;
}
/// Masks an operation with the canonical vector mask if the operation needs
/// masking. Returns the masked operation or the original operation if masking
/// is not needed. If provided, the canonical mask for this operation is
/// permuted using `maybeMaskingMap`.
Operation *
VectorizationState::maskOperation(RewriterBase &rewriter, Operation *opToMask,
LinalgOp linalgOp,
std::optional<AffineMap> maybeMaskingMap) {
LDBG("Trying to mask: " << *opToMask << "\n");
// Create or retrieve mask for this operation.
Value mask =
getOrCreateMaskFor(rewriter, opToMask, linalgOp, maybeMaskingMap);
if (!mask) {
LDBG("No mask required\n");
return opToMask;
}
// Wrap the operation with a new `vector.mask` and update D-U chain.
assert(opToMask && "Expected a valid operation to mask");
auto maskOp = cast<vector::MaskOp>(
mlir::vector::maskOperation(rewriter, opToMask, mask));
Operation *maskOpTerminator = &maskOp.getMaskRegion().front().back();
for (auto [resIdx, resVal] : llvm::enumerate(opToMask->getResults()))
rewriter.replaceAllUsesExcept(resVal, maskOp.getResult(resIdx),
maskOpTerminator);
LDBG("Masked operation: " << *maskOp << "\n");
return maskOp;
}
/// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
/// projectedPermutation, compress the unused dimensions to serve as a
/// permutation_map for a vector transfer operation.
/// For example, given a linalg op such as:
///
/// ```
/// %0 = linalg.generic {
/// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
/// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
/// }
/// ins(%0 : tensor<2x3x4xf32>)
/// outs(%1 : tensor<5x6xf32>)
/// ```
///
/// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
/// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
/// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
static AffineMap reindexIndexingMap(AffineMap map) {
assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) &&
"expected projected permutation");
auto res = compressUnusedDims(map);
assert(res.getNumDims() == res.getNumResults() &&
"expected reindexed map with same number of dims and results");
return res;
}
/// Helper enum to represent conv1d input traversal order.
enum class Conv1DOpOrder {
W, // Corresponds to non-channeled 1D convolution operation.
Ncw, // Corresponds to operation that traverses the input in (n, c, w) order.
Nwc // Corresponds to operation that traverses the input in (n, w, c) order.
};
/// Helper data structure to represent the result of vectorization.
/// In certain specific cases, like terminators, we do not want to propagate/
enum VectorizationStatus {
/// Op failed to vectorize.
Failure = 0,
/// Op vectorized and custom function took care of replacement logic
NoReplace,
/// Op vectorized into a new Op whose results will replace original Op's
/// results.
NewOp
// TODO: support values if Op vectorized to Many-Ops whose results we need to
// aggregate for replacement.
};
struct VectorizationResult {
/// Return status from vectorizing the current op.
enum VectorizationStatus status = VectorizationStatus::Failure;
/// New vectorized operation to replace the current op.
/// Replacement behavior is specified by `status`.
Operation *newOp;
};
std::optional<vector::CombiningKind>
mlir::linalg::getCombinerOpKind(Operation *combinerOp) {
using ::mlir::vector::CombiningKind;
if (!combinerOp)
return std::nullopt;
return llvm::TypeSwitch<Operation *, std::optional<CombiningKind>>(combinerOp)
.Case<arith::AddIOp, arith::AddFOp>(
[&](auto op) { return CombiningKind::ADD; })
.Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; })
.Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; })
.Case<arith::MaxUIOp>([&](auto op) { return CombiningKind::MAXUI; })
.Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; })
.Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; })
.Case<arith::MinUIOp>([&](auto op) { return CombiningKind::MINUI; })
.Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; })
.Case<arith::MulIOp, arith::MulFOp>(
[&](auto op) { return CombiningKind::MUL; })
.Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; })
.Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; })
.Default([&](auto op) { return std::nullopt; });
}
/// Check whether `outputOperand` is a reduction with a single combiner
/// operation. Return the combiner operation of the reduction. Return
/// nullptr otherwise. Multiple reduction operations would impose an
/// ordering between reduction dimensions and is currently unsupported in
/// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
/// max(min(X))
// TODO: use in LinalgOp verification, there is a circular dependency atm.
static Operation *matchLinalgReduction(OpOperand *outputOperand) {
auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
unsigned outputPos =
outputOperand->getOperandNumber() - linalgOp.getNumDpsInputs();
// Only single combiner operations are supported for now.
SmallVector<Operation *, 4> combinerOps;
if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
combinerOps.size() != 1)
return nullptr;
// Return the combiner operation.
return combinerOps[0];
}
/// Broadcast `value` to a vector of `shape` if possible. Return value
/// otherwise.
static Value broadcastIfNeeded(OpBuilder &b, Value value, Type dstType) {
auto dstVecType = dyn_cast<VectorType>(dstType);
// If no shape to broadcast to, just return `value`.
if (dstVecType.getRank() == 0)
return value;
if (vector::isBroadcastableTo(value.getType(), dstVecType) !=
vector::BroadcastableToResult::Success)
return value;
Location loc = b.getInsertionPoint()->getLoc();
return b.createOrFold<vector::BroadcastOp>(loc, dstVecType, value);
}
/// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
/// assumes that `reductionOp` has two operands and one of them is the reduction
/// initial value.buildMultiDimReduce
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
Value valueToReduce, Value acc,
ArrayRef<bool> dimsToMask) {
auto maybeKind = getCombinerOpKind(reduceOp);
assert(maybeKind && "Failed precondition: could not get reduction kind");
return b.create<vector::MultiDimReductionOp>(
reduceOp->getLoc(), valueToReduce, acc, dimsToMask, *maybeKind);
}
static SmallVector<bool> getDimsToReduce(LinalgOp linalgOp) {
return llvm::to_vector(
llvm::map_range(linalgOp.getIteratorTypesArray(), isReductionIterator));
}
/// Build a vector.transfer_write of `value` into `outputOperand` at indices set
/// to all `0`; where `outputOperand` is an output operand of the LinalgOp
/// currently being vectorized. If `dest` has null rank, build an memref.store.
/// Return the produced value or null if no value is produced.
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Value buildVectorWrite(RewriterBase &rewriter, Value value,
OpOperand *outputOperand,
VectorizationState &state) {
Location loc = value.getLoc();
auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
AffineMap opOperandMap = linalgOp.getMatchingIndexingMap(outputOperand);
// Compute the vector type of the value to store. This type should be an
// identity or projection of the canonical vector type without any permutation
// applied, given that any permutation in a transfer write happens as part of
// the write itself.
AffineMap vectorTypeMap = AffineMap::getFilteredIdentityMap(
opOperandMap.getContext(), opOperandMap.getNumInputs(),
[&](AffineDimExpr dimExpr) -> bool {
return llvm::is_contained(opOperandMap.getResults(), dimExpr);
});
auto vectorType = state.getCanonicalVecType(
getElementTypeOrSelf(outputOperand->get().getType()), vectorTypeMap);
Operation *write;
if (vectorType.getRank() > 0) {
AffineMap writeMap = inversePermutation(reindexIndexingMap(opOperandMap));
SmallVector<Value> indices(linalgOp.getRank(outputOperand),
rewriter.create<arith::ConstantIndexOp>(loc, 0));
value = broadcastIfNeeded(rewriter, value, vectorType);
assert(value.getType() == vectorType && "Incorrect type");
write = rewriter.create<vector::TransferWriteOp>(
loc, value, outputOperand->get(), indices, writeMap);
} else {
// 0-d case is still special: do not invert the reindexing writeMap.
if (!isa<VectorType>(value.getType()))
value = rewriter.create<vector::BroadcastOp>(loc, vectorType, value);
assert(value.getType() == vectorType && "Incorrect type");
write = rewriter.create<vector::TransferWriteOp>(
loc, value, outputOperand->get(), ValueRange{});
}
write = state.maskOperation(rewriter, write, linalgOp, opOperandMap);
// If masked, set in-bounds to true. Masking guarantees that the access will
// be in-bounds.
if (auto maskOp = dyn_cast<vector::MaskingOpInterface>(write)) {
auto maskedWriteOp = cast<vector::TransferWriteOp>(maskOp.getMaskableOp());
SmallVector<bool> inBounds(maskedWriteOp.getVectorType().getRank(), true);
maskedWriteOp.setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds));
}
LDBG("vectorized op: " << *write << "\n");
if (!write->getResults().empty())
return write->getResult(0);
return Value();
}
// Custom vectorization precondition function type. This is intented to be used
// with CustomVectorizationHook. Returns success if the corresponding custom
// hook can vectorize the op.
using CustomVectorizationPrecondition =
std::function<LogicalResult(Operation *, bool)>;
// Custom vectorization function type. Produce a vector form of Operation*
// assuming all its vectorized operands are already in the IRMapping.
// Return nullptr if the Operation cannot be vectorized.
using CustomVectorizationHook =
std::function<VectorizationResult(Operation *, const IRMapping &)>;
/// Helper function to vectorize the terminator of a `linalgOp`. New result
/// vector values are appended to `newResults`. Return
/// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
/// should not try to map produced operations and instead return the results
/// using the `newResults` vector making them available to the vectorization
/// algorithm for RAUW. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult
vectorizeLinalgYield(RewriterBase &rewriter, Operation *op,
const IRMapping &bvm, VectorizationState &state,
LinalgOp linalgOp, SmallVectorImpl<Value> &newResults) {
auto yieldOp = dyn_cast<linalg::YieldOp>(op);
if (!yieldOp)
return VectorizationResult{VectorizationStatus::Failure, nullptr};
for (const auto &output : llvm::enumerate(yieldOp.getValues())) {
// TODO: Scan for an opportunity for reuse.
// TODO: use a map.
Value vectorValue = bvm.lookup(output.value());
Value newResult =
buildVectorWrite(rewriter, vectorValue,
linalgOp.getDpsInitOperand(output.index()), state);
if (newResult)
newResults.push_back(newResult);
}
return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
}
/// Helper function to vectorize the index operations of a `linalgOp`. Return
/// VectorizationStatus::NewOp to signal the vectorization algorithm that it
/// should map the produced operations. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter,
VectorizationState &state,
Operation *op,
LinalgOp linalgOp) {
IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
if (!indexOp)
return VectorizationResult{VectorizationStatus::Failure, nullptr};
auto loc = indexOp.getLoc();
// Compute the static loop sizes of the index op.
auto targetShape = state.getCanonicalVecShape();
// Compute a one-dimensional index vector for the index op dimension.
auto constantSeq =
llvm::to_vector(llvm::seq<int64_t>(0, targetShape[indexOp.getDim()]));
auto indexSteps = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIndexVectorAttr(constantSeq));
// Return the one-dimensional index vector if it lives in the trailing
// dimension of the iteration space since the vectorization algorithm in this
// case can handle the broadcast.
if (indexOp.getDim() == targetShape.size() - 1)
return VectorizationResult{VectorizationStatus::NewOp, indexSteps};
// Otherwise permute the targetShape to move the index dimension last,
// broadcast the one-dimensional index vector to the permuted shape, and
// finally transpose the broadcasted index vector to undo the permutation.
auto permPattern =
llvm::to_vector(llvm::seq<unsigned>(0, targetShape.size()));
std::swap(permPattern[indexOp.getDim()], permPattern.back());
auto permMap =
AffineMap::getPermutationMap(permPattern, linalgOp.getContext());
auto broadCastOp = rewriter.create<vector::BroadcastOp>(
loc, state.getCanonicalVecType(rewriter.getIndexType(), permMap),
indexSteps);
SmallVector<int64_t> transposition =
llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
std::swap(transposition.back(), transposition[indexOp.getDim()]);
auto transposeOp =
rewriter.create<vector::TransposeOp>(loc, broadCastOp, transposition);
return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
}
/// Helper function to check if the tensor.extract can be vectorized by the
/// custom hook vectorizeTensorExtract.
static LogicalResult
tensorExtractVectorizationPrecondition(Operation *op, bool vectorizeNDExtract) {
tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op);
if (!extractOp)
return failure();
if (extractOp.getIndices().size() != 1 && !vectorizeNDExtract)
return failure();
// Check the index type, but only for non 0-d tensors (for which we do need
// access indices).
if (not extractOp.getIndices().empty()) {
if (!VectorType::isValidElementType(extractOp.getIndices()[0].getType()))
return failure();
}
if (llvm::any_of(extractOp->getResultTypes(), [](Type type) {
return !VectorType::isValidElementType(type);
})) {
return failure();
}
return success();
}
/// Calculates the offsets (`$index_vec`) for `vector.gather` operations
/// generated from `tensor.extract`. The offset is calculated as follows
/// (example using scalar values):
///
/// offset = extractOp.indices[0]
/// for (i = 1; i < numIndices; i++)
/// offset = extractOp.dimSize[i] * offset + extractOp.indices[i];
///
/// For tensor<45 x 80 x 15 x f32> and index [1, 2, 3], this leads to:
/// offset = ( ( 1 ) * 80 + 2 ) * 15 + 3
static Value calculateGatherOffset(RewriterBase &rewriter,
VectorizationState &state,
tensor::ExtractOp extractOp,
const IRMapping &bvm) {
// The vector of indices for GatherOp should be shaped as the output vector.
auto indexVecType = state.getCanonicalVecType(rewriter.getIndexType());
auto loc = extractOp.getLoc();
Value offset = broadcastIfNeeded(
rewriter, bvm.lookup(extractOp.getIndices()[0]), indexVecType);
const size_t numIndices = extractOp.getIndices().size();
for (size_t i = 1; i < numIndices; i++) {
Value dimIdx = rewriter.create<arith::ConstantIndexOp>(loc, i);
auto dimSize = broadcastIfNeeded(
rewriter,
rewriter.create<tensor::DimOp>(loc, extractOp.getTensor(), dimIdx),
indexVecType);
offset = rewriter.create<arith::MulIOp>(loc, offset, dimSize);
auto extractOpIndex = broadcastIfNeeded(
rewriter, bvm.lookup(extractOp.getIndices()[i]), indexVecType);
offset = rewriter.create<arith::AddIOp>(loc, extractOpIndex, offset);
}
return offset;
}
enum VectorMemoryAccessKind { ScalarBroadcast, Contiguous, Gather };
/// Checks whether /p val can be used for calculating a loop invariant index.
static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val) {
auto targetShape = linalgOp.getStaticLoopRanges();
assert(((llvm::count_if(targetShape,
[](int64_t dimSize) { return dimSize > 1; }) == 1)) &&
"n-D vectors are not yet supported");
assert(targetShape.back() != 1 &&
"1-D vectors with the trailing dim eqaual 1 are not yet supported");
// Blocks outside _this_ linalg.generic are effectively loop invariant.
// However, analysing block arguments for _this_ linalg.generic Op is a bit
// tricky. Just bail out in the latter case.
// TODO: We could try analysing the corresponding affine map here.
auto *block = linalgOp.getBlock();
if (isa<BlockArgument>(val))
return llvm::all_of(block->getArguments(),
[&val](Value v) { return (v != val); });
Operation *defOp = val.getDefiningOp();
assert(defOp && "This is neither a block argument nor an operation result");
// IndexOp is loop invariant as long as its result remains constant across
// iterations. Given the assumptions on the loop ranges above, only the
// trailing loop dim ever changes.
auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1;
if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp))
return (indexOp.getDim() != trailingLoopDim);
auto *ancestor = block->findAncestorOpInBlock(*defOp);
// Values define outside `linalgOp` are loop invariant.
if (!ancestor)
return true;
// Values defined inside `linalgOp`, which are constant, are loop invariant.
if (isa<arith::ConstantOp>(ancestor))
return true;
bool result = true;
for (auto op : ancestor->getOperands())
result &= isLoopInvariantIdx(linalgOp, op);
return result;
}
/// Check whether \p val could be used for calculating the trailing index for a
/// contiguous load operation.
///
/// There are currently 3 types of values that are allowed here:
/// 1. loop-invariant values,
/// 2. values that increment by 1 with every loop iteration,
/// 3. results of basic arithmetic operations (linear and continuous)
/// involving 1., 2. and 3.
/// This method returns True if indeed only such values are used in calculating
/// \p val.
///
/// Additionally, the trailing index for a contiguous load operation should
/// increment by 1 with every loop iteration, i.e. be based on:
/// * `linalg.index <dim>` ,
/// where <dim> is the trailing dim of the iteration space. \p foundIndexOp is
/// updated to `true` when such an op is found.
static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val,
bool &foundIndexOp) {
auto targetShape = linalgOp.getStaticLoopRanges();
assert(((llvm::count_if(targetShape,
[](int64_t dimSize) { return dimSize > 1; }) == 1)) &&
"n-D vectors are not yet supported");
assert(targetShape.back() != 1 &&
"1-D vectors with the trailing dim 1 are not yet supported");
// Blocks outside _this_ linalg.generic are effectively loop invariant.
// However, analysing block arguments for _this_ linalg.generic Op is a bit
// tricky. Just bail out in the latter case.
// TODO: We could try analysing the corresponding affine map here.
auto *block = linalgOp.getBlock();
if (isa<BlockArgument>(val))
return llvm::all_of(block->getArguments(),
[&val](Value v) { return (v != val); });
Operation *defOp = val.getDefiningOp();
assert(defOp && "This is neither a block argument nor an operation result");
// Given the assumption on the loop ranges above, only the trailing loop
// index is not constant.
auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1;
if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp)) {
foundIndexOp = (indexOp.getDim() == trailingLoopDim);
return true;
}
auto *ancestor = block->findAncestorOpInBlock(*defOp);
if (!ancestor)
return false;
// Conservatively reject Ops that could lead to indices with stride other
// than 1.
if (!isa<arith::AddIOp, arith::SubIOp, arith::ConstantOp, linalg::IndexOp>(
ancestor))
return false;
bool result = false;
for (auto op : ancestor->getOperands())
result |= isContiguousLoadIdx(linalgOp, op, foundIndexOp);
return result;
}
/// Check whether \p extractOp would be a gather or a contiguous load Op after
/// vectorising \p linalgOp. Note that it is always safe to use gather load
/// operations for contiguous loads (albeit slow), but not vice-versa. When in
/// doubt, bail out and assume that \p extractOp is a gather load.
static VectorMemoryAccessKind
getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
LinalgOp &linalgOp) {
auto targetShape = linalgOp.getStaticLoopRanges();
auto inputShape = cast<ShapedType>(extractOp.getTensor().getType());
// 0.1 Is this a 0-D vector? If yes then this is a scalar broadcast.
if (inputShape.getShape().empty())
return VectorMemoryAccessKind::ScalarBroadcast;
// 0.2 In the case of dynamic shapes just bail-out and assume that it's a
// gather load.
// TODO: Relax this condition.
if (linalgOp.hasDynamicShape())
return VectorMemoryAccessKind::Gather;
// 1. Assume that it's a gather load when reading _into_:
// * an n-D vector, like`tensor<1x2x4xi32` or`tensor<2x1x4xi32>`, or
// * a 1-D vector with the trailing dim equal 1, e.g. `tensor<1x4x1xi32`.
// TODO: Relax these conditions.
// FIXME: This condition assumes non-dynamic sizes.
if ((llvm::count_if(targetShape,
[](int64_t dimSize) { return dimSize > 1; }) != 1) ||
targetShape.back() == 1)
return VectorMemoryAccessKind::Gather;
// 2. Assume that it's a gather load when reading _from_ a tensor for which
// the trailing dimension is 1, e.g. `tensor<1x4x1xi32>`.
// TODO: Relax this condition.
if (inputShape.getShape().back() == 1)
return VectorMemoryAccessKind::Gather;
bool leadingIdxsLoopInvariant = true;
// 3. Analyze the leading indices of `extractOp`.
// Look at the way each index is calculated and decide whether it is suitable
// for a contiguous load, i.e. whether it's loop invariant.
auto indices = extractOp.getIndices();
auto leadIndices = indices.drop_back(1);
for (auto [i, indexVal] : llvm::enumerate(leadIndices)) {
if (inputShape.getShape()[i] == 1)
continue;
leadingIdxsLoopInvariant &= isLoopInvariantIdx(linalgOp, indexVal);
}
if (!leadingIdxsLoopInvariant) {
LDBG("Found gather load: " << extractOp);
return VectorMemoryAccessKind::Gather;
}
// 4. Analyze the trailing index for `extractOp`.
// At this point we know that the leading indices are loop invariant. This
// means that is potentially a scalar or a contiguous load. We can decide
// based on the trailing idx.
auto extractOpTrailingIdx = indices.back();
// 4a. Scalar broadcast load
// If the trailing index is loop invariant then this is a scalar load.
if (leadingIdxsLoopInvariant &&
isLoopInvariantIdx(linalgOp, extractOpTrailingIdx)) {
LDBG("Found scalar broadcast load: " << extractOp);
return VectorMemoryAccessKind::ScalarBroadcast;
}
// 4b. Contiguous loads
// The trailing `extractOp` index should increment with every loop iteration.
// This effectively means that it must be based on the trailing loop index.
// This is what the following bool captures.
bool foundIndexOp = false;
bool isContiguousLoad =
isContiguousLoadIdx(linalgOp, extractOpTrailingIdx, foundIndexOp);
isContiguousLoad &= foundIndexOp;
if (isContiguousLoad) {
LDBG("Found contigous load: " << extractOp);
return VectorMemoryAccessKind::Contiguous;
}
// 5. Fallback case - gather load.
LDBG("Found gather load: " << extractOp);
return VectorMemoryAccessKind::Gather;
}
/// Helper function to vectorize the tensor.extract operations. Returns
/// VectorizationStatus::NewOp to signal the vectorization algorithm that it
/// should map the produced operations. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult
vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
Operation *op, LinalgOp linalgOp, const IRMapping &bvm) {
tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op);
if (!extractOp)
return VectorizationResult{VectorizationStatus::Failure, nullptr};
auto loc = extractOp.getLoc();
// Compute the static loop sizes of the extract op.
auto resultType = state.getCanonicalVecType(extractOp.getResult().getType());
auto maskConstantOp = rewriter.create<arith::ConstantOp>(
loc,
DenseIntElementsAttr::get(state.getCanonicalVecType(rewriter.getI1Type()),
/*value=*/true));
auto passThruConstantOp =
rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(resultType));
// Base indices are currently set to 0. We will need to re-visit if more
// generic scenarios are to be supported.
SmallVector<Value> baseIndices(
extractOp.getIndices().size(),
rewriter.create<arith::ConstantIndexOp>(loc, 0));
VectorMemoryAccessKind memAccessKind =
getTensorExtractMemoryAccessPattern(extractOp, linalgOp);
// 1. Handle gather access
if (memAccessKind == VectorMemoryAccessKind::Gather) {
Value offset = calculateGatherOffset(rewriter, state, extractOp, bvm);
// Generate the gather load
Operation *gatherOp = rewriter.create<vector::GatherOp>(
loc, resultType, extractOp.getTensor(), baseIndices, offset,
maskConstantOp, passThruConstantOp);
gatherOp = state.maskOperation(rewriter, gatherOp, linalgOp);
LDBG("Vectorised as gather load: " << extractOp << "\n");
return VectorizationResult{VectorizationStatus::NewOp, gatherOp};
}
// 2. Handle:
// a. scalar loads + broadcast,
// b. contiguous loads.
// Both cases use vector.transfer_read.
// Collect indices for `vector.transfer_read`. At this point, the indices will
// either be scalars or would have been broadcast to vectors matching the
// result type. For indices that are vectors, there are two options:
// * for non-trailing indices, all elements are identical (contiguous
// loads are identified by looking for non-trailing indices that are
// invariant with respect to the corresponding linalg.generic), or
// * for trailing indices, the index vector will contain values with stride
// one, but for `vector.transfer_read` only the first (i.e. 0th) index is
// needed.
// This means that
// * for scalar indices - just re-use it,
// * for vector indices (e.g. `vector<1x1x4xindex>`) - extract the bottom
// (0th) element and use that.
SmallVector<Value> transferReadIdxs;
auto resTrailingDim = resultType.getShape().back();
auto zero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI32Type(), rewriter.getZeroAttr(rewriter.getI32Type()));
for (size_t i = 0; i < extractOp.getIndices().size(); i++) {
auto idx = bvm.lookup(extractOp.getIndices()[i]);
if (idx.getType().isIndex()) {
transferReadIdxs.push_back(idx);
continue;
}
auto indexAs1dVector = rewriter.create<vector::ShapeCastOp>(
loc, VectorType::get({resTrailingDim}, rewriter.getIndexType()),
bvm.lookup(extractOp.getIndices()[i]));
transferReadIdxs.push_back(
rewriter.create<vector::ExtractElementOp>(loc, indexAs1dVector, zero));
}
// `tensor.extract_element` is always in-bounds, hence the following holds.
auto dstRank = resultType.getRank();
auto srcRank = extractOp.getTensor().getType().getRank();
SmallVector<bool> inBounds(dstRank, true);
// 2a. Handle scalar broadcast access.
if (memAccessKind == VectorMemoryAccessKind::ScalarBroadcast) {
MLIRContext *ctx = rewriter.getContext();
SmallVector<AffineExpr> exprs(dstRank, getAffineConstantExpr(0, ctx));
auto permutationMap = AffineMap::get(srcRank, 0, exprs, ctx);
auto transferReadOp = rewriter.create<vector::TransferReadOp>(
loc, resultType, extractOp.getTensor(), transferReadIdxs,
permutationMap, inBounds);
LDBG("Vectorised as scalar broadcast load: " << extractOp << "\n");
return VectorizationResult{VectorizationStatus::NewOp, transferReadOp};
}
// 2b. Handle contiguous access.
auto permutationMap = AffineMap::getMinorIdentityMap(
srcRank, std::min(dstRank, srcRank), rewriter.getContext());
int32_t rankDiff = dstRank - srcRank;
// When dstRank > srcRank, broadcast the source tensor to the unitary leading
// dims so that the ranks match. This is done by extending the map with 0s.
// For example, for dstRank = 3, srcRank = 2, the following map created
// above:
// (d0, d1) --> (d0, d1)
// is extended as:
// (d0, d1) --> (0, d0, d1)
while (rankDiff > 0) {
permutationMap = permutationMap.insertResult(
mlir::getAffineConstantExpr(0, rewriter.getContext()), 0);
rankDiff--;
}
auto transferReadOp = rewriter.create<vector::TransferReadOp>(
loc, resultType, extractOp.getTensor(), transferReadIdxs, permutationMap,
inBounds);
LDBG("Vectorised as contiguous load: " << extractOp);
return VectorizationResult{VectorizationStatus::NewOp, transferReadOp};
}
/// Emit reduction operations if the shapes of the value to reduce is different
/// that the result shape.
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
Value reduceValue, Value initialValue,
const IRMapping &bvm) {
Value reduceVec = bvm.lookup(reduceValue);
Value outputVec = bvm.lookup(initialValue);
auto reduceType = dyn_cast<VectorType>(reduceVec.getType());
auto outputType = dyn_cast<VectorType>(outputVec.getType());
// Reduce only if needed as the value may already have been reduce for
// contraction vectorization.
if (!reduceType ||
(outputType && reduceType.getShape() == outputType.getShape()))
return nullptr;
SmallVector<bool> dimsToMask = getDimsToReduce(linalgOp);
return buildMultiDimReduce(b, op, reduceVec, outputVec, dimsToMask);
}
/// Generic vectorization for a single operation `op`, given already vectorized
/// operands carried by `bvm`. Vectorization occurs as follows:
/// 1. Try to apply any of the `customVectorizationHooks` and return its
/// result on success.
/// 2. Clone any constant in the current scope without vectorization: each
/// consumer of the constant will later determine the shape to which the
/// constant needs to be broadcast to.
/// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
/// of the `customVectorizationHooks` to cover such cases.
/// 4. Clone `op` in vector form to a vector of shape prescribed by the first
/// operand of maximal rank. Other operands have smaller rank and are
/// broadcast accordingly. It is assumed this broadcast is always legal,
/// otherwise, it means one of the `customVectorizationHooks` is incorrect.
///
/// This function assumes all operands of `op` have been vectorized and are in
/// the `bvm` mapping. As a consequence, this function is meant to be called on
/// a topologically-sorted list of ops.
/// This function does not update `bvm` but returns a VectorizationStatus that
/// instructs the caller what `bvm` update needs to occur.
static VectorizationResult
vectorizeOneOp(RewriterBase &rewriter, VectorizationState &state,
LinalgOp linalgOp, Operation *op, const IRMapping &bvm,
ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
LDBG("vectorize op " << *op << "\n");
// 1. Try to apply any CustomVectorizationHook.
if (!customVectorizationHooks.empty()) {
for (auto &customFunc : customVectorizationHooks) {
VectorizationResult result = customFunc(op, bvm);
if (result.status == VectorizationStatus::Failure)
continue;
return result;
}
}
// 2. Constant ops don't get vectorized but rather broadcasted at their users.
// Clone so that the constant is not confined to the linalgOp block .
if (isa<arith::ConstantOp, func::ConstantOp>(op))
return VectorizationResult{VectorizationStatus::NewOp, rewriter.clone(*op)};
// 3. Only ElementwiseMappable are allowed in the generic vectorization.
if (!OpTrait::hasElementwiseMappableTraits(op))
return VectorizationResult{VectorizationStatus::Failure, nullptr};
// 4 . Check if the operation is a reduction.
SmallVector<std::pair<Value, Value>> reductionOperands;
for (Value operand : op->getOperands()) {
auto blockArg = dyn_cast<BlockArgument>(operand);
if (!blockArg || blockArg.getOwner() != linalgOp.getBlock() ||
blockArg.getArgNumber() < linalgOp.getNumDpsInputs())
continue;
SmallVector<Operation *> reductionOps;
Value reduceValue = matchReduction(
linalgOp.getRegionOutputArgs(),
blockArg.getArgNumber() - linalgOp.getNumDpsInputs(), reductionOps);
if (!reduceValue)
continue;
reductionOperands.push_back(std::make_pair(reduceValue, operand));
}
if (!reductionOperands.empty()) {
assert(reductionOperands.size() == 1);
Operation *reduceOp =
reduceIfNeeded(rewriter, linalgOp, op, reductionOperands[0].first,
reductionOperands[0].second, bvm);
if (reduceOp)
return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
}
// 5. Generic vectorization path for ElementwiseMappable ops.
// a. Get the first max ranked shape.
VectorType firstMaxRankedType;
for (Value operand : op->getOperands()) {
auto vecOperand = bvm.lookup(operand);
assert(vecOperand && "Vector operand couldn't be found");
auto vecType = dyn_cast<VectorType>(vecOperand.getType());
if (vecType && (!firstMaxRankedType ||
firstMaxRankedType.getRank() < vecType.getRank()))
firstMaxRankedType = vecType;
}
// b. Broadcast each op if needed.
SmallVector<Value> vecOperands;
for (Value scalarOperand : op->getOperands()) {
Value vecOperand = bvm.lookup(scalarOperand);
assert(vecOperand && "Vector operand couldn't be found");
if (firstMaxRankedType) {
auto vecType = VectorType::get(firstMaxRankedType.getShape(),
getElementTypeOrSelf(vecOperand.getType()),
firstMaxRankedType.getScalableDims());
vecOperands.push_back(broadcastIfNeeded(rewriter, vecOperand, vecType));
} else {
vecOperands.push_back(vecOperand);
}
}
// c. for elementwise, the result is the vector with the firstMaxRankedShape
SmallVector<Type> resultTypes;
for (Type resultType : op->getResultTypes()) {
resultTypes.push_back(
firstMaxRankedType
? VectorType::get(firstMaxRankedType.getShape(), resultType,
firstMaxRankedType.getScalableDims())
: resultType);
}
// d. Build and return the new op.
return VectorizationResult{
VectorizationStatus::NewOp,
rewriter.create(op->getLoc(), op->getName().getIdentifier(), vecOperands,
resultTypes, op->getAttrs())};
}
/// Generic vectorization function that rewrites the body of a `linalgOp` into
/// vector form. Generic vectorization proceeds as follows:
/// 1. Verify the `linalgOp` has one non-empty region.
/// 2. Values defined above the region are mapped to themselves and will be
/// broadcasted on a per-need basis by their consumers.
/// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d
/// load).
/// TODO: Reuse opportunities for RAR dependencies.
/// 4a. Register CustomVectorizationHook for YieldOp to capture the results.
/// 4rewriter. Register CustomVectorizationHook for IndexOp to access the
/// iteration indices.
/// 5. Iteratively call vectorizeOneOp on the region operations.
///
/// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
/// performed to the maximal common vector size implied by the `linalgOp`
/// iteration space. This eager broadcasting is introduced in the
/// permutation_map of the vector.transfer_read operations. The eager
/// broadcasting makes it trivial to detrmine where broadcast, transposes and
/// reductions should occur, without any bookkeeping. The tradeoff is that, in
/// the absence of good canonicalizations, the amount of work increases.
/// This is not deemed a problem as we expect canonicalizations and foldings to
/// aggressively clean up the useless work.
static LogicalResult
vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
LinalgOp linalgOp,
SmallVectorImpl<Value> &newResults) {
LDBG("Vectorizing operation as linalg generic\n");
Block *block = linalgOp.getBlock();
// 2. Values defined above the region can only be broadcast for now. Make them
// map to themselves.
IRMapping bvm;
SetVector<Value> valuesSet;
mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
if (linalgOp.getNumDpsInits() == 0)
return failure();
// 3. Turn all BBArgs into vector.transfer_read / load.
Location loc = linalgOp.getLoc();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) {
BlockArgument bbarg = linalgOp.getMatchingBlockArgument(opOperand);
if (linalgOp.isScalar(opOperand)) {
bvm.map(bbarg, opOperand->get());
continue;
}
// 3.a. Convert the indexing map for this input/output to a transfer read
// permutation map and masking map.
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand);
// Remove zeros from indexing map to use it as masking map.
SmallVector<int64_t> zeroPos;
auto results = indexingMap.getResults();
for (const auto &result : llvm::enumerate(results)) {
if (result.value().isa<AffineConstantExpr>()) {
zeroPos.push_back(result.index());
}
}
AffineMap maskingMap = indexingMap.dropResults(zeroPos);
AffineMap readMap;
VectorType readType;
Type elemType = getElementTypeOrSelf(opOperand->get());
if (linalgOp.isDpsInput(opOperand)) {
// 3.a.i. For input reads we use the canonical vector shape.
readMap = inverseAndBroadcastProjectedPermutation(indexingMap);
readType = state.getCanonicalVecType(elemType);
} else {
// 3.a.ii. For output reads (iteration-carried dependence, e.g.,
// reductions), the vector shape is computed by mapping the canonical
// vector shape to the output domain and back to the canonical domain.
readMap = inversePermutation(reindexIndexingMap(indexingMap));
readType =
state.getCanonicalVecType(elemType, readMap.compose(indexingMap));
}
SmallVector<Value> indices(linalgOp.getShape(opOperand).size(), zero);
Operation *read = rewriter.create<vector::TransferReadOp>(
loc, readType, opOperand->get(), indices, readMap);
read = state.maskOperation(rewriter, read, linalgOp, maskingMap);
Value readValue = read->getResult(0);
// 3.b. If masked, set in-bounds to true. Masking guarantees that the access
// will be in-bounds.
if (auto maskOp = dyn_cast<vector::MaskingOpInterface>(read)) {
SmallVector<bool> inBounds(readType.getRank(), true);
cast<vector::TransferReadOp>(maskOp.getMaskableOp())
.setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds));
}
// 3.c. Not all ops support 0-d vectors, extract the scalar for now.
// TODO: remove this.
if (readType.getRank() == 0)
readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue);
LDBG("New vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue
<< "\n");
bvm.map(bbarg, readValue);
bvm.map(opOperand->get(), readValue);
}
SmallVector<CustomVectorizationHook> hooks;
// 4a. Register CustomVectorizationHook for yieldOp.
CustomVectorizationHook vectorizeYield =
[&](Operation *op, const IRMapping &bvm) -> VectorizationResult {
return vectorizeLinalgYield(rewriter, op, bvm, state, linalgOp, newResults);
};
hooks.push_back(vectorizeYield);
// 4b. Register CustomVectorizationHook for indexOp.
CustomVectorizationHook vectorizeIndex =
[&](Operation *op, const IRMapping &bvm) -> VectorizationResult {
return vectorizeLinalgIndex(rewriter, state, op, linalgOp);
};
hooks.push_back(vectorizeIndex);
// 4c. Register CustomVectorizationHook for extractOp.
CustomVectorizationHook vectorizeExtract =
[&](Operation *op, const IRMapping &bvm) -> VectorizationResult {
return vectorizeTensorExtract(rewriter, state, op, linalgOp, bvm);
};
hooks.push_back(vectorizeExtract);
// 5. Iteratively call `vectorizeOneOp` to each op in the slice.
for (Operation &op : block->getOperations()) {
VectorizationResult result =
vectorizeOneOp(rewriter, state, linalgOp, &op, bvm, hooks);
if (result.status == VectorizationStatus::Failure) {
LDBG("failed to vectorize: " << op << "\n");
return failure();
}
if (result.status == VectorizationStatus::NewOp) {
Operation *maybeMaskedOp =
state.maskOperation(rewriter, result.newOp, linalgOp);
LDBG("New vector op: " << *maybeMaskedOp << "\n");
bvm.map(op.getResults(), maybeMaskedOp->getResults());
}
}
return success();
}
/// Vectorize a `padOp` with (1) static result type, (2) constant padding value
/// and (3) all-zero lowPad to
/// `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`.
static LogicalResult
vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp,
ArrayRef<int64_t> inputVectorSizes,
SmallVectorImpl<Value> &newResults) {
auto padValue = padOp.getConstantPaddingValue();
Location loc = padOp.getLoc();
int64_t rank = inputVectorSizes.size();
auto maskType = VectorType::get(inputVectorSizes, rewriter.getI1Type());
auto vectorType = VectorType::get(inputVectorSizes, padValue.getType());
// transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(padOp);
ReifiedRankedShapedTypeDims reifiedReturnShapes;
LogicalResult status =
cast<ReifyRankedShapedTypeOpInterface>(padOp.getOperation())
.reifyResultShapes(rewriter, reifiedReturnShapes);
(void)status; // prevent unused variable warning on non-assert builds
assert(succeeded(status) && "failed to reify result shapes");
auto emptyOp = rewriter.create<tensor::EmptyOp>(loc, reifiedReturnShapes[0],
padValue.getType());
SmallVector<OpFoldResult> mixedSourceDims =
tensor::getMixedSizes(rewriter, loc, padOp.getSource());
Value mask =
rewriter.create<vector::CreateMaskOp>(loc, maskType, mixedSourceDims);
auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
auto transferReadOp = rewriter.create<vector::TransferReadOp>(
loc,
/*vectorType=*/vectorType,
/*source=*/padOp.getSource(),
/*indices=*/SmallVector<Value>(rank, zero),
/*padding=*/padValue,
/*inBounds=*/SmallVector<bool>(rank, true));
auto maskedOp = cast<vector::MaskOp>(
mlir::vector::maskOperation(rewriter, transferReadOp, mask));
Operation *write = rewriter.create<vector::TransferWriteOp>(
loc,
/*vector=*/maskedOp->getResult(0),
/*source=*/emptyOp,
/*indices=*/SmallVector<Value>(rank, zero),
/*inBounds=*/SmallVector<bool>(rank, true));
bool needMaskForWrite = llvm::any_of(
llvm::zip_equal(inputVectorSizes, padOp.getResultType().getShape()),
[](auto it) { return std::get<0>(it) != std::get<1>(it); });
if (needMaskForWrite) {
Value maskForWrite = rewriter.create<vector::CreateMaskOp>(
loc, maskType, reifiedReturnShapes[0]);
write = mlir::vector::maskOperation(rewriter, write, maskForWrite);
}
newResults.push_back(write->getResult(0));
return success();
}
// TODO: probably need some extra checks for reduction followed by consumer
// ops that may not commute (e.g. linear reduction + non-linear instructions).
static LogicalResult reductionPreconditions(LinalgOp op) {
if (llvm::none_of(op.getIteratorTypesArray(), isReductionIterator)) {
LDBG("reduction precondition failed: no reduction iterator\n");
return failure();
}
for (OpOperand *opOperand : op.getDpsInitOperands()) {
AffineMap indexingMap = op.getMatchingIndexingMap(opOperand);
if (indexingMap.isPermutation())
continue;
Operation *reduceOp = matchLinalgReduction(opOperand);
if (!reduceOp || !getCombinerOpKind(reduceOp)) {
LDBG("reduction precondition failed: reduction detection failed\n");
return failure();
}
}
return success();
}
static LogicalResult vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op) {
// TODO: Masking only supports dynamic generic ops for now.
if (!isa<linalg::GenericOp, linalg::FillOp, linalg::CopyOp,
linalg::ContractionOpInterface>(op.getOperation()))
return failure();
LDBG("Dynamically-shaped op meets vectorization pre-conditions\n");
return success();
}
/// Returns success if `inputVectorSizes` is a valid masking configuraion for
/// given `shape`, i.e., it meets:
/// 1. The numbers of elements in both array are equal.
/// 2. `inputVectorSizes` does nos have dynamic dimensions.
/// 3. All the values in `inputVectorSizes` are greater than or equal to
/// static sizes in `shape`.
static LogicalResult
isValidMaskedInputVector(ArrayRef<int64_t> shape,
ArrayRef<int64_t> inputVectorSizes) {
if (inputVectorSizes.size() != shape.size()) {
LDBG("Input vector sizes don't match the number of loops");
return failure();
}
if (ShapedType::isDynamicShape(inputVectorSizes)) {
LDBG("Input vector sizes can't have dynamic dimensions");
return failure();
}
if (!llvm::all_of(llvm::zip(shape, inputVectorSizes),
[](std::tuple<int64_t, int64_t> sizePair) {
int64_t staticSize = std::get<0>(sizePair);
int64_t inputSize = std::get<1>(sizePair);
return ShapedType::isDynamic(staticSize) ||
staticSize <= inputSize;
})) {
LDBG("Input vector sizes must be greater than or equal to iteration space "
"static sizes");
return failure();
}
return success();
}
static LogicalResult
vectorizeLinalgOpPrecondition(LinalgOp linalgOp,
ArrayRef<int64_t> inputVectorSizes,
bool vectorizeNDExtract) {
// tensor with dimension of 0 cannot be vectorized.
if (llvm::any_of(linalgOp.getStaticShape(),
[](int64_t dim) { return dim == 0; }))
return failure();
// Check API contract for input vector sizes.
if (!inputVectorSizes.empty() &&
failed(isValidMaskedInputVector(linalgOp.getStaticLoopRanges(),
inputVectorSizes)))
return failure();
if (linalgOp.hasDynamicShape() &&
failed(vectorizeDynamicLinalgOpPrecondition(linalgOp))) {
LDBG("Dynamically-shaped op failed vectorization pre-conditions\n");
return failure();
}
SmallVector<CustomVectorizationPrecondition> customPreconditions;
// Register CustomVectorizationPrecondition for extractOp.
customPreconditions.push_back(tensorExtractVectorizationPrecondition);
// All types in the body should be a supported element type for VectorType.
for (Operation &innerOp : linalgOp->getRegion(0).front()) {
// Check if any custom hook can vectorize the inner op.
if (llvm::any_of(
customPreconditions,
[&](const CustomVectorizationPrecondition &customPrecondition) {
return succeeded(
customPrecondition(&innerOp, vectorizeNDExtract));
})) {
continue;
}
if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) {
return !VectorType::isValidElementType(type);
})) {
return failure();
}
if (llvm::any_of(innerOp.getResultTypes(), [](Type type) {
return !VectorType::isValidElementType(type);
})) {
return failure();
}
}
if (isElementwise(linalgOp))
return success();
// TODO: isaConvolutionOpInterface that can also infer from generic features.
// But we will still need stride/dilation attributes that will be annoying to
// reverse-engineer...
if (isa<ConvolutionOpInterface>(linalgOp.getOperation()))
return success();
// TODO: the common vector shape is equal to the static loop sizes only when
// all indexing maps are projected permutations. For convs and stencils the
// logic will need to evolve.
if (!allIndexingsAreProjectedPermutation(linalgOp)) {
LDBG("precondition failed: not projected permutations\n");
return failure();
}
if (failed(reductionPreconditions(linalgOp))) {
LDBG("precondition failed: reduction preconditions\n");
return failure();
}
return success();
}
static LogicalResult
vectorizePadOpPrecondition(tensor::PadOp padOp,
ArrayRef<int64_t> inputVectorSizes) {
auto padValue = padOp.getConstantPaddingValue();
if (!padValue) {
LDBG("pad value is not constant: " << padOp << "\n");
return failure();
}
ArrayRef<int64_t> resultTensorShape = padOp.getResultType().getShape();
if (failed(isValidMaskedInputVector(resultTensorShape, inputVectorSizes)))
return failure();
if (llvm::any_of(padOp.getLow(), [](Value v) {
std::optional<int64_t> res = getConstantIntValue(v);
return !res.has_value() || res.value() != 0;
})) {
LDBG("low pad must all be zero: " << padOp << "\n");
return failure();
}
return success();
}
/// Preconditions for scalable vectors.
static LogicalResult
vectorizeScalableVectorPrecondition(Operation *op,
ArrayRef<int64_t> inputVectorSizes,
ArrayRef<bool> inputScalableVecDims) {
assert(inputVectorSizes.size() == inputScalableVecDims.size() &&
"Number of input vector sizes and scalable dims doesn't match");
if (inputVectorSizes.empty())
return success();
if (!areValidScalableVecDims(inputScalableVecDims)) {
LDBG("Non-trailing scalable vector dimensions are not supported\n");
return failure();
}
bool isScalable = inputScalableVecDims.back();
if (!isScalable)
return success();
// Only element-wise ops supported in the presence of scalable dims.
auto linalgOp = dyn_cast<LinalgOp>(op);
return success(linalgOp && isElementwise(linalgOp));
}
LogicalResult mlir::linalg::vectorizeOpPrecondition(
Operation *op, ArrayRef<int64_t> inputVectorSizes,
ArrayRef<bool> inputScalableVecDims, bool vectorizeNDExtract) {
if (failed(vectorizeScalableVectorPrecondition(op, inputVectorSizes,
inputScalableVecDims)))
return failure();
return TypeSwitch<Operation *, LogicalResult>(op)
.Case<linalg::LinalgOp>([&](auto linalgOp) {
return vectorizeLinalgOpPrecondition(linalgOp, inputVectorSizes,
vectorizeNDExtract);
})
.Case<tensor::PadOp>([&](auto padOp) {
return vectorizePadOpPrecondition(padOp, inputVectorSizes);
})
.Default([](auto) { return failure(); });
}
/// Converts affine.apply Ops to arithmetic operations.
static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) {
OpBuilder::InsertionGuard g(rewriter);
auto toReplace = linalgOp.getBlock()->getOps<affine::AffineApplyOp>();
for (auto op : make_early_inc_range(toReplace)) {
rewriter.setInsertionPoint(op);
auto expanded = affine::expandAffineExpr(
rewriter, op->getLoc(), op.getAffineMap().getResult(0),
op.getOperands().take_front(op.getAffineMap().getNumDims()),
op.getOperands().take_back(op.getAffineMap().getNumSymbols()));
rewriter.replaceOp(op, expanded);
}
}
/// Emit a suitable vector form for an operation. If provided,
/// `inputVectorSizes` are used to vectorize this operation. `inputVectorSizes`
/// must match the rank of the iteration space of the operation and the input
/// vector sizes must be greater than or equal to their counterpart iteration
/// space sizes, if static. `inputVectorShapes` also allows the vectorization of
/// operations with dynamic shapes.
LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op,
ArrayRef<int64_t> inputVectorSizes,
ArrayRef<bool> inputScalableVecDims,
bool vectorizeNDExtract) {
LDBG("Attempting to vectorize:\n" << *op << "\n");
LDBG("Input vector sizes: ");
LLVM_DEBUG(llvm::interleaveComma(inputVectorSizes, llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "\n");
LDBG("Input scalable vector dims: ");
LLVM_DEBUG(llvm::interleaveComma(inputScalableVecDims, llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "\n");
if (failed(vectorizeOpPrecondition(op, inputVectorSizes, inputScalableVecDims,
vectorizeNDExtract))) {
LDBG("Vectorization pre-conditions failed\n");
return failure();
}
// Initialize vectorization state.
VectorizationState state(rewriter);
if (auto linalgOp = dyn_cast<linalg::LinalgOp>(op)) {
if (failed(state.initState(rewriter, linalgOp, inputVectorSizes,
inputScalableVecDims))) {
LDBG("Vectorization state couldn't be initialized\n");
return failure();
}
}
SmallVector<Value> results;
auto vectorizeResult =
TypeSwitch<Operation *, LogicalResult>(op)
.Case<linalg::LinalgOp>([&](auto linalgOp) {
// TODO: isaConvolutionOpInterface that can also infer from generic
// features. Will require stride/dilation attributes inference.
FailureOr<Operation *> convOr =
vectorizeConvolution(rewriter, linalgOp);
if (succeeded(convOr)) {
llvm::append_range(results, (*convOr)->getResults());
return success();
}
LDBG("Vectorize generic by broadcasting to the canonical vector "
"shape\n");
// Pre-process before proceeding.
convertAffineApply(rewriter, linalgOp);
// TODO: 'vectorize' takes in a 'RewriterBase' which is up-casted
// to 'OpBuilder' when it is passed over to some methods like
// 'vectorizeAsLinalgGeneric'. This is highly problematic: if we
// erase an op within these methods, the actual rewriter won't be
// notified and we will end up with read-after-free issues!
return vectorizeAsLinalgGeneric(rewriter, state, linalgOp, results);
})
.Case<tensor::PadOp>([&](auto padOp) {
return vectorizeAsTensorPadOp(rewriter, padOp, inputVectorSizes,
results);
})
.Default([](auto) { return failure(); });
if (failed(vectorizeResult)) {
LDBG("Vectorization failed\n");
return failure();
}
if (!results.empty())
rewriter.replaceOp(op, results);
else
rewriter.eraseOp(op);
return success();
}
LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter,
memref::CopyOp copyOp) {
auto srcType = cast<MemRefType>(copyOp.getSource().getType());
auto dstType = cast<MemRefType>(copyOp.getTarget().getType());
if (!srcType.hasStaticShape() || !dstType.hasStaticShape())
return failure();
auto srcElementType = getElementTypeOrSelf(srcType);
auto dstElementType = getElementTypeOrSelf(dstType);
if (!VectorType::isValidElementType(srcElementType) ||
!VectorType::isValidElementType(dstElementType))
return failure();
auto readType = VectorType::get(srcType.getShape(), srcElementType);
auto writeType = VectorType::get(dstType.getShape(), dstElementType);
Location loc = copyOp->getLoc();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
SmallVector<Value> indices(srcType.getRank(), zero);
Value readValue = rewriter.create<vector::TransferReadOp>(
loc, readType, copyOp.getSource(), indices,
rewriter.getMultiDimIdentityMap(srcType.getRank()));
if (cast<VectorType>(readValue.getType()).getRank() == 0) {
readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue);
readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue);
}
Operation *writeValue = rewriter.create<vector::TransferWriteOp>(
loc, readValue, copyOp.getTarget(), indices,
rewriter.getMultiDimIdentityMap(srcType.getRank()));
rewriter.replaceOp(copyOp, writeValue->getResults());
return success();
}
//----------------------------------------------------------------------------//
// Misc. vectorization patterns.
//----------------------------------------------------------------------------//
/// Helper function that retrieves the value of an IntegerAttr.
static int64_t getIntFromAttr(Attribute attr) {
return cast<IntegerAttr>(attr).getInt();
}
/// Given an ArrayRef of OpFoldResults, return a vector of Values.
/// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are
/// not supported.
static SmallVector<Value> ofrToIndexValues(RewriterBase &rewriter, Location loc,
ArrayRef<OpFoldResult> ofrs) {
SmallVector<Value> result;
for (auto o : ofrs) {
if (auto val = llvm::dyn_cast_if_present<Value>(o)) {
result.push_back(val);
} else {
result.push_back(rewriter.create<arith::ConstantIndexOp>(
loc, getIntFromAttr(o.template get<Attribute>())));
}
}
return result;
}
/// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and
/// InsertSliceOp. For now, only constant padding values are supported.
/// If there is enough static type information, TransferReadOps and
/// TransferWriteOps may be generated instead of InsertSliceOps.
struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern {
GenericPadOpVectorizationPattern(MLIRContext *context,
PatternBenefit benefit = 1)
: GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {}
/// Vectorize the copying of a tensor::PadOp's source. This is possible if
/// each dimension size is statically know in the source type or the result
/// type (or both).
static LogicalResult tryVectorizeCopy(RewriterBase &rewriter,
tensor::PadOp padOp, Value dest) {
auto sourceType = padOp.getSourceType();
auto resultType = padOp.getResultType();
if (!VectorType::isValidElementType(sourceType.getElementType()))
return failure();
// Copy cannot be vectorized if pad value is non-constant and source shape
// is dynamic. In case of a dynamic source shape, padding must be appended
// by TransferReadOp, but TransferReadOp supports only constant padding.
auto padValue = padOp.getConstantPaddingValue();
if (!padValue) {
if (!sourceType.hasStaticShape())
return failure();
// Create dummy padding value.
auto elemType = sourceType.getElementType();
padValue = rewriter.create<arith::ConstantOp>(
padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
}
SmallVector<int64_t> vecShape;
SmallVector<bool> readInBounds;
SmallVector<bool> writeInBounds;
for (unsigned i = 0; i < sourceType.getRank(); ++i) {
if (!sourceType.isDynamicDim(i)) {
vecShape.push_back(sourceType.getDimSize(i));
// Source shape is statically known: Neither read nor write are
// out-of- bounds.
readInBounds.push_back(true);
writeInBounds.push_back(true);
} else if (!resultType.isDynamicDim(i)) {
// Source shape is not statically known, but result shape is.
// Vectorize with size of result shape. This may be larger than the
// source size.
vecShape.push_back(resultType.getDimSize(i));
// Read may be out-of-bounds because the result size could be larger
// than the source size.
readInBounds.push_back(false);
// Write is out-of-bounds if low padding > 0.
writeInBounds.push_back(
getConstantIntValue(padOp.getMixedLowPad()[i]) ==
static_cast<int64_t>(0));
} else {
// Neither source nor result dim of padOp is static. Cannot vectorize
// the copy.
return failure();
}
}
auto vecType = VectorType::get(vecShape, sourceType.getElementType());
// Generate TransferReadOp.
SmallVector<Value> readIndices(
vecType.getRank(),
rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
auto read = rewriter.create<vector::TransferReadOp>(
padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue,
ArrayRef<bool>{readInBounds});
// If `dest` is a FillOp and the TransferWriteOp would overwrite the
// entire tensor, write directly to the FillOp's operand.
if (llvm::equal(vecShape, resultType.getShape()) &&
llvm::all_of(writeInBounds, [](bool b) { return b; }))
if (auto fill = dest.getDefiningOp<FillOp>())
dest = fill.output();
// Generate TransferWriteOp.
auto writeIndices =
ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds});
return success();
}
};
/// Base pattern for rewriting tensor::PadOps whose result is consumed by a
/// given operation type OpTy.
template <typename OpTy>
struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> {
using OpRewritePattern<tensor::PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const final {
bool changed = false;
// Insert users in vector, because some users may be replaced/removed.
for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
if (auto op = dyn_cast<OpTy>(user))
changed |= rewriteUser(rewriter, padOp, op).succeeded();
return success(changed);
}
protected:
virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
tensor::PadOp padOp, OpTy op) const = 0;
};
/// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.:
/// ```
/// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %r = vector.transfer_read %0[%c0, %c0], %cst
/// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
/// ```
/// is rewritten to:
/// ```
/// %r = vector.transfer_read %src[%c0, %c0], %padding
/// {in_bounds = [true, true]}
/// : tensor<?x?xf32>, vector<17x5xf32>
/// ```
/// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
/// sure that the original padding value %cst was never used.
///
/// This rewrite is possible if:
/// - `xferOp` has no out-of-bounds dims or mask.
/// - Low padding is static 0.
/// - Single, scalar padding value.
struct PadOpVectorizationWithTransferReadPattern
: public VectorizePadOpUserPattern<vector::TransferReadOp> {
using VectorizePadOpUserPattern<
vector::TransferReadOp>::VectorizePadOpUserPattern;
LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
vector::TransferReadOp xferOp) const override {
// Low padding must be static 0.
if (!padOp.hasZeroLowPad())
return failure();
// Pad value must be a constant.
auto padValue = padOp.getConstantPaddingValue();
if (!padValue)
return failure();
// Padding value of existing `xferOp` is unused.
if (xferOp.hasOutOfBoundsDim() || xferOp.getMask())
return failure();
rewriter.updateRootInPlace(xferOp, [&]() {
SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
xferOp->setAttr(xferOp.getInBoundsAttrName(),
rewriter.getBoolArrayAttr(inBounds));
xferOp.getSourceMutable().assign(padOp.getSource());
xferOp.getPaddingMutable().assign(padValue);
});
return success();
}
};
/// Rewrite use of tensor::PadOp result in TransferWriteOp.
/// This pattern rewrites TransferWriteOps that write to a padded tensor
/// value, where the same amount of padding is immediately removed again after
/// the write. In such cases, the TransferWriteOp can write to the non-padded
/// tensor value and apply out-of-bounds masking. E.g.:
/// ```
/// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
/// : tensor<...> to tensor<?x?xf32>
/// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %2 = vector.transfer_write %vec, %1[...]
/// : vector<17x5xf32>, tensor<17x5xf32>
/// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
/// : tensor<17x5xf32> to tensor<?x?xf32>
/// ```
/// is rewritten to:
/// ```
/// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
/// : tensor<...> to tensor<?x?xf32>
/// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>,
/// tensor<?x?xf32>
/// ```
/// Note: It is important that the ExtractSliceOp %r resizes the result of the
/// TransferWriteOp to the same size as the input of the TensorPadOp (or an
/// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ
/// from %r's old dimensions.
///
/// This rewrite is possible if:
/// - Low padding is static 0.
/// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
/// ExtractSliceOp trims the same amount of padding that was added
/// beforehand.
/// - Single, scalar padding value.
struct PadOpVectorizationWithTransferWritePattern
: public VectorizePadOpUserPattern<vector::TransferWriteOp> {
using VectorizePadOpUserPattern<
vector::TransferWriteOp>::VectorizePadOpUserPattern;
LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
vector::TransferWriteOp xferOp) const override {
// TODO: support 0-d corner case.
if (xferOp.getTransferRank() == 0)
return failure();
// Low padding must be static 0.
if (!padOp.hasZeroLowPad())
return failure();
// Pad value must be a constant.
auto padValue = padOp.getConstantPaddingValue();
if (!padValue)
return failure();
// TransferWriteOp result must be directly consumed by an ExtractSliceOp.
if (!xferOp->hasOneUse())
return failure();
auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
if (!trimPadding)
return failure();
// Only static zero offsets supported when trimming padding.
if (!trimPadding.hasZeroOffset())
return failure();
// trimPadding must remove the amount of padding that was added earlier.
if (!hasSameTensorSize(padOp.getSource(), trimPadding))
return failure();
// Insert the new TransferWriteOp at position of the old TransferWriteOp.
rewriter.setInsertionPoint(xferOp);
SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
xferOp, padOp.getSource().getType(), xferOp.getVector(),
padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(),
xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds));
rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
return success();
}
/// Check if `beforePadding` and `afterTrimming` have the same tensor size,
/// i.e., same dimensions.
///
/// Dimensions may be static, dynamic or mix of both. In case of dynamic
/// dimensions, this function tries to infer the (static) tensor size by
/// looking at the defining op and utilizing op-specific knowledge.
///
/// This is a conservative analysis. In case equal tensor sizes cannot be
/// proven statically, this analysis returns `false` even though the tensor
/// sizes may turn out to be equal at runtime.
bool hasSameTensorSize(Value beforePadding,
tensor::ExtractSliceOp afterTrimming) const {
// If the input to tensor::PadOp is a CastOp, try with with both CastOp
// result and CastOp operand.
if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
if (hasSameTensorSize(castOp.getSource(), afterTrimming))
return true;
auto t1 = dyn_cast<RankedTensorType>(beforePadding.getType());
auto t2 = dyn_cast<RankedTensorType>(afterTrimming.getType());
// Only RankedTensorType supported.
if (!t1 || !t2)
return false;
// Rank of both values must be the same.
if (t1.getRank() != t2.getRank())
return false;
// All static dimensions must be the same. Mixed cases (e.g., dimension
// static in `t1` but dynamic in `t2`) are not supported.
for (unsigned i = 0; i < t1.getRank(); ++i) {
if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
return false;
if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
return false;
}
// Nothing more to check if all dimensions are static.
if (t1.getNumDynamicDims() == 0)
return true;
// All dynamic sizes must be the same. The only supported case at the
// moment is when `beforePadding` is an ExtractSliceOp (or a cast
// thereof).
// Apart from CastOp, only ExtractSliceOp is supported.
auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
if (!beforeSlice)
return false;
assert(static_cast<size_t>(t1.getRank()) ==
beforeSlice.getMixedSizes().size());
assert(static_cast<size_t>(t2.getRank()) ==
afterTrimming.getMixedSizes().size());
for (unsigned i = 0; i < t1.getRank(); ++i) {
// Skip static dimensions.
if (!t1.isDynamicDim(i))
continue;
auto size1 = beforeSlice.getMixedSizes()[i];
auto size2 = afterTrimming.getMixedSizes()[i];
// Case 1: Same value or same constant int.
if (isEqualConstantIntOrValue(size1, size2))
continue;
// Other cases: Take a deeper look at defining ops of values.
auto v1 = llvm::dyn_cast_if_present<Value>(size1);
auto v2 = llvm::dyn_cast_if_present<Value>(size2);
if (!v1 || !v2)
return false;
// Case 2: Both values are identical AffineMinOps. (Should not happen if
// CSE is run.)
auto minOp1 = v1.getDefiningOp<affine::AffineMinOp>();
auto minOp2 = v2.getDefiningOp<affine::AffineMinOp>();
if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
minOp1.getOperands() == minOp2.getOperands())
continue;
// Add additional cases as needed.
}
// All tests passed.
return true;
}
};
/// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.:
/// ```
/// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %r = tensor.insert_slice %0
/// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
/// : tensor<17x5xf32> into tensor<?x?x17x5xf32>
/// ```
/// is rewritten to:
/// ```
/// %0 = vector.transfer_read %src[%c0, %c0], %padding
/// : tensor<?x?xf32>, vector<17x5xf32>
/// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
/// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
/// ```
///
/// This rewrite is possible if:
/// - Low padding is static 0.
/// - `padOp` result shape is static.
/// - The entire padded tensor is inserted.
/// (Implies that sizes of `insertOp` are all static.)
/// - Only unit strides in `insertOp`.
/// - Single, scalar padding value.
/// - `padOp` result not used as destination.
struct PadOpVectorizationWithInsertSlicePattern
: public VectorizePadOpUserPattern<tensor::InsertSliceOp> {
using VectorizePadOpUserPattern<
tensor::InsertSliceOp>::VectorizePadOpUserPattern;
LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
tensor::InsertSliceOp insertOp) const override {
// Low padding must be static 0.
if (!padOp.hasZeroLowPad())
return failure();
// Only unit stride supported.
if (!insertOp.hasUnitStride())
return failure();
// Pad value must be a constant.
auto padValue = padOp.getConstantPaddingValue();
if (!padValue)
return failure();
// Dynamic shapes not supported.
if (!cast<ShapedType>(padOp.getResult().getType()).hasStaticShape())
return failure();
// Pad result not used as destination.
if (insertOp.getDest() == padOp.getResult())
return failure();
auto vecType = VectorType::get(padOp.getType().getShape(),
padOp.getType().getElementType());
unsigned vecRank = vecType.getRank();
unsigned tensorRank = insertOp.getType().getRank();
// Check if sizes match: Insert the entire tensor into most minor dims.
// (No permutations allowed.)
SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
if (!llvm::all_of(
llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
}))
return failure();
// Insert the TransferReadOp and TransferWriteOp at the position of the
// InsertSliceOp.
rewriter.setInsertionPoint(insertOp);
// Generate TransferReadOp: Read entire source tensor and add high
// padding.
SmallVector<Value> readIndices(
vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
auto read = rewriter.create<vector::TransferReadOp>(
padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue);
// Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
// specified offsets. Write is fully in-bounds because a InsertSliceOp's
// source must fit into the destination at the specified offsets.
auto writeIndices =
ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
SmallVector<bool> inBounds(vecRank, true);
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
insertOp, read, insertOp.getDest(), writeIndices,
ArrayRef<bool>{inBounds});
return success();
}
};
void mlir::linalg::populatePadOpVectorizationPatterns(
RewritePatternSet &patterns, PatternBenefit baseBenefit) {
patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(),
baseBenefit);
// Try these specialized patterns first before resorting to the generic one.
patterns.add<PadOpVectorizationWithTransferReadPattern,
PadOpVectorizationWithTransferWritePattern,
PadOpVectorizationWithInsertSlicePattern>(
patterns.getContext(), baseBenefit.getBenefit() + 1);
}
//----------------------------------------------------------------------------//
// Forwarding patterns
//----------------------------------------------------------------------------//
/// Check whether there is any interleaved use of any `values` between
/// `firstOp` and `secondOp`. Conservatively return `true` if any op or value
/// is in a different block.
static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
ValueRange values) {
if (firstOp->getBlock() != secondOp->getBlock() ||
!firstOp->isBeforeInBlock(secondOp)) {
LDBG("interleavedUses precondition failed, firstOp: "
<< *firstOp << ", second op: " << *secondOp << "\n");
return true;
}
for (auto v : values) {
for (auto &u : v.getUses()) {
Operation *owner = u.getOwner();
if (owner == firstOp || owner == secondOp)
continue;
// TODO: this is too conservative, use dominance info in the future.
if (owner->getBlock() == firstOp->getBlock() &&
(owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
continue;
LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
<< ", second op: " << *secondOp << "\n");
return true;
}
}
return false;
}
/// Return the unique subview use of `v` if it is indeed unique, null
/// otherwise.
static memref::SubViewOp getSubViewUseIfUnique(Value v) {
memref::SubViewOp subViewOp;
for (auto &u : v.getUses()) {
if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
if (subViewOp)
return memref::SubViewOp();
subViewOp = newSubViewOp;
}
}
return subViewOp;
}
/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
// TODO: support mask.
if (xferOp.getMask())
return rewriter.notifyMatchFailure(xferOp, "unsupported mask");
// Transfer into `view`.
Value viewOrAlloc = xferOp.getSource();
if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
!viewOrAlloc.getDefiningOp<memref::AllocOp>())
return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc");
// Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
if (!subViewOp)
return rewriter.notifyMatchFailure(xferOp, "no subview found");
Value subView = subViewOp.getResult();
// Find the copy into `subView` without interleaved uses.
memref::CopyOp copyOp;
for (auto &u : subView.getUses()) {
if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) {
assert(isa<MemRefType>(newCopyOp.getTarget().getType()));
if (newCopyOp.getTarget() != subView)
continue;
if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
continue;
copyOp = newCopyOp;
break;
}
}
if (!copyOp)
return rewriter.notifyMatchFailure(xferOp, "no copy found");
// Find the fill into `viewOrAlloc` without interleaved uses before the
// copy.
FillOp maybeFillOp;
for (auto &u : viewOrAlloc.getUses()) {
if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
assert(isa<MemRefType>(newFillOp.output().getType()));
if (newFillOp.output() != viewOrAlloc)
continue;
if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
continue;
maybeFillOp = newFillOp;
break;
}
}
// Ensure padding matches.
if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value())
return rewriter.notifyMatchFailure(xferOp,
"padding value does not match fill");
// `in` is the subview that memref.copy reads. Replace it.
Value in = copyOp.getSource();
// memref.copy + linalg.fill can be used to create a padded local buffer.
// The `masked` attribute is only valid on this padded buffer.
// When forwarding to vector.transfer_read, the attribute must be reset
// conservatively.
Value res = rewriter.create<vector::TransferReadOp>(
xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(),
xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(),
// in_bounds is explicitly reset
/*inBoundsAttr=*/ArrayAttr());
if (maybeFillOp)
rewriter.eraseOp(maybeFillOp);
rewriter.eraseOp(copyOp);
rewriter.replaceOp(xferOp, res);
return success();
}
/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
// TODO: support mask.
if (xferOp.getMask())
return rewriter.notifyMatchFailure(xferOp, "unsupported mask");
// Transfer into `viewOrAlloc`.
Value viewOrAlloc = xferOp.getSource();
if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
!viewOrAlloc.getDefiningOp<memref::AllocOp>())
return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc");
// Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
if (!subViewOp)
return rewriter.notifyMatchFailure(xferOp, "no subview found");
Value subView = subViewOp.getResult();
// Find the copy from `subView` without interleaved uses.
memref::CopyOp copyOp;
for (auto &u : subViewOp.getResult().getUses()) {
if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) {
if (newCopyOp.getSource() != subView)
continue;
if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
continue;
copyOp = newCopyOp;
break;
}
}
if (!copyOp)
return rewriter.notifyMatchFailure(xferOp, "no copy found");
// `out` is the subview copied into that we replace.
assert(isa<MemRefType>(copyOp.getTarget().getType()));
Value out = copyOp.getTarget();
// Forward vector.transfer into copy.
// memref.copy + linalg.fill can be used to create a padded local buffer.
// The `masked` attribute is only valid on this padded buffer.
// When forwarding to vector.transfer_write, the attribute must be reset
// conservatively.
rewriter.create<vector::TransferWriteOp>(
xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(),
xferOp.getPermutationMapAttr(), xferOp.getMask(),
// in_bounds is explicitly reset
/*inBoundsAttr=*/ArrayAttr());
rewriter.eraseOp(copyOp);
rewriter.eraseOp(xferOp);
return success();
}
//===----------------------------------------------------------------------===//
// Convolution vectorization patterns
//===----------------------------------------------------------------------===//
template <int N>
static void bindShapeDims(ShapedType shapedType) {}
template <int N, typename IntTy, typename... IntTy2>
static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) {
val = shapedType.getShape()[N];
bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...);
}
/// Bind a pack of int& to the leading dimensions of shapedType.getShape().
template <typename... IntTy>
static void bindShapeDims(ShapedType shapedType, IntTy &...vals) {
bindShapeDims<0>(shapedType, vals...);
}
namespace {
bool isCastOfBlockArgument(Operation *op) {
return isa<CastOpInterface>(op) && op->getNumOperands() == 1 &&
isa<BlockArgument>(op->getOperand(0));
}
bool isSupportedPoolKind(vector::CombiningKind kind) {
switch (kind) {
case vector::CombiningKind::ADD:
case vector::CombiningKind::MAXF:
case vector::CombiningKind::MAXSI:
case vector::CombiningKind::MAXUI:
case vector::CombiningKind::MINF:
case vector::CombiningKind::MINSI:
case vector::CombiningKind::MINUI:
return true;
default:
return false;
}
}
/// Generate a vector implementation for either:
/// ```
/// Op def: ( w, kw )
/// Iters: ({Par(), Red()})
/// Layout: {{w + kw}, {kw}, {w}}
/// ```
/// kw is unrolled.
///
/// or
///
/// ```
/// Op def: ( n, w, c, kw, f )
/// Iters: ({Par(), Par(), Par(), Red(), Red()})
/// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
///
/// or
///
/// ```
/// Op def: ( n, c, w, f, kw )
/// Iters: ({Par(), Par(), Par(), Red(), Red()})
/// Layout: {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
///
/// or
///
/// ```
/// Op def: ( n, w, c, kw )
/// Iters: ({Par(), Par(), Par(), Red()})
/// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
struct Conv1DGenerator
: public StructuredGenerator<LinalgOp, utils::IteratorType> {
Conv1DGenerator(RewriterBase &rewriter, LinalgOp linalgOp, int strideW,
int dilationW)
: StructuredGenerator<LinalgOp, utils::IteratorType>(rewriter, linalgOp),
strideW(strideW), dilationW(dilationW) {
// Determine whether `linalgOp` can be generated with this generator
if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1)
return;
lhsShaped = linalgOp.getDpsInputOperand(0)->get();
rhsShaped = linalgOp.getDpsInputOperand(1)->get();
resShaped = linalgOp.getDpsInitOperand(0)->get();
lhsShapedType = dyn_cast<ShapedType>(lhsShaped.getType());
rhsShapedType = dyn_cast<ShapedType>(rhsShaped.getType());
resShapedType = dyn_cast<ShapedType>(resShaped.getType());
if (!lhsShapedType || !rhsShapedType || !resShapedType)
return;
// (LHS has dimension NCW/NWC and RES has dimension NFW/NCW/NWF/NWC) OR
// (non-channeled convolution -> LHS and RHS both have single dimensions).
if (!((lhsShapedType.getRank() == 3 && resShapedType.getRank() == 3) ||
(lhsShapedType.getRank() == 1 && resShapedType.getRank() == 1)))
return;
Operation *reduceOp = matchLinalgReduction(linalgOp.getDpsInitOperand(0));
if (!reduceOp)
return;
redOp = reduceOp->getName().getIdentifier();
if (!setOperKind(reduceOp))
return;
auto maybeKind = getCombinerOpKind(reduceOp);
if (!maybeKind || (*maybeKind != vector::CombiningKind::ADD &&
(oper != Pool || !isSupportedPoolKind(*maybeKind)))) {
return;
}
auto rhsRank = rhsShapedType.getRank();
switch (oper) {
case Conv:
if (rhsRank != 1 && rhsRank != 2 && rhsRank != 3)
return;
break;
case Pool:
if (rhsRank != 1)
return;
break;
}
// The op is now known to be valid.
valid = true;
}
/// Generate a vector implementation for:
/// ```
/// Op def: ( w, kw )
/// Iters: ({Par(), Red()})
/// Layout: {{w + kw}, {kw}, {w}}
/// ```
/// kw is always unrolled.
///
/// or
///
/// ```
/// Op def: ( n, w, c, kw, f )
/// Iters: ({Par(), Par(), Par(), Red(), Red()})
/// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
/// ```
/// kw is always unrolled.
/// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
/// > 1.
FailureOr<Operation *> conv(Conv1DOpOrder conv1DOpOrder) {
if (!valid)
return rewriter.notifyMatchFailure(op, "unvectorizable 1-D conv/pool");
int64_t nSize, wSize, cSize, kwSize, fSize;
SmallVector<int64_t, 3> lhsShape, rhsShape, resShape;
bool isSingleChanneled = (conv1DOpOrder == Conv1DOpOrder::W);
switch (conv1DOpOrder) {
case Conv1DOpOrder::W:
// Initialize unused dimensions
nSize = fSize = cSize = 0;
// out{W}
bindShapeDims(resShapedType, wSize);
// kernel{kw}
bindShapeDims(rhsShapedType, kwSize);
lhsShape = {// iw = ow + kw - 1
// (i.e. 16 convolved with 3 -> 14)
(wSize + kwSize - 1)};
rhsShape = {kwSize};
resShape = {wSize};
break;
case Conv1DOpOrder::Nwc:
// out{n, w, f}
bindShapeDims(resShapedType, nSize, wSize, fSize);
switch (oper) {
case Conv:
// kernel{kw, c, f}
bindShapeDims(rhsShapedType, kwSize, cSize);
break;
case Pool:
// kernel{kw}
bindShapeDims(rhsShapedType, kwSize);
cSize = fSize;
break;
}
lhsShape = {nSize,
// iw = ow * sw + kw * dw - 1
// (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
// Perform the proper inclusive -> exclusive -> inclusive.
((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) -
1,
cSize};
switch (oper) {
case Conv:
rhsShape = {kwSize, cSize, fSize};
break;
case Pool:
rhsShape = {kwSize};
break;
}
resShape = {nSize, wSize, fSize};
break;
case Conv1DOpOrder::Ncw:
// out{n, f, w}
bindShapeDims(resShapedType, nSize, fSize, wSize);
switch (oper) {
case Conv:
// kernel{f, c, kw}
bindShapeDims(rhsShapedType, fSize, cSize, kwSize);
break;
case Pool:
// kernel{kw}
bindShapeDims(rhsShapedType, kwSize);
cSize = fSize;
break;
}
lhsShape = {nSize, cSize,
// iw = ow * sw + kw * dw - 1
// (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
// Perform the proper inclusive -> exclusive -> inclusive.
((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) -
1};
switch (oper) {
case Conv:
rhsShape = {fSize, cSize, kwSize};
break;
case Pool:
rhsShape = {kwSize};
break;
}
resShape = {nSize, fSize, wSize};
break;
}
vector::TransferWriteOp write;
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
// w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
// When strideW == 1, we can batch the contiguous loads and avoid
// unrolling
int64_t wSizeStep = strideW == 1 ? wSize : 1;
Type lhsEltType = lhsShapedType.getElementType();
Type rhsEltType = rhsShapedType.getElementType();
Type resEltType = resShapedType.getElementType();
auto lhsType = VectorType::get(lhsShape, lhsEltType);
auto rhsType = VectorType::get(rhsShape, rhsEltType);
auto resType = VectorType::get(resShape, resEltType);
// Zero padding with the corresponding dimensions for lhs, rhs and res.
SmallVector<Value> lhsPadding(lhsShape.size(), zero);
SmallVector<Value> rhsPadding(rhsShape.size(), zero);
SmallVector<Value> resPadding(resShape.size(), zero);
// Read the whole lhs, rhs and res in one shot (with zero padding).
Value lhs = rewriter.create<vector::TransferReadOp>(loc, lhsType, lhsShaped,
lhsPadding);
// This is needed only for Conv.
Value rhs = nullptr;
if (oper == Conv)
rhs = rewriter.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
rhsPadding);
Value res = rewriter.create<vector::TransferReadOp>(loc, resType, resShaped,
resPadding);
// The base vectorization case for channeled convolution is input: {n,w,c},
// weight: {kw,c,f}, output: {n,w,f}. To reuse the base pattern
// vectorization case, we do pre transpose on input, weight, and output.
switch (conv1DOpOrder) {
case Conv1DOpOrder::W:
case Conv1DOpOrder::Nwc:
// Base case, so no transposes necessary.
break;
case Conv1DOpOrder::Ncw: {
// To match base vectorization case, we pre-transpose current case.
// ncw -> nwc
static constexpr std::array<int64_t, 3> permLhs = {0, 2, 1};
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, permLhs);
// fcw -> wcf
static constexpr std::array<int64_t, 3> permRhs = {2, 1, 0};
// This is needed only for Conv.
if (oper == Conv)
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, permRhs);
// nfw -> nwf
static constexpr std::array<int64_t, 3> permRes = {0, 2, 1};
res = rewriter.create<vector::TransposeOp>(loc, res, permRes);
break;
}
}
//===------------------------------------------------------------------===//
// Begin vector-only rewrite part
//===------------------------------------------------------------------===//
// Unroll along kw and read slices of lhs and rhs.
SmallVector<Value> lhsVals, rhsVals, resVals;
lhsVals = extractConvInputSlices(rewriter, loc, lhs, nSize, wSize, cSize,
kwSize, strideW, dilationW, wSizeStep,
isSingleChanneled);
// Do not do for pooling.
if (oper == Conv)
rhsVals = extractConvFilterSlices(rewriter, loc, rhs, kwSize);
resVals = extractConvResultSlices(rewriter, loc, res, nSize, wSize, fSize,
wSizeStep, isSingleChanneled);
auto linearIndex = [&](int64_t kw, int64_t w) {
return kw * (wSize / wSizeStep) + w;
};
// Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} or
// perform outerproduct for non-channeled convolution or
// perform simple arith operation for pooling
for (int64_t kw = 0; kw < kwSize; ++kw) {
for (int64_t w = 0; w < wSize; w += wSizeStep) {
switch (oper) {
case Conv:
if (isSingleChanneled) {
resVals[w] = conv1dSliceAsOuterProduct(rewriter, loc,
lhsVals[linearIndex(kw, w)],
rhsVals[kw], resVals[w]);
} else {
resVals[w] = conv1dSliceAsContraction(rewriter, loc,
lhsVals[linearIndex(kw, w)],
rhsVals[kw], resVals[w]);
}
break;
case Pool:
resVals[w] = pool1dSlice(rewriter, loc, lhsVals[linearIndex(kw, w)],
resVals[w]);
break;
}
}
}
res = insertConvResultSlices(rewriter, loc, res, wSize, wSizeStep, resVals,
isSingleChanneled);
//===------------------------------------------------------------------===//
// End vector-only rewrite part
//===------------------------------------------------------------------===//
// The base vectorization case for channeled convolution is output: {n,w,f}
// To reuse the result from base pattern vectorization case, we post
// transpose the base case result.
switch (conv1DOpOrder) {
case Conv1DOpOrder::W:
case Conv1DOpOrder::Nwc:
// Base case, so no transposes necessary.
break;
case Conv1DOpOrder::Ncw: {
// nwf -> nfw
static constexpr std::array<int64_t, 3> perm = {0, 2, 1};
res = rewriter.create<vector::TransposeOp>(loc, res, perm);
break;
}
}
return rewriter
.create<vector::TransferWriteOp>(loc, res, resShaped, resPadding)
.getOperation();
}
// Take a value and widen to have the same element type as `ty`.
Value promote(RewriterBase &rewriter, Location loc, Value val, Type ty) {
const Type srcElementType = getElementTypeOrSelf(val.getType());
const Type dstElementType = getElementTypeOrSelf(ty);
assert(isa<IntegerType>(dstElementType) || isa<FloatType>(dstElementType));
if (srcElementType == dstElementType)
return val;
const int64_t srcWidth = srcElementType.getIntOrFloatBitWidth();
const int64_t dstWidth = dstElementType.getIntOrFloatBitWidth();
const Type dstType =
cast<ShapedType>(val.getType()).cloneWith(std::nullopt, dstElementType);
if (isa<IntegerType>(srcElementType) && isa<FloatType>(dstElementType)) {
return rewriter.create<arith::SIToFPOp>(loc, dstType, val);
}
if (isa<FloatType>(srcElementType) && isa<FloatType>(dstElementType) &&
srcWidth < dstWidth)
return rewriter.create<arith::ExtFOp>(loc, dstType, val);
if (isa<IntegerType>(srcElementType) && isa<IntegerType>(dstElementType) &&
srcWidth < dstWidth)
return rewriter.create<arith::ExtSIOp>(loc, dstType, val);
assert(false && "unhandled promotion case");
return nullptr;
}
// Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
Value conv1dSliceAsContraction(RewriterBase &rewriter, Location loc,
Value lhs, Value rhs, Value res) {
vector::IteratorType par = vector::IteratorType::parallel;
vector::IteratorType red = vector::IteratorType::reduction;
AffineExpr n, w, f, c;
bindDims(ctx, n, w, f, c);
lhs = promote(rewriter, loc, lhs, res.getType());
rhs = promote(rewriter, loc, rhs, res.getType());
return rewriter.create<vector::ContractionOp>(
loc, lhs, rhs, res,
/*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
/*iteratorTypes=*/ArrayRef<vector::IteratorType>{par, par, par, red});
}
// Create an outerproduct: lhs{w} * rhs{1} -> res{w} for single channel
// convolution.
Value conv1dSliceAsOuterProduct(RewriterBase &rewriter, Location loc,
Value lhs, Value rhs, Value res) {
return rewriter.create<vector::OuterProductOp>(
loc, res.getType(), lhs, rhs, res, vector::CombiningKind::ADD);
}
// Create a reduction: lhs{n, w, c} -> res{n, w, c}
Value pool1dSlice(RewriterBase &rewriter, Location loc, Value lhs,
Value res) {
if (isPoolExt)
lhs = rewriter.create(loc, poolExtOp, lhs, res.getType())->getResult(0);
return rewriter
.create(loc, redOp, ArrayRef<Value>{lhs, res}, res.getType())
->getResult(0);
}
/// Generate a vector implementation for:
/// ```
/// Op def: ( n, w, c, kw)
/// Iters: ({Par(), Par(), Par(), Red()})
/// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
/// ```
/// kw is always unrolled.
/// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
/// > 1.
FailureOr<Operation *> depthwiseConv() {
if (!valid)
return rewriter.notifyMatchFailure(op, "unvectorizable depthwise conv");
int64_t nSize, wSize, cSize, kwSize;
// kernel{kw, c}
bindShapeDims(rhsShapedType, kwSize, cSize);
// out{n, w, c}
bindShapeDims(resShapedType, nSize, wSize);
vector::TransferWriteOp write;
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
// w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
// When strideW == 1, we can batch the contiguous loads and avoid
// unrolling
int64_t wSizeStep = strideW == 1 ? wSize : 1;
Type lhsEltType = lhsShapedType.getElementType();
Type rhsEltType = rhsShapedType.getElementType();
Type resEltType = resShapedType.getElementType();
VectorType lhsType = VectorType::get(
{nSize,
// iw = ow * sw + kw * dw - 1
// (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
cSize},
lhsEltType);
VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType);
VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType);
// Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0,
// 0].
Value lhs = rewriter.create<vector::TransferReadOp>(
loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
// Read rhs slice of size {kw, c} @ [0, 0].
Value rhs = rewriter.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
ValueRange{zero, zero});
// Read res slice of size {n, w, c} @ [0, 0, 0].
Value res = rewriter.create<vector::TransferReadOp>(
loc, resType, resShaped, ValueRange{zero, zero, zero});
//===------------------------------------------------------------------===//
// Begin vector-only rewrite part
//===------------------------------------------------------------------===//
// Unroll along kw and read slices of lhs and rhs.
SmallVector<Value> lhsVals, rhsVals, resVals;
// Extract lhs slice of size {n, wSizeStep, c}
// @ [0, sw * w + dw * kw, 0].
for (int64_t kw = 0; kw < kwSize; ++kw) {
for (int64_t w = 0; w < wSize; w += wSizeStep) {
lhsVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
loc, lhs,
/*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
/*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
/*strides=*/ArrayRef<int64_t>{1, 1, 1}));
}
}
// Extract rhs slice of size {c} @ [kw].
for (int64_t kw = 0; kw < kwSize; ++kw) {
rhsVals.push_back(rewriter.create<vector::ExtractOp>(
loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
}
// Extract res slice: {n, wSizeStep, c} @ [0, w, 0].
for (int64_t w = 0; w < wSize; w += wSizeStep) {
resVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
loc, res,
/*offsets=*/ArrayRef<int64_t>{0, w, 0},
/*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
/*strides=*/ArrayRef<int64_t>{1, 1, 1}));
}
auto linearIndex = [&](int64_t kw, int64_t w) {
return kw * (wSize / wSizeStep) + w;
};
// Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c}
for (int64_t kw = 0; kw < kwSize; ++kw) {
for (int64_t w = 0; w < wSize; w += wSizeStep) {
resVals[w] = depthwiseConv1dSliceAsMulAcc(rewriter, loc,
lhsVals[linearIndex(kw, w)],
rhsVals[kw], resVals[w]);
}
}
// Its possible we failed to create the Fma.
if (!llvm::all_of(resVals, [](Value v) { return v; })) {
// Manually revert (in reverse order) to avoid leaving a bad IR state.
for (auto &collection :
{resVals, rhsVals, lhsVals, {res, rhs, lhs, zero}})
for (Value v : collection)
rewriter.eraseOp(v.getDefiningOp());
return rewriter.notifyMatchFailure(op, "failed to create FMA");
}
// Write back res slice: {n, wSizeStep, c} @ [0, w, 0].
// This does not depend on kw.
for (int64_t w = 0; w < wSize; w += wSizeStep) {
res = rewriter.create<vector::InsertStridedSliceOp>(
loc, resVals[w], res,
/*offsets=*/ArrayRef<int64_t>{0, w, 0},
/*strides=*/ArrayRef<int64_t>{1, 1, 1});
}
//===------------------------------------------------------------------===//
// End vector-only rewrite part
//===------------------------------------------------------------------===//
// Write back res slice of size {n, w, c} @ [0, 0, 0].
return rewriter
.create<vector::TransferWriteOp>(loc, res, resShaped,
ValueRange{zero, zero, zero})
.getOperation();
}
/// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to MulAcc
Value depthwiseConv1dSliceAsMulAcc(RewriterBase &rewriter, Location loc,
Value lhs, Value rhs, Value res) {
auto rhsTy = cast<ShapedType>(rhs.getType());
auto resTy = cast<ShapedType>(res.getType());
// TODO(suderman): Change this to use a vector.ima intrinsic.
lhs = promote(rewriter, loc, lhs, resTy);
rhs = rewriter.create<vector::BroadcastOp>(
loc, resTy.clone(rhsTy.getElementType()), rhs);
rhs = promote(rewriter, loc, rhs, resTy);
if (!lhs || !rhs)
return nullptr;
if (isa<FloatType>(resTy.getElementType()))
return rewriter.create<vector::FMAOp>(loc, lhs, rhs, res);
auto mul = rewriter.create<arith::MulIOp>(loc, lhs, rhs);
return rewriter.create<arith::AddIOp>(loc, mul, res);
}
/// Entry point for non-channeled convolution:
/// {{w + kw}, {kw}, {w}}
FailureOr<Operation *> generateNonChanneledConv() {
AffineExpr w, kw;
bindDims(ctx, w, kw);
if (!iters({Par(), Red()}))
return rewriter.notifyMatchFailure(op,
"failed to match conv::W 1-par 1-red");
// No transposition needed.
if (layout({/*lhsIndex*/ {w + kw},
/*rhsIndex*/ {kw},
/*resIndex*/ {w}}))
return conv(Conv1DOpOrder::W);
return rewriter.notifyMatchFailure(op, "not a conv::W layout");
}
/// Entry point that transposes into the common form:
/// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
FailureOr<Operation *> generateNwcConv() {
AffineExpr n, w, f, kw, c;
bindDims(ctx, n, w, f, kw, c);
if (!iters({Par(), Par(), Par(), Red(), Red()}))
return rewriter.notifyMatchFailure(
op, "failed to match conv::Nwc 3-par 2-red");
// No transposition needed.
if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
/*rhsIndex*/ {kw, c, f},
/*resIndex*/ {n, w, f}}))
return conv(Conv1DOpOrder::Nwc);
return rewriter.notifyMatchFailure(op, "not a conv::Nwc layout");
}
/// Entry point that transposes into the common form:
/// {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}}
FailureOr<Operation *> generateNcwConv() {
AffineExpr n, w, f, kw, c;
bindDims(ctx, n, f, w, c, kw);
if (!iters({Par(), Par(), Par(), Red(), Red()}))
return rewriter.notifyMatchFailure(
op, "failed to match conv::Ncw 3-par 2-red");
if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw},
/*rhsIndex*/ {f, c, kw},
/*resIndex*/ {n, f, w}}))
return conv(Conv1DOpOrder::Ncw);
return rewriter.notifyMatchFailure(op, "not a conv::Ncw layout");
}
/// Entry point that transposes into the common form:
/// {{n, strideW * w + dilationW * kw, c}, {kw}, {n, w, c}} for pooling
FailureOr<Operation *> generateNwcPooling() {
AffineExpr n, w, c, kw;
bindDims(ctx, n, w, c, kw);
if (!iters({Par(), Par(), Par(), Red()}))
return rewriter.notifyMatchFailure(op,
"failed to match pooling 3-par 1-red");
// No transposition needed.
if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
/*rhsIndex*/ {kw},
/*resIndex*/ {n, w, c}}))
return conv(Conv1DOpOrder::Nwc);
return rewriter.notifyMatchFailure(op, "not a pooling::Nwc layout");
}
/// Entry point that transposes into the common form:
/// {{n, c, strideW * w + dilationW * kw}, {kw}, {n, c, w}} for pooling
FailureOr<Operation *> generateNcwPooling() {
AffineExpr n, w, c, kw;
bindDims(ctx, n, c, w, kw);
if (!iters({Par(), Par(), Par(), Red()}))
return rewriter.notifyMatchFailure(op,
"failed to match pooling 3-par 1-red");
if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw},
/*rhsIndex*/ {kw},
/*resIndex*/ {n, c, w}}))
return conv(Conv1DOpOrder::Ncw);
return rewriter.notifyMatchFailure(op, "not a pooling::Ncw layout");
}
/// Entry point that transposes into the common form:
/// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
FailureOr<Operation *> generateDilatedConv() {
AffineExpr n, w, c, kw;
bindDims(ctx, n, w, c, kw);
if (!iters({Par(), Par(), Par(), Red()}))
return rewriter.notifyMatchFailure(
op, "failed to match depthwise::Nwc conv 3-par 1-red");
// No transposition needed.
if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
/*rhsIndex*/ {kw, c},
/*resIndex*/ {n, w, c}}))
return depthwiseConv();
return rewriter.notifyMatchFailure(op, "not a depthwise::Nwc layout");
}
private:
enum OperKind { Conv, Pool };
bool valid = false;
OperKind oper = Conv;
StringAttr redOp;
StringAttr poolExtOp;
bool isPoolExt = false;
int strideW, dilationW;
Value lhsShaped, rhsShaped, resShaped;
ShapedType lhsShapedType, rhsShapedType, resShapedType;
// Sets oper, poolExtOp and isPoolExt for valid conv/pooling ops.
// Returns true iff it is a valid conv/pooling op.
// If (region has 2 ops (reduction + yield) or 3 ops (extension + reduction
// + yield) and rhs is not used) then it is the body of a pooling
// If conv, check for single `mul` predecessor. The `mul` operands must be
// block arguments or extension of block arguments.
// Otherwise, check for one or zero `ext` predecessor. The `ext` operands
// must be block arguments or extension of block arguments.
bool setOperKind(Operation *reduceOp) {
int numBlockArguments = llvm::count_if(
reduceOp->getOperands(), [](Value v) { return isa<BlockArgument>(v); });
switch (numBlockArguments) {
case 1: {
// Will be convolution if feeder is a MulOp.
// Otherwise, if it can be pooling.
auto feedValIt = llvm::find_if(reduceOp->getOperands(), [](Value v) {
return !isa<BlockArgument>(v);
});
Operation *feedOp = (*feedValIt).getDefiningOp();
if (isCastOfBlockArgument(feedOp)) {
oper = Pool;
isPoolExt = true;
poolExtOp = feedOp->getName().getIdentifier();
} else if (!(isa<arith::MulIOp, arith::MulFOp>(feedOp) &&
llvm::all_of(feedOp->getOperands(), [](Value v) {
if (isa<BlockArgument>(v))
return true;
if (Operation *op = v.getDefiningOp())
return isCastOfBlockArgument(op);
return false;
}))) {
return false;
}
return true;
}
case 2:
// Must be pooling
oper = Pool;
isPoolExt = false;
return true;
default:
return false;
}
}
};
} // namespace
/// Helper function to vectorize a LinalgOp with convolution semantics.
// TODO: extend the generic vectorization to support windows and drop this.
static FailureOr<Operation *> vectorizeConvolution(RewriterBase &rewriter,
LinalgOp op) {
// The ConvolutionOpInterface gives us guarantees of existence for
// strides/dilations. However, we do not need to rely on those, we can simply
// use them if present, otherwise use the default and let the generic conv.
// matcher in the ConvGenerator succeed or fail.
auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides");
auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations");
auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
Conv1DGenerator e(rewriter, op, stride, dilation);
auto res = e.generateNonChanneledConv();
if (succeeded(res))
return res;
res = e.generateNwcConv();
if (succeeded(res))
return res;
res = e.generateNcwConv();
if (succeeded(res))
return res;
res = e.generateNwcPooling();
if (succeeded(res))
return res;
res = e.generateNcwPooling();
if (succeeded(res))
return res;
return e.generateDilatedConv();
}
struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> {
using OpInterfaceRewritePattern::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op);
if (failed(resultOrFail))
return failure();
Operation *newOp = *resultOrFail;
if (newOp->getNumResults() == 0) {
rewriter.eraseOp(op.getOperation());
return success();
}
assert(newOp->getNumResults() == 1 && "expected single result");
rewriter.replaceOp(op.getOperation(), newOp->getResult(0));
return success();
}
};
void mlir::linalg::populateConvolutionVectorizationPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
}
|