File: Vectorization.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (3194 lines) | stat: -rw-r--r-- 131,212 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Vectorization transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Utils.h"

#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#include <type_traits>

using namespace mlir;
using namespace mlir::linalg;

#define DEBUG_TYPE "linalg-vectorization"

#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")

/// Try to vectorize `convOp` as a convolution.
static FailureOr<Operation *> vectorizeConvolution(RewriterBase &rewriter,
                                                   LinalgOp convOp);

/// Return the unique instance of OpType in `block` if it is indeed unique.
/// Return null if none or more than 1 instances exist.
template <typename OpType>
static OpType getSingleOpOfType(Block &block) {
  OpType res;
  block.walk([&](OpType op) {
    if (res) {
      res = nullptr;
      return WalkResult::interrupt();
    }
    res = op;
    return WalkResult::advance();
  });
  return res;
}

/// Helper function to extract the input slices after filter is unrolled along
/// kw.
static SmallVector<Value>
extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input,
                       int64_t nSize, int64_t wSize, int64_t cSize,
                       int64_t kwSize, int strideW, int dilationW,
                       int64_t wSizeStep, bool isSingleChanneled) {
  SmallVector<Value> result;
  if (isSingleChanneled) {
    // Extract input slice of size {wSizeStep} @ [w + kw] for non-channeled
    // convolution.
    SmallVector<int64_t> sizes{wSizeStep};
    SmallVector<int64_t> strides{1};
    for (int64_t kw = 0; kw < kwSize; ++kw) {
      for (int64_t w = 0; w < wSize; w += wSizeStep) {
        result.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
            loc, input, /*offsets=*/ArrayRef<int64_t>{w + kw}, sizes, strides));
      }
    }
  } else {
    // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0]
    // for channeled convolution.
    SmallVector<int64_t> sizes{nSize, wSizeStep, cSize};
    SmallVector<int64_t> strides{1, 1, 1};
    for (int64_t kw = 0; kw < kwSize; ++kw) {
      for (int64_t w = 0; w < wSize; w += wSizeStep) {
        result.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
            loc, input,
            /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
            sizes, strides));
      }
    }
  }
  return result;
}

/// Helper function to extract the filter slices after filter is unrolled along
/// kw.
static SmallVector<Value> extractConvFilterSlices(RewriterBase &rewriter,
                                                  Location loc, Value filter,
                                                  int64_t kwSize) {
  SmallVector<Value> result;
  // Extract rhs slice of size [{c, f} for channeled convolutions and {1} for
  // non-chanelled convolution] @ [kw].
  for (int64_t kw = 0; kw < kwSize; ++kw) {
    result.push_back(rewriter.create<vector::ExtractOp>(
        loc, filter, /*offsets=*/ArrayRef<int64_t>{kw}));
  }
  return result;
}

/// Helper function to extract the result slices after filter is unrolled along
/// kw.
static SmallVector<Value>
extractConvResultSlices(RewriterBase &rewriter, Location loc, Value res,
                        int64_t nSize, int64_t wSize, int64_t fSize,
                        int64_t wSizeStep, bool isSingleChanneled) {
  SmallVector<Value> result;
  if (isSingleChanneled) {
    // Extract res slice: {wSizeStep} @ [w] for non-channeled convolution.
    SmallVector<int64_t> sizes{wSizeStep};
    SmallVector<int64_t> strides{1};
    for (int64_t w = 0; w < wSize; w += wSizeStep) {
      result.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
          loc, res, /*offsets=*/ArrayRef<int64_t>{w}, sizes, strides));
    }
  } else {
    // Extract res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled
    // convolution.
    SmallVector<int64_t> sizes{nSize, wSizeStep, fSize};
    SmallVector<int64_t> strides{1, 1, 1};
    for (int64_t w = 0; w < wSize; w += wSizeStep) {
      result.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
          loc, res, /*offsets=*/ArrayRef<int64_t>{0, w, 0}, sizes, strides));
    }
  }
  return result;
}

/// Helper function to insert the computed result slices.
static Value insertConvResultSlices(RewriterBase &rewriter, Location loc,
                                    Value res, int64_t wSize, int64_t wSizeStep,
                                    SmallVectorImpl<Value> &resVals,
                                    bool isSingleChanneled) {

  if (isSingleChanneled) {
    // Write back res slice: {wSizeStep} @ [w] for non-channeled convolution.
    // This does not depend on kw.
    SmallVector<int64_t> strides{1};
    for (int64_t w = 0; w < wSize; w += wSizeStep) {
      res = rewriter.create<vector::InsertStridedSliceOp>(
          loc, resVals[w], res, /*offsets=*/ArrayRef<int64_t>{w}, strides);
    }
  } else {
    // Write back res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled
    // convolution. This does not depend on kw.
    SmallVector<int64_t> strides{1, 1, 1};
    for (int64_t w = 0; w < wSize; w += wSizeStep) {
      res = rewriter.create<vector::InsertStridedSliceOp>(
          loc, resVals[w], res, /*offsets=*/ArrayRef<int64_t>{0, w, 0},
          strides);
    }
  }
  return res;
}

/// Return true if the scalable vector dimensions are supported. For now, we
/// only support scalable vectors in the trailing dimension.
static bool areValidScalableVecDims(ArrayRef<bool> scalableVecDims) {
  if (scalableVecDims.empty())
    return true;

  auto isScalable = [](bool isScalableVecSize) { return isScalableVecSize; };
  if (std::any_of(scalableVecDims.begin(), scalableVecDims.end() - 1,
                  isScalable)) {
    return false;
  }

  return true;
}

/// Contains the vectorization state and related methods used across the
/// vectorization process of a given operation.
struct VectorizationState {
  VectorizationState(RewriterBase &rewriter) : rewriterGuard(rewriter) {}

  /// Initializes the vectorization state, including the computation of the
  /// canonical vector shape for vectorization.
  LogicalResult initState(RewriterBase &rewriter, LinalgOp linalgOp,
                          ArrayRef<int64_t> inputVectorSizes,
                          ArrayRef<bool> inputScalableVecDims);

  /// Returns the canonical vector shape used to vectorize the iteration space.
  ArrayRef<int64_t> getCanonicalVecShape() const { return canonicalVecShape; }

  /// Returns a vector type of the provided `elementType` with the canonical
  /// vector shape and the corresponding fixed/scalable dimensions bit. If
  /// `dimPermutation` is provided, the canonical vector dimensions are permuted
  /// accordingly.
  VectorType getCanonicalVecType(
      Type elementType,
      std::optional<AffineMap> dimPermutation = std::nullopt) const {
    SmallVector<int64_t> vectorShape;
    SmallVector<bool> scalableDims;
    if (dimPermutation.has_value()) {
      vectorShape =
          applyPermutationMap<int64_t>(*dimPermutation, canonicalVecShape);
      scalableDims =
          applyPermutationMap<bool>(*dimPermutation, scalableVecDims);
    } else {
      vectorShape.append(canonicalVecShape.begin(), canonicalVecShape.end());
      scalableDims.append(scalableVecDims.begin(), scalableVecDims.end());
    }

    // Make sure we don't end up with unsupported scalable vector dimensions
    // after the permutation. If so, we should bail out on that operation in the
    // scalable preconditions.
    assert(areValidScalableVecDims(scalableDims) &&
           "Permuted scalable vector dimensions are not supported");

    return VectorType::get(vectorShape, elementType, scalableDims);
  }

  /// Masks an operation with the canonical vector mask if the operation needs
  /// masking. Returns the masked operation or the original operation if masking
  /// is not needed. If provided, the canonical mask for this operation is
  /// permuted using `maybeMaskingMap`.
  Operation *
  maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp,
                std::optional<AffineMap> maybeMaskingMap = std::nullopt);

private:
  /// Initializes the iteration space static sizes using the Linalg op
  /// information. This may become more complicated in the future.
  void initIterSpaceStaticSizes(LinalgOp linalgOp) {
    iterSpaceStaticSizes.append(linalgOp.getStaticLoopRanges());
  }

  /// Generates 'arith.constant' and 'tensor/memref.dim' operations for
  /// all the static and dynamic dimensions of the iteration space to be
  /// vectorized and store them in `iterSpaceValueSizes`.
  LogicalResult precomputeIterSpaceValueSizes(RewriterBase &rewriter,
                                              LinalgOp linalgOp);

  /// Create or retrieve an existing mask value to mask `opToMask` in the
  /// canonical vector iteration space. If `maybeMaskingMap` the mask is
  /// permuted using that permutation map. If a new mask is created, it will be
  /// cached for future users.
  Value getOrCreateMaskFor(RewriterBase &rewriter, Operation *opToMask,
                           LinalgOp linalgOp,
                           std::optional<AffineMap> maybeMaskingMap);

  // Holds the compile-time static sizes of the iteration space to vectorize.
  // Dynamic dimensions are represented using ShapedType::kDynamic.
  SmallVector<int64_t> iterSpaceStaticSizes;

  /// Holds the value sizes of the iteration space to vectorize. Static
  /// dimensions are represented by 'arith.constant' and dynamic
  /// dimensions by 'tensor/memref.dim'.
  SmallVector<Value> iterSpaceValueSizes;

  /// Holds the canonical vector shape used to vectorize the iteration space.
  SmallVector<int64_t> canonicalVecShape;

  /// Holds the vector dimensions that are scalable in the canonical vector
  /// shape.
  SmallVector<bool> scalableVecDims;

  /// Holds the active masks for permutations of the canonical vector iteration
  /// space.
  DenseMap<AffineMap, Value> activeMaskCache;

  /// Global vectorization guard for the incoming rewriter. It's initialized
  /// when the vectorization state is initialized.
  OpBuilder::InsertionGuard rewriterGuard;
};

LogicalResult
VectorizationState::precomputeIterSpaceValueSizes(RewriterBase &rewriter,
                                                  LinalgOp linalgOp) {
  // TODO: Support 0-d vectors.
  for (int vecDim = 0, end = canonicalVecShape.size(); vecDim < end; ++vecDim) {
    if (!ShapedType::isDynamic(iterSpaceStaticSizes[vecDim])) {
      // Create constant index op for static dimensions.
      iterSpaceValueSizes.push_back(rewriter.create<arith::ConstantIndexOp>(
          linalgOp.getLoc(), iterSpaceStaticSizes[vecDim]));
      continue;
    }

    // Find an operand defined on this dimension of the iteration space to
    // extract the runtime dimension size.
    Value operand;
    unsigned operandDimPos;
    if (failed(linalgOp.mapIterationSpaceDimToOperandDim(vecDim, operand,
                                                         operandDimPos)))
      return failure();

    Value dynamicDim = linalgOp.hasTensorSemantics()
                           ? (Value)rewriter.create<tensor::DimOp>(
                                 linalgOp.getLoc(), operand, operandDimPos)
                           : (Value)rewriter.create<memref::DimOp>(
                                 linalgOp.getLoc(), operand, operandDimPos);
    iterSpaceValueSizes.push_back(dynamicDim);
  }

  return success();
}

/// Initializes the vectorization state, including the computation of the
/// canonical vector shape for vectorization.
// TODO: Move this to the constructor when we can remove the failure cases.
LogicalResult
VectorizationState::initState(RewriterBase &rewriter, LinalgOp linalgOp,
                              ArrayRef<int64_t> inputVectorSizes,
                              ArrayRef<bool> inputScalableVecDims) {
  // Initialize the insertion point.
  rewriter.setInsertionPoint(linalgOp);

  if (!inputVectorSizes.empty()) {
    // Get the canonical vector shape from the input vector sizes provided. This
    // path should be taken to vectorize code with dynamic shapes and when using
    // vector sizes greater than the iteration space sizes.
    canonicalVecShape.append(inputVectorSizes.begin(), inputVectorSizes.end());
    scalableVecDims.append(inputScalableVecDims.begin(),
                           inputScalableVecDims.end());
  } else {
    // Compute the canonical vector shape from the operation shape. If there are
    // dynamic shapes, the operation won't be vectorized. We assume all the
    // vector dimensions are fixed.
    canonicalVecShape = linalgOp.getStaticLoopRanges();
    scalableVecDims.append(linalgOp.getNumLoops(), false);
  }

  LDBG("Canonical vector shape: ");
  LLVM_DEBUG(llvm::interleaveComma(canonicalVecShape, llvm::dbgs()));
  LLVM_DEBUG(llvm::dbgs() << "\n");
  LDBG("Scalable vector dims: ");
  LLVM_DEBUG(llvm::interleaveComma(scalableVecDims, llvm::dbgs()));
  LLVM_DEBUG(llvm::dbgs() << "\n");

  if (ShapedType::isDynamicShape(canonicalVecShape))
    return failure();

  // Initialize iteration space static sizes.
  initIterSpaceStaticSizes(linalgOp);

  // Generate 'arith.constant' and 'tensor/memref.dim' operations for
  // all the static and dynamic dimensions of the iteration space, needed to
  // compute a mask during vectorization.
  if (failed(precomputeIterSpaceValueSizes(rewriter, linalgOp)))
    return failure();

  return success();
}

/// Create or retrieve an existing mask value to mask `opToMask` in the
/// canonical vector iteration space. If `maybeMaskingMap` the mask is permuted
/// using that permutation map. If a new mask is created, it will be cached for
/// future users.
Value VectorizationState::getOrCreateMaskFor(
    RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp,
    std::optional<AffineMap> maybeMaskingMap) {
  // No mask is needed if the operation is not maskable.
  auto maskableOp = dyn_cast<vector::MaskableOpInterface>(opToMask);
  if (!maskableOp)
    return Value();

  assert(!maskableOp.isMasked() &&
         "Masking an operation that is already masked");

  // If no masking map was provided, use an identity map with the loop dims.
  assert((!maybeMaskingMap || *maybeMaskingMap) &&
         "Unexpected null mask permutation map");
  AffineMap maskingMap =
      maybeMaskingMap ? *maybeMaskingMap
                      : AffineMap::getMultiDimIdentityMap(
                            linalgOp.getNumLoops(), rewriter.getContext());

  LDBG("Masking map: " << maskingMap << "\n");

  // Return the active mask for the masking map of this operation if it was
  // already created.
  auto activeMaskIt = activeMaskCache.find(maskingMap);
  if (activeMaskIt != activeMaskCache.end()) {
    Value mask = activeMaskIt->second;
    LDBG("Reusing mask: " << mask << "\n");
    return mask;
  }

  // Compute permuted projection of the iteration space to be masked and the
  // corresponding mask shape. If the resulting iteration space dimensions are
  // static and identical to the mask shape, masking is not needed for this
  // operation.
  // TODO: Improve this check. Only projected permutation indexing maps are
  // supported.
  SmallVector<int64_t> permutedStaticSizes =
      applyPermutationMap<int64_t>(maskingMap, iterSpaceStaticSizes);
  auto maskType = getCanonicalVecType(rewriter.getI1Type(), maskingMap);
  auto maskShape = maskType.getShape();

  LDBG("Mask shape: ");
  LLVM_DEBUG(llvm::interleaveComma(maskShape, llvm::dbgs()));
  LLVM_DEBUG(llvm::dbgs() << "\n");

  if (permutedStaticSizes == maskShape) {
    LDBG("Masking is not needed for masking map: " << maskingMap << "\n");
    activeMaskCache[maskingMap] = Value();
    return Value();
  }

  // Permute the iteration space value sizes to compute the mask upper bounds.
  SmallVector<Value> upperBounds =
      applyPermutationMap(maskingMap, ArrayRef<Value>(iterSpaceValueSizes));
  assert(!maskShape.empty() && !upperBounds.empty() &&
         "Masked 0-d vectors are not supported yet");

  // Create the mask based on the dimension values.
  Value mask = rewriter.create<vector::CreateMaskOp>(linalgOp.getLoc(),
                                                     maskType, upperBounds);
  LDBG("Creating new mask: " << mask << "\n");
  activeMaskCache[maskingMap] = mask;
  return mask;
}

/// Masks an operation with the canonical vector mask if the operation needs
/// masking. Returns the masked operation or the original operation if masking
/// is not needed. If provided, the canonical mask for this operation is
/// permuted using `maybeMaskingMap`.
Operation *
VectorizationState::maskOperation(RewriterBase &rewriter, Operation *opToMask,
                                  LinalgOp linalgOp,
                                  std::optional<AffineMap> maybeMaskingMap) {
  LDBG("Trying to mask: " << *opToMask << "\n");

  // Create or retrieve mask for this operation.
  Value mask =
      getOrCreateMaskFor(rewriter, opToMask, linalgOp, maybeMaskingMap);

  if (!mask) {
    LDBG("No mask required\n");
    return opToMask;
  }

  // Wrap the operation with a new `vector.mask` and update D-U chain.
  assert(opToMask && "Expected a valid operation to mask");
  auto maskOp = cast<vector::MaskOp>(
      mlir::vector::maskOperation(rewriter, opToMask, mask));
  Operation *maskOpTerminator = &maskOp.getMaskRegion().front().back();

  for (auto [resIdx, resVal] : llvm::enumerate(opToMask->getResults()))
    rewriter.replaceAllUsesExcept(resVal, maskOp.getResult(resIdx),
                                  maskOpTerminator);

  LDBG("Masked operation: " << *maskOp << "\n");
  return maskOp;
}

/// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
/// projectedPermutation, compress the unused dimensions to serve as a
/// permutation_map for a vector transfer operation.
/// For example, given a linalg op such as:
///
/// ```
///   %0 = linalg.generic {
///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
///      }
///     ins(%0 : tensor<2x3x4xf32>)
///    outs(%1 : tensor<5x6xf32>)
/// ```
///
/// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
/// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
/// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
static AffineMap reindexIndexingMap(AffineMap map) {
  assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) &&
         "expected projected permutation");
  auto res = compressUnusedDims(map);
  assert(res.getNumDims() == res.getNumResults() &&
         "expected reindexed map with same number of dims and results");
  return res;
}

/// Helper enum to represent conv1d input traversal order.
enum class Conv1DOpOrder {
  W,   // Corresponds to non-channeled 1D convolution operation.
  Ncw, // Corresponds to operation that traverses the input in (n, c, w) order.
  Nwc  // Corresponds to operation that traverses the input in (n, w, c) order.
};

/// Helper data structure to represent the result of vectorization.
/// In certain specific cases, like terminators, we do not want to propagate/
enum VectorizationStatus {
  /// Op failed to vectorize.
  Failure = 0,
  /// Op vectorized and custom function took care of replacement logic
  NoReplace,
  /// Op vectorized into a new Op whose results will replace original Op's
  /// results.
  NewOp
  // TODO: support values if Op vectorized to Many-Ops whose results we need to
  // aggregate for replacement.
};
struct VectorizationResult {
  /// Return status from vectorizing the current op.
  enum VectorizationStatus status = VectorizationStatus::Failure;
  /// New vectorized operation to replace the current op.
  /// Replacement behavior is specified by `status`.
  Operation *newOp;
};

std::optional<vector::CombiningKind>
mlir::linalg::getCombinerOpKind(Operation *combinerOp) {
  using ::mlir::vector::CombiningKind;

  if (!combinerOp)
    return std::nullopt;
  return llvm::TypeSwitch<Operation *, std::optional<CombiningKind>>(combinerOp)
      .Case<arith::AddIOp, arith::AddFOp>(
          [&](auto op) { return CombiningKind::ADD; })
      .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; })
      .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; })
      .Case<arith::MaxUIOp>([&](auto op) { return CombiningKind::MAXUI; })
      .Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; })
      .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; })
      .Case<arith::MinUIOp>([&](auto op) { return CombiningKind::MINUI; })
      .Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; })
      .Case<arith::MulIOp, arith::MulFOp>(
          [&](auto op) { return CombiningKind::MUL; })
      .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; })
      .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; })
      .Default([&](auto op) { return std::nullopt; });
}

/// Check whether `outputOperand` is a reduction with a single combiner
/// operation. Return the combiner operation of the reduction. Return
/// nullptr otherwise. Multiple reduction operations would impose an
/// ordering between reduction dimensions and is currently unsupported in
/// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
/// max(min(X))
// TODO: use in LinalgOp verification, there is a circular dependency atm.
static Operation *matchLinalgReduction(OpOperand *outputOperand) {
  auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
  unsigned outputPos =
      outputOperand->getOperandNumber() - linalgOp.getNumDpsInputs();
  // Only single combiner operations are supported for now.
  SmallVector<Operation *, 4> combinerOps;
  if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
      combinerOps.size() != 1)
    return nullptr;

  // Return the combiner operation.
  return combinerOps[0];
}

/// Broadcast `value` to a vector of `shape` if possible. Return value
/// otherwise.
static Value broadcastIfNeeded(OpBuilder &b, Value value, Type dstType) {
  auto dstVecType = dyn_cast<VectorType>(dstType);
  // If no shape to broadcast to, just return `value`.
  if (dstVecType.getRank() == 0)
    return value;
  if (vector::isBroadcastableTo(value.getType(), dstVecType) !=
      vector::BroadcastableToResult::Success)
    return value;
  Location loc = b.getInsertionPoint()->getLoc();
  return b.createOrFold<vector::BroadcastOp>(loc, dstVecType, value);
}

/// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
/// assumes that `reductionOp` has two operands and one of them is the reduction
/// initial value.buildMultiDimReduce
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
                                      Value valueToReduce, Value acc,
                                      ArrayRef<bool> dimsToMask) {
  auto maybeKind = getCombinerOpKind(reduceOp);
  assert(maybeKind && "Failed precondition: could not get reduction kind");
  return b.create<vector::MultiDimReductionOp>(
      reduceOp->getLoc(), valueToReduce, acc, dimsToMask, *maybeKind);
}

static SmallVector<bool> getDimsToReduce(LinalgOp linalgOp) {
  return llvm::to_vector(
      llvm::map_range(linalgOp.getIteratorTypesArray(), isReductionIterator));
}

/// Build a vector.transfer_write of `value` into `outputOperand` at indices set
/// to all `0`; where `outputOperand` is an output operand of the LinalgOp
/// currently being vectorized. If `dest` has null rank, build an memref.store.
/// Return the produced value or null if no value is produced.
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Value buildVectorWrite(RewriterBase &rewriter, Value value,
                              OpOperand *outputOperand,
                              VectorizationState &state) {
  Location loc = value.getLoc();
  auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
  AffineMap opOperandMap = linalgOp.getMatchingIndexingMap(outputOperand);

  // Compute the vector type of the value to store. This type should be an
  // identity or projection of the canonical vector type without any permutation
  // applied, given that any permutation in a transfer write happens as part of
  // the write itself.
  AffineMap vectorTypeMap = AffineMap::getFilteredIdentityMap(
      opOperandMap.getContext(), opOperandMap.getNumInputs(),
      [&](AffineDimExpr dimExpr) -> bool {
        return llvm::is_contained(opOperandMap.getResults(), dimExpr);
      });
  auto vectorType = state.getCanonicalVecType(
      getElementTypeOrSelf(outputOperand->get().getType()), vectorTypeMap);

  Operation *write;
  if (vectorType.getRank() > 0) {
    AffineMap writeMap = inversePermutation(reindexIndexingMap(opOperandMap));
    SmallVector<Value> indices(linalgOp.getRank(outputOperand),
                               rewriter.create<arith::ConstantIndexOp>(loc, 0));
    value = broadcastIfNeeded(rewriter, value, vectorType);
    assert(value.getType() == vectorType && "Incorrect type");
    write = rewriter.create<vector::TransferWriteOp>(
        loc, value, outputOperand->get(), indices, writeMap);
  } else {
    // 0-d case is still special: do not invert the reindexing writeMap.
    if (!isa<VectorType>(value.getType()))
      value = rewriter.create<vector::BroadcastOp>(loc, vectorType, value);
    assert(value.getType() == vectorType && "Incorrect type");
    write = rewriter.create<vector::TransferWriteOp>(
        loc, value, outputOperand->get(), ValueRange{});
  }

  write = state.maskOperation(rewriter, write, linalgOp, opOperandMap);

  // If masked, set in-bounds to true. Masking guarantees that the access will
  // be in-bounds.
  if (auto maskOp = dyn_cast<vector::MaskingOpInterface>(write)) {
    auto maskedWriteOp = cast<vector::TransferWriteOp>(maskOp.getMaskableOp());
    SmallVector<bool> inBounds(maskedWriteOp.getVectorType().getRank(), true);
    maskedWriteOp.setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds));
  }

  LDBG("vectorized op: " << *write << "\n");
  if (!write->getResults().empty())
    return write->getResult(0);
  return Value();
}

// Custom vectorization precondition function type. This is intented to be used
// with CustomVectorizationHook. Returns success if the corresponding custom
// hook can vectorize the op.
using CustomVectorizationPrecondition =
    std::function<LogicalResult(Operation *, bool)>;

// Custom vectorization function type. Produce a vector form of Operation*
// assuming all its vectorized operands are already in the IRMapping.
// Return nullptr if the Operation cannot be vectorized.
using CustomVectorizationHook =
    std::function<VectorizationResult(Operation *, const IRMapping &)>;

/// Helper function to vectorize the terminator of a `linalgOp`. New result
/// vector values are appended to `newResults`. Return
/// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
/// should not try to map produced operations and instead return the results
/// using the `newResults` vector making them available to the vectorization
/// algorithm for RAUW. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult
vectorizeLinalgYield(RewriterBase &rewriter, Operation *op,
                     const IRMapping &bvm, VectorizationState &state,
                     LinalgOp linalgOp, SmallVectorImpl<Value> &newResults) {
  auto yieldOp = dyn_cast<linalg::YieldOp>(op);
  if (!yieldOp)
    return VectorizationResult{VectorizationStatus::Failure, nullptr};
  for (const auto &output : llvm::enumerate(yieldOp.getValues())) {
    // TODO: Scan for an opportunity for reuse.
    // TODO: use a map.
    Value vectorValue = bvm.lookup(output.value());
    Value newResult =
        buildVectorWrite(rewriter, vectorValue,
                         linalgOp.getDpsInitOperand(output.index()), state);
    if (newResult)
      newResults.push_back(newResult);
  }

  return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
}

/// Helper function to vectorize the index operations of a `linalgOp`. Return
/// VectorizationStatus::NewOp to signal the vectorization algorithm that it
/// should map the produced operations. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter,
                                                VectorizationState &state,
                                                Operation *op,
                                                LinalgOp linalgOp) {
  IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
  if (!indexOp)
    return VectorizationResult{VectorizationStatus::Failure, nullptr};
  auto loc = indexOp.getLoc();
  // Compute the static loop sizes of the index op.
  auto targetShape = state.getCanonicalVecShape();
  // Compute a one-dimensional index vector for the index op dimension.
  auto constantSeq =
      llvm::to_vector(llvm::seq<int64_t>(0, targetShape[indexOp.getDim()]));
  auto indexSteps = rewriter.create<arith::ConstantOp>(
      loc, rewriter.getIndexVectorAttr(constantSeq));
  // Return the one-dimensional index vector if it lives in the trailing
  // dimension of the iteration space since the vectorization algorithm in this
  // case can handle the broadcast.
  if (indexOp.getDim() == targetShape.size() - 1)
    return VectorizationResult{VectorizationStatus::NewOp, indexSteps};
  // Otherwise permute the targetShape to move the index dimension last,
  // broadcast the one-dimensional index vector to the permuted shape, and
  // finally transpose the broadcasted index vector to undo the permutation.
  auto permPattern =
      llvm::to_vector(llvm::seq<unsigned>(0, targetShape.size()));
  std::swap(permPattern[indexOp.getDim()], permPattern.back());
  auto permMap =
      AffineMap::getPermutationMap(permPattern, linalgOp.getContext());

  auto broadCastOp = rewriter.create<vector::BroadcastOp>(
      loc, state.getCanonicalVecType(rewriter.getIndexType(), permMap),
      indexSteps);
  SmallVector<int64_t> transposition =
      llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
  std::swap(transposition.back(), transposition[indexOp.getDim()]);
  auto transposeOp =
      rewriter.create<vector::TransposeOp>(loc, broadCastOp, transposition);
  return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
}

/// Helper function to check if the tensor.extract can be vectorized by the
/// custom hook vectorizeTensorExtract.
static LogicalResult
tensorExtractVectorizationPrecondition(Operation *op, bool vectorizeNDExtract) {
  tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op);
  if (!extractOp)
    return failure();

  if (extractOp.getIndices().size() != 1 && !vectorizeNDExtract)
    return failure();

  // Check the index type, but only for non 0-d tensors (for which we do need
  // access indices).
  if (not extractOp.getIndices().empty()) {
    if (!VectorType::isValidElementType(extractOp.getIndices()[0].getType()))
      return failure();
  }

  if (llvm::any_of(extractOp->getResultTypes(), [](Type type) {
        return !VectorType::isValidElementType(type);
      })) {
    return failure();
  }

  return success();
}

/// Calculates the offsets (`$index_vec`) for `vector.gather` operations
/// generated from `tensor.extract`. The offset is calculated as follows
/// (example using scalar values):
///
///    offset = extractOp.indices[0]
///    for (i = 1; i < numIndices; i++)
///      offset = extractOp.dimSize[i] * offset + extractOp.indices[i];
///
/// For tensor<45 x 80 x 15 x f32> and index [1, 2, 3], this leads to:
///  offset = ( ( 1 ) * 80 +  2 ) * 15  + 3
static Value calculateGatherOffset(RewriterBase &rewriter,
                                   VectorizationState &state,
                                   tensor::ExtractOp extractOp,
                                   const IRMapping &bvm) {
  // The vector of indices for GatherOp should be shaped as the output vector.
  auto indexVecType = state.getCanonicalVecType(rewriter.getIndexType());
  auto loc = extractOp.getLoc();

  Value offset = broadcastIfNeeded(
      rewriter, bvm.lookup(extractOp.getIndices()[0]), indexVecType);

  const size_t numIndices = extractOp.getIndices().size();
  for (size_t i = 1; i < numIndices; i++) {
    Value dimIdx = rewriter.create<arith::ConstantIndexOp>(loc, i);

    auto dimSize = broadcastIfNeeded(
        rewriter,
        rewriter.create<tensor::DimOp>(loc, extractOp.getTensor(), dimIdx),
        indexVecType);

    offset = rewriter.create<arith::MulIOp>(loc, offset, dimSize);

    auto extractOpIndex = broadcastIfNeeded(
        rewriter, bvm.lookup(extractOp.getIndices()[i]), indexVecType);

    offset = rewriter.create<arith::AddIOp>(loc, extractOpIndex, offset);
  }

  return offset;
}

enum VectorMemoryAccessKind { ScalarBroadcast, Contiguous, Gather };

/// Checks whether /p val can be used for calculating a loop invariant index.
static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val) {

  auto targetShape = linalgOp.getStaticLoopRanges();
  assert(((llvm::count_if(targetShape,
                          [](int64_t dimSize) { return dimSize > 1; }) == 1)) &&
         "n-D vectors are not yet supported");
  assert(targetShape.back() != 1 &&
         "1-D vectors with the trailing dim eqaual 1 are not yet supported");

  // Blocks outside _this_ linalg.generic are effectively loop invariant.
  // However, analysing block arguments for _this_ linalg.generic Op is a bit
  // tricky. Just bail out in the latter case.
  // TODO: We could try analysing the corresponding affine map here.
  auto *block = linalgOp.getBlock();
  if (isa<BlockArgument>(val))
    return llvm::all_of(block->getArguments(),
                        [&val](Value v) { return (v != val); });

  Operation *defOp = val.getDefiningOp();
  assert(defOp && "This is neither a block argument nor an operation result");

  // IndexOp is loop invariant as long as its result remains constant across
  // iterations. Given the assumptions on the loop ranges above, only the
  // trailing loop dim ever changes.
  auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1;
  if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp))
    return (indexOp.getDim() != trailingLoopDim);

  auto *ancestor = block->findAncestorOpInBlock(*defOp);

  // Values define outside `linalgOp` are loop invariant.
  if (!ancestor)
    return true;

  // Values defined inside `linalgOp`, which are constant, are loop invariant.
  if (isa<arith::ConstantOp>(ancestor))
    return true;

  bool result = true;
  for (auto op : ancestor->getOperands())
    result &= isLoopInvariantIdx(linalgOp, op);

  return result;
}

/// Check whether \p val could be used for calculating the trailing index for a
/// contiguous load operation.
///
/// There are currently 3 types of values that are allowed here:
///   1. loop-invariant values,
///   2. values that increment by 1 with every loop iteration,
///   3. results of basic arithmetic operations (linear and continuous)
///      involving 1., 2. and 3.
/// This method returns True if indeed only such values are used in calculating
/// \p val.
///
/// Additionally, the trailing index for a contiguous load operation should
/// increment by 1 with every loop iteration, i.e. be based on:
///   * `linalg.index <dim>` ,
/// where <dim> is the trailing dim of the iteration space. \p foundIndexOp is
/// updated to `true` when such an op is found.
static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val,
                                bool &foundIndexOp) {

  auto targetShape = linalgOp.getStaticLoopRanges();
  assert(((llvm::count_if(targetShape,
                          [](int64_t dimSize) { return dimSize > 1; }) == 1)) &&
         "n-D vectors are not yet supported");
  assert(targetShape.back() != 1 &&
         "1-D vectors with the trailing dim 1 are not yet supported");

  // Blocks outside _this_ linalg.generic are effectively loop invariant.
  // However, analysing block arguments for _this_ linalg.generic Op is a bit
  // tricky. Just bail out in the latter case.
  // TODO: We could try analysing the corresponding affine map here.
  auto *block = linalgOp.getBlock();
  if (isa<BlockArgument>(val))
    return llvm::all_of(block->getArguments(),
                        [&val](Value v) { return (v != val); });

  Operation *defOp = val.getDefiningOp();
  assert(defOp && "This is neither a block argument nor an operation result");

  // Given the assumption on the loop ranges above, only the trailing loop
  // index is not constant.
  auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1;
  if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp)) {
    foundIndexOp = (indexOp.getDim() == trailingLoopDim);
    return true;
  }

  auto *ancestor = block->findAncestorOpInBlock(*defOp);

  if (!ancestor)
    return false;

  // Conservatively reject Ops that could lead to indices with stride other
  // than 1.
  if (!isa<arith::AddIOp, arith::SubIOp, arith::ConstantOp, linalg::IndexOp>(
          ancestor))
    return false;

  bool result = false;
  for (auto op : ancestor->getOperands())
    result |= isContiguousLoadIdx(linalgOp, op, foundIndexOp);

  return result;
}

/// Check whether \p extractOp would be a gather or a contiguous load Op after
/// vectorising \p linalgOp. Note that it is always safe to use gather load
/// operations for contiguous loads (albeit slow), but not vice-versa. When in
/// doubt, bail out and assume that \p extractOp is a gather load.
static VectorMemoryAccessKind
getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
                                    LinalgOp &linalgOp) {

  auto targetShape = linalgOp.getStaticLoopRanges();
  auto inputShape = cast<ShapedType>(extractOp.getTensor().getType());

  // 0.1 Is this a 0-D vector? If yes then this is a scalar broadcast.
  if (inputShape.getShape().empty())
    return VectorMemoryAccessKind::ScalarBroadcast;

  // 0.2 In the case of dynamic shapes just bail-out and assume that it's a
  // gather load.
  // TODO: Relax this condition.
  if (linalgOp.hasDynamicShape())
    return VectorMemoryAccessKind::Gather;

  // 1. Assume that it's a gather load when reading _into_:
  //    * an n-D vector, like`tensor<1x2x4xi32` or`tensor<2x1x4xi32>`, or
  //    * a 1-D vector with the trailing dim equal 1, e.g. `tensor<1x4x1xi32`.
  // TODO: Relax these conditions.
  // FIXME: This condition assumes non-dynamic sizes.
  if ((llvm::count_if(targetShape,
                      [](int64_t dimSize) { return dimSize > 1; }) != 1) ||
      targetShape.back() == 1)
    return VectorMemoryAccessKind::Gather;


  // 2. Assume that it's a gather load when reading _from_ a tensor for which
  // the trailing dimension is 1, e.g. `tensor<1x4x1xi32>`.
  // TODO: Relax this condition.
  if (inputShape.getShape().back() == 1)
    return VectorMemoryAccessKind::Gather;

  bool leadingIdxsLoopInvariant = true;

  // 3. Analyze the leading indices of `extractOp`.
  // Look at the way each index is calculated and decide whether it is suitable
  // for a contiguous load, i.e. whether it's loop invariant.
  auto indices = extractOp.getIndices();
  auto leadIndices = indices.drop_back(1);

  for (auto [i, indexVal] : llvm::enumerate(leadIndices)) {
    if (inputShape.getShape()[i] == 1)
      continue;

    leadingIdxsLoopInvariant &= isLoopInvariantIdx(linalgOp, indexVal);
  }

  if (!leadingIdxsLoopInvariant) {
    LDBG("Found gather load: " << extractOp);
    return VectorMemoryAccessKind::Gather;
  }

  // 4. Analyze the trailing index for `extractOp`.
  // At this point we know that the leading indices are loop invariant. This
  // means that is potentially a scalar or a contiguous load. We can decide
  // based on the trailing idx.
  auto extractOpTrailingIdx = indices.back();

  // 4a. Scalar broadcast load
  // If the trailing index is loop invariant then this is a scalar load.
  if (leadingIdxsLoopInvariant &&
      isLoopInvariantIdx(linalgOp, extractOpTrailingIdx)) {
    LDBG("Found scalar broadcast load: " << extractOp);

    return VectorMemoryAccessKind::ScalarBroadcast;
  }

  // 4b. Contiguous loads
  // The trailing `extractOp` index should increment with every loop iteration.
  // This effectively means that it must be based on the trailing loop index.
  // This is what the following bool captures.
  bool foundIndexOp = false;
  bool isContiguousLoad =
      isContiguousLoadIdx(linalgOp, extractOpTrailingIdx, foundIndexOp);
  isContiguousLoad &= foundIndexOp;

  if (isContiguousLoad) {
    LDBG("Found contigous load: " << extractOp);
    return VectorMemoryAccessKind::Contiguous;
  }

  // 5. Fallback case - gather load.
  LDBG("Found gather load: " << extractOp);
  return VectorMemoryAccessKind::Gather;
}

/// Helper function to vectorize the tensor.extract operations. Returns
/// VectorizationStatus::NewOp to signal the vectorization algorithm that it
/// should map the produced operations. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult
vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
                       Operation *op, LinalgOp linalgOp, const IRMapping &bvm) {
  tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op);
  if (!extractOp)
    return VectorizationResult{VectorizationStatus::Failure, nullptr};
  auto loc = extractOp.getLoc();

  // Compute the static loop sizes of the extract op.
  auto resultType = state.getCanonicalVecType(extractOp.getResult().getType());
  auto maskConstantOp = rewriter.create<arith::ConstantOp>(
      loc,
      DenseIntElementsAttr::get(state.getCanonicalVecType(rewriter.getI1Type()),
                                /*value=*/true));
  auto passThruConstantOp =
      rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(resultType));

  // Base indices are currently set to 0. We will need to re-visit if more
  // generic scenarios are to be supported.
  SmallVector<Value> baseIndices(
      extractOp.getIndices().size(),
      rewriter.create<arith::ConstantIndexOp>(loc, 0));

  VectorMemoryAccessKind memAccessKind =
      getTensorExtractMemoryAccessPattern(extractOp, linalgOp);

  // 1. Handle gather access
  if (memAccessKind == VectorMemoryAccessKind::Gather) {
    Value offset = calculateGatherOffset(rewriter, state, extractOp, bvm);

    // Generate the gather load
    Operation *gatherOp = rewriter.create<vector::GatherOp>(
        loc, resultType, extractOp.getTensor(), baseIndices, offset,
        maskConstantOp, passThruConstantOp);
    gatherOp = state.maskOperation(rewriter, gatherOp, linalgOp);

    LDBG("Vectorised as gather load: " << extractOp << "\n");
    return VectorizationResult{VectorizationStatus::NewOp, gatherOp};
  }

  // 2. Handle:
  //  a. scalar loads + broadcast,
  //  b. contiguous loads.
  // Both cases use vector.transfer_read.

  // Collect indices for `vector.transfer_read`. At this point, the indices will
  // either be scalars or would have been broadcast to vectors matching the
  // result type. For indices that are vectors, there are two options:
  //    * for non-trailing indices, all elements are identical (contiguous
  //      loads are identified by looking for non-trailing indices that are
  //      invariant with respect to the corresponding linalg.generic), or
  //    * for trailing indices, the index vector will contain values with stride
  //      one, but for `vector.transfer_read` only the first (i.e. 0th) index is
  //      needed.
  // This means that
  //   * for scalar indices - just re-use it,
  //   * for vector indices (e.g. `vector<1x1x4xindex>`) - extract the bottom
  //    (0th) element and use that.
  SmallVector<Value> transferReadIdxs;
  auto resTrailingDim = resultType.getShape().back();
  auto zero = rewriter.create<arith::ConstantOp>(
      loc, rewriter.getI32Type(), rewriter.getZeroAttr(rewriter.getI32Type()));
  for (size_t i = 0; i < extractOp.getIndices().size(); i++) {
    auto idx = bvm.lookup(extractOp.getIndices()[i]);
    if (idx.getType().isIndex()) {
      transferReadIdxs.push_back(idx);
      continue;
    }

    auto indexAs1dVector = rewriter.create<vector::ShapeCastOp>(
        loc, VectorType::get({resTrailingDim}, rewriter.getIndexType()),
        bvm.lookup(extractOp.getIndices()[i]));
    transferReadIdxs.push_back(
        rewriter.create<vector::ExtractElementOp>(loc, indexAs1dVector, zero));
  }

  // `tensor.extract_element` is always in-bounds, hence the following holds.
  auto dstRank = resultType.getRank();
  auto srcRank = extractOp.getTensor().getType().getRank();
  SmallVector<bool> inBounds(dstRank, true);

  // 2a. Handle scalar broadcast access.
  if (memAccessKind == VectorMemoryAccessKind::ScalarBroadcast) {
    MLIRContext *ctx = rewriter.getContext();
    SmallVector<AffineExpr> exprs(dstRank, getAffineConstantExpr(0, ctx));
    auto permutationMap = AffineMap::get(srcRank, 0, exprs, ctx);

    auto transferReadOp = rewriter.create<vector::TransferReadOp>(
        loc, resultType, extractOp.getTensor(), transferReadIdxs,
        permutationMap, inBounds);

    LDBG("Vectorised as scalar broadcast load: " << extractOp << "\n");
    return VectorizationResult{VectorizationStatus::NewOp, transferReadOp};
  }

  // 2b. Handle contiguous access.
  auto permutationMap = AffineMap::getMinorIdentityMap(
      srcRank, std::min(dstRank, srcRank), rewriter.getContext());

  int32_t rankDiff = dstRank - srcRank;
  // When dstRank > srcRank, broadcast the source tensor to the unitary leading
  // dims so that the ranks match. This is done by extending the map with 0s.
  // For example, for dstRank = 3, srcRank = 2, the following map created
  // above:
  //    (d0, d1) --> (d0, d1)
  // is extended as:
  //    (d0, d1) --> (0, d0, d1)
  while (rankDiff > 0) {
    permutationMap = permutationMap.insertResult(
        mlir::getAffineConstantExpr(0, rewriter.getContext()), 0);
    rankDiff--;
  }

  auto transferReadOp = rewriter.create<vector::TransferReadOp>(
      loc, resultType, extractOp.getTensor(), transferReadIdxs, permutationMap,
      inBounds);

  LDBG("Vectorised as contiguous load: " << extractOp);
  return VectorizationResult{VectorizationStatus::NewOp, transferReadOp};
}

/// Emit reduction operations if the shapes of the value to reduce is different
/// that the result shape.
// Note: this is a true builder that notifies the OpBuilder listener.
// TODO: Consider moving as a static helper on the ReduceOp.
static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
                                 Value reduceValue, Value initialValue,
                                 const IRMapping &bvm) {
  Value reduceVec = bvm.lookup(reduceValue);
  Value outputVec = bvm.lookup(initialValue);
  auto reduceType = dyn_cast<VectorType>(reduceVec.getType());
  auto outputType = dyn_cast<VectorType>(outputVec.getType());
  // Reduce only if needed as the value may already have been reduce for
  // contraction vectorization.
  if (!reduceType ||
      (outputType && reduceType.getShape() == outputType.getShape()))
    return nullptr;
  SmallVector<bool> dimsToMask = getDimsToReduce(linalgOp);
  return buildMultiDimReduce(b, op, reduceVec, outputVec, dimsToMask);
}

/// Generic vectorization for a single operation `op`, given already vectorized
/// operands carried by `bvm`. Vectorization occurs as follows:
///   1. Try to apply any of the `customVectorizationHooks` and return its
///   result on success.
///   2. Clone any constant in the current scope without vectorization: each
///   consumer of the constant will later determine the shape to which the
///   constant needs to be broadcast to.
///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
///   of the `customVectorizationHooks` to cover such cases.
///   4. Clone `op` in vector form to a vector of shape prescribed by the first
///   operand of maximal rank. Other operands have smaller rank and are
///   broadcast accordingly. It is assumed this broadcast is always legal,
///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
///
/// This function assumes all operands of `op` have been vectorized and are in
/// the `bvm` mapping. As a consequence, this function is meant to be called  on
/// a topologically-sorted list of ops.
/// This function does not update `bvm` but returns a VectorizationStatus that
/// instructs the caller what `bvm` update needs to occur.
static VectorizationResult
vectorizeOneOp(RewriterBase &rewriter, VectorizationState &state,
               LinalgOp linalgOp, Operation *op, const IRMapping &bvm,
               ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
  LDBG("vectorize op " << *op << "\n");

  // 1. Try to apply any CustomVectorizationHook.
  if (!customVectorizationHooks.empty()) {
    for (auto &customFunc : customVectorizationHooks) {
      VectorizationResult result = customFunc(op, bvm);
      if (result.status == VectorizationStatus::Failure)
        continue;
      return result;
    }
  }

  // 2. Constant ops don't get vectorized but rather broadcasted at their users.
  // Clone so that the constant is not confined to the linalgOp block .
  if (isa<arith::ConstantOp, func::ConstantOp>(op))
    return VectorizationResult{VectorizationStatus::NewOp, rewriter.clone(*op)};

  // 3. Only ElementwiseMappable are allowed in the generic vectorization.
  if (!OpTrait::hasElementwiseMappableTraits(op))
    return VectorizationResult{VectorizationStatus::Failure, nullptr};

  // 4 . Check if the operation is a reduction.
  SmallVector<std::pair<Value, Value>> reductionOperands;
  for (Value operand : op->getOperands()) {
    auto blockArg = dyn_cast<BlockArgument>(operand);
    if (!blockArg || blockArg.getOwner() != linalgOp.getBlock() ||
        blockArg.getArgNumber() < linalgOp.getNumDpsInputs())
      continue;
    SmallVector<Operation *> reductionOps;
    Value reduceValue = matchReduction(
        linalgOp.getRegionOutputArgs(),
        blockArg.getArgNumber() - linalgOp.getNumDpsInputs(), reductionOps);
    if (!reduceValue)
      continue;
    reductionOperands.push_back(std::make_pair(reduceValue, operand));
  }
  if (!reductionOperands.empty()) {
    assert(reductionOperands.size() == 1);
    Operation *reduceOp =
        reduceIfNeeded(rewriter, linalgOp, op, reductionOperands[0].first,
                       reductionOperands[0].second, bvm);
    if (reduceOp)
      return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
  }

  // 5. Generic vectorization path for ElementwiseMappable ops.
  //   a. Get the first max ranked shape.
  VectorType firstMaxRankedType;
  for (Value operand : op->getOperands()) {
    auto vecOperand = bvm.lookup(operand);
    assert(vecOperand && "Vector operand couldn't be found");

    auto vecType = dyn_cast<VectorType>(vecOperand.getType());
    if (vecType && (!firstMaxRankedType ||
                    firstMaxRankedType.getRank() < vecType.getRank()))
      firstMaxRankedType = vecType;
  }
  //   b. Broadcast each op if needed.
  SmallVector<Value> vecOperands;
  for (Value scalarOperand : op->getOperands()) {
    Value vecOperand = bvm.lookup(scalarOperand);
    assert(vecOperand && "Vector operand couldn't be found");

    if (firstMaxRankedType) {
      auto vecType = VectorType::get(firstMaxRankedType.getShape(),
                                     getElementTypeOrSelf(vecOperand.getType()),
                                     firstMaxRankedType.getScalableDims());
      vecOperands.push_back(broadcastIfNeeded(rewriter, vecOperand, vecType));
    } else {
      vecOperands.push_back(vecOperand);
    }
  }
  //   c. for elementwise, the result is the vector with the firstMaxRankedShape
  SmallVector<Type> resultTypes;
  for (Type resultType : op->getResultTypes()) {
    resultTypes.push_back(
        firstMaxRankedType
            ? VectorType::get(firstMaxRankedType.getShape(), resultType,
                              firstMaxRankedType.getScalableDims())
            : resultType);
  }
  //   d. Build and return the new op.
  return VectorizationResult{
      VectorizationStatus::NewOp,
      rewriter.create(op->getLoc(), op->getName().getIdentifier(), vecOperands,
                      resultTypes, op->getAttrs())};
}

/// Generic vectorization function that rewrites the body of a `linalgOp` into
/// vector form. Generic vectorization proceeds as follows:
///   1. Verify the `linalgOp` has one non-empty region.
///   2. Values defined above the region are mapped to themselves and will be
///   broadcasted on a per-need basis by their consumers.
///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
///   load).
///   TODO: Reuse opportunities for RAR dependencies.
///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
///   4rewriter. Register CustomVectorizationHook for IndexOp to access the
///   iteration indices.
///   5. Iteratively call vectorizeOneOp on the region operations.
///
/// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
/// performed to the maximal common vector size implied by the `linalgOp`
/// iteration space. This eager broadcasting is introduced in the
/// permutation_map of the vector.transfer_read operations. The eager
/// broadcasting makes it trivial to detrmine where broadcast, transposes and
/// reductions should occur, without any bookkeeping. The tradeoff is that, in
/// the absence of good canonicalizations, the amount of work increases.
/// This is not deemed a problem as we expect canonicalizations and foldings to
/// aggressively clean up the useless work.
static LogicalResult
vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
                         LinalgOp linalgOp,
                         SmallVectorImpl<Value> &newResults) {
  LDBG("Vectorizing operation as linalg generic\n");
  Block *block = linalgOp.getBlock();

  // 2. Values defined above the region can only be broadcast for now. Make them
  // map to themselves.
  IRMapping bvm;
  SetVector<Value> valuesSet;
  mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
  bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());

  if (linalgOp.getNumDpsInits() == 0)
    return failure();

  // 3. Turn all BBArgs into vector.transfer_read / load.
  Location loc = linalgOp.getLoc();
  Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
  for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) {
    BlockArgument bbarg = linalgOp.getMatchingBlockArgument(opOperand);
    if (linalgOp.isScalar(opOperand)) {
      bvm.map(bbarg, opOperand->get());
      continue;
    }

    // 3.a. Convert the indexing map for this input/output to a transfer read
    // permutation map and masking map.
    AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand);

    // Remove zeros from indexing map to use it as masking map.
    SmallVector<int64_t> zeroPos;
    auto results = indexingMap.getResults();
    for (const auto &result : llvm::enumerate(results)) {
      if (result.value().isa<AffineConstantExpr>()) {
        zeroPos.push_back(result.index());
      }
    }
    AffineMap maskingMap = indexingMap.dropResults(zeroPos);

    AffineMap readMap;
    VectorType readType;
    Type elemType = getElementTypeOrSelf(opOperand->get());
    if (linalgOp.isDpsInput(opOperand)) {
      // 3.a.i. For input reads we use the canonical vector shape.
      readMap = inverseAndBroadcastProjectedPermutation(indexingMap);
      readType = state.getCanonicalVecType(elemType);
    } else {
      // 3.a.ii. For output reads (iteration-carried dependence, e.g.,
      // reductions), the vector shape is computed by mapping the canonical
      // vector shape to the output domain and back to the canonical domain.
      readMap = inversePermutation(reindexIndexingMap(indexingMap));
      readType =
          state.getCanonicalVecType(elemType, readMap.compose(indexingMap));
    }

    SmallVector<Value> indices(linalgOp.getShape(opOperand).size(), zero);

    Operation *read = rewriter.create<vector::TransferReadOp>(
        loc, readType, opOperand->get(), indices, readMap);
    read = state.maskOperation(rewriter, read, linalgOp, maskingMap);
    Value readValue = read->getResult(0);

    // 3.b. If masked, set in-bounds to true. Masking guarantees that the access
    // will be in-bounds.
    if (auto maskOp = dyn_cast<vector::MaskingOpInterface>(read)) {
      SmallVector<bool> inBounds(readType.getRank(), true);
      cast<vector::TransferReadOp>(maskOp.getMaskableOp())
          .setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds));
    }

    // 3.c. Not all ops support 0-d vectors, extract the scalar for now.
    // TODO: remove this.
    if (readType.getRank() == 0)
      readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue);

    LDBG("New vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue
                                 << "\n");
    bvm.map(bbarg, readValue);
    bvm.map(opOperand->get(), readValue);
  }

  SmallVector<CustomVectorizationHook> hooks;
  // 4a. Register CustomVectorizationHook for yieldOp.
  CustomVectorizationHook vectorizeYield =
      [&](Operation *op, const IRMapping &bvm) -> VectorizationResult {
    return vectorizeLinalgYield(rewriter, op, bvm, state, linalgOp, newResults);
  };
  hooks.push_back(vectorizeYield);

  // 4b. Register CustomVectorizationHook for indexOp.
  CustomVectorizationHook vectorizeIndex =
      [&](Operation *op, const IRMapping &bvm) -> VectorizationResult {
    return vectorizeLinalgIndex(rewriter, state, op, linalgOp);
  };
  hooks.push_back(vectorizeIndex);

  // 4c. Register CustomVectorizationHook for extractOp.
  CustomVectorizationHook vectorizeExtract =
      [&](Operation *op, const IRMapping &bvm) -> VectorizationResult {
    return vectorizeTensorExtract(rewriter, state, op, linalgOp, bvm);
  };
  hooks.push_back(vectorizeExtract);

  // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
  for (Operation &op : block->getOperations()) {
    VectorizationResult result =
        vectorizeOneOp(rewriter, state, linalgOp, &op, bvm, hooks);
    if (result.status == VectorizationStatus::Failure) {
      LDBG("failed to vectorize: " << op << "\n");
      return failure();
    }
    if (result.status == VectorizationStatus::NewOp) {
      Operation *maybeMaskedOp =
          state.maskOperation(rewriter, result.newOp, linalgOp);
      LDBG("New vector op: " << *maybeMaskedOp << "\n");
      bvm.map(op.getResults(), maybeMaskedOp->getResults());
    }
  }

  return success();
}

/// Vectorize a `padOp` with (1) static result type, (2) constant padding value
/// and (3) all-zero lowPad to
///   `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`.
static LogicalResult
vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp,
                       ArrayRef<int64_t> inputVectorSizes,
                       SmallVectorImpl<Value> &newResults) {
  auto padValue = padOp.getConstantPaddingValue();
  Location loc = padOp.getLoc();
  int64_t rank = inputVectorSizes.size();
  auto maskType = VectorType::get(inputVectorSizes, rewriter.getI1Type());
  auto vectorType = VectorType::get(inputVectorSizes, padValue.getType());

  // transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(padOp);

  ReifiedRankedShapedTypeDims reifiedReturnShapes;
  LogicalResult status =
      cast<ReifyRankedShapedTypeOpInterface>(padOp.getOperation())
          .reifyResultShapes(rewriter, reifiedReturnShapes);
  (void)status; // prevent unused variable warning on non-assert builds
  assert(succeeded(status) && "failed to reify result shapes");
  auto emptyOp = rewriter.create<tensor::EmptyOp>(loc, reifiedReturnShapes[0],
                                                  padValue.getType());
  SmallVector<OpFoldResult> mixedSourceDims =
      tensor::getMixedSizes(rewriter, loc, padOp.getSource());
  Value mask =
      rewriter.create<vector::CreateMaskOp>(loc, maskType, mixedSourceDims);
  auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
  auto transferReadOp = rewriter.create<vector::TransferReadOp>(
      loc,
      /*vectorType=*/vectorType,
      /*source=*/padOp.getSource(),
      /*indices=*/SmallVector<Value>(rank, zero),
      /*padding=*/padValue,
      /*inBounds=*/SmallVector<bool>(rank, true));
  auto maskedOp = cast<vector::MaskOp>(
      mlir::vector::maskOperation(rewriter, transferReadOp, mask));
  Operation *write = rewriter.create<vector::TransferWriteOp>(
      loc,
      /*vector=*/maskedOp->getResult(0),
      /*source=*/emptyOp,
      /*indices=*/SmallVector<Value>(rank, zero),
      /*inBounds=*/SmallVector<bool>(rank, true));
  bool needMaskForWrite = llvm::any_of(
      llvm::zip_equal(inputVectorSizes, padOp.getResultType().getShape()),
      [](auto it) { return std::get<0>(it) != std::get<1>(it); });
  if (needMaskForWrite) {
    Value maskForWrite = rewriter.create<vector::CreateMaskOp>(
        loc, maskType, reifiedReturnShapes[0]);
    write = mlir::vector::maskOperation(rewriter, write, maskForWrite);
  }
  newResults.push_back(write->getResult(0));
  return success();
}

// TODO: probably need some extra checks for reduction followed by consumer
// ops that may not commute (e.g. linear reduction + non-linear instructions).
static LogicalResult reductionPreconditions(LinalgOp op) {
  if (llvm::none_of(op.getIteratorTypesArray(), isReductionIterator)) {
    LDBG("reduction precondition failed: no reduction iterator\n");
    return failure();
  }
  for (OpOperand *opOperand : op.getDpsInitOperands()) {
    AffineMap indexingMap = op.getMatchingIndexingMap(opOperand);
    if (indexingMap.isPermutation())
      continue;

    Operation *reduceOp = matchLinalgReduction(opOperand);
    if (!reduceOp || !getCombinerOpKind(reduceOp)) {
      LDBG("reduction precondition failed: reduction detection failed\n");
      return failure();
    }
  }
  return success();
}

static LogicalResult vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op) {
  // TODO: Masking only supports dynamic generic ops for now.
  if (!isa<linalg::GenericOp, linalg::FillOp, linalg::CopyOp,
           linalg::ContractionOpInterface>(op.getOperation()))
    return failure();

  LDBG("Dynamically-shaped op meets vectorization pre-conditions\n");
  return success();
}

/// Returns success if `inputVectorSizes` is a valid masking configuraion for
/// given `shape`, i.e., it meets:
///   1. The numbers of elements in both array are equal.
///   2. `inputVectorSizes` does nos have dynamic dimensions.
///   3. All the values in `inputVectorSizes` are greater than or equal to
///      static sizes in `shape`.
static LogicalResult
isValidMaskedInputVector(ArrayRef<int64_t> shape,
                         ArrayRef<int64_t> inputVectorSizes) {
  if (inputVectorSizes.size() != shape.size()) {
    LDBG("Input vector sizes don't match the number of loops");
    return failure();
  }
  if (ShapedType::isDynamicShape(inputVectorSizes)) {
    LDBG("Input vector sizes can't have dynamic dimensions");
    return failure();
  }
  if (!llvm::all_of(llvm::zip(shape, inputVectorSizes),
                    [](std::tuple<int64_t, int64_t> sizePair) {
                      int64_t staticSize = std::get<0>(sizePair);
                      int64_t inputSize = std::get<1>(sizePair);
                      return ShapedType::isDynamic(staticSize) ||
                             staticSize <= inputSize;
                    })) {
    LDBG("Input vector sizes must be greater than or equal to iteration space "
         "static sizes");
    return failure();
  }
  return success();
}

static LogicalResult
vectorizeLinalgOpPrecondition(LinalgOp linalgOp,
                              ArrayRef<int64_t> inputVectorSizes,
                              bool vectorizeNDExtract) {
  // tensor with dimension of 0 cannot be vectorized.
  if (llvm::any_of(linalgOp.getStaticShape(),
                   [](int64_t dim) { return dim == 0; }))
    return failure();
  // Check API contract for input vector sizes.
  if (!inputVectorSizes.empty() &&
      failed(isValidMaskedInputVector(linalgOp.getStaticLoopRanges(),
                                      inputVectorSizes)))
    return failure();

  if (linalgOp.hasDynamicShape() &&
      failed(vectorizeDynamicLinalgOpPrecondition(linalgOp))) {
    LDBG("Dynamically-shaped op failed vectorization pre-conditions\n");
    return failure();
  }

  SmallVector<CustomVectorizationPrecondition> customPreconditions;

  // Register CustomVectorizationPrecondition for extractOp.
  customPreconditions.push_back(tensorExtractVectorizationPrecondition);

  // All types in the body should be a supported element type for VectorType.
  for (Operation &innerOp : linalgOp->getRegion(0).front()) {
    // Check if any custom hook can vectorize the inner op.
    if (llvm::any_of(
            customPreconditions,
            [&](const CustomVectorizationPrecondition &customPrecondition) {
              return succeeded(
                  customPrecondition(&innerOp, vectorizeNDExtract));
            })) {
      continue;
    }
    if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) {
          return !VectorType::isValidElementType(type);
        })) {
      return failure();
    }
    if (llvm::any_of(innerOp.getResultTypes(), [](Type type) {
          return !VectorType::isValidElementType(type);
        })) {
      return failure();
    }
  }
  if (isElementwise(linalgOp))
    return success();
  // TODO: isaConvolutionOpInterface that can also infer from generic features.
  // But we will still need stride/dilation attributes that will be annoying to
  // reverse-engineer...
  if (isa<ConvolutionOpInterface>(linalgOp.getOperation()))
    return success();
  // TODO: the common vector shape is equal to the static loop sizes only when
  // all indexing maps are projected permutations. For convs and stencils the
  // logic will need to evolve.
  if (!allIndexingsAreProjectedPermutation(linalgOp)) {
    LDBG("precondition failed: not projected permutations\n");
    return failure();
  }
  if (failed(reductionPreconditions(linalgOp))) {
    LDBG("precondition failed: reduction preconditions\n");
    return failure();
  }
  return success();
}

static LogicalResult
vectorizePadOpPrecondition(tensor::PadOp padOp,
                           ArrayRef<int64_t> inputVectorSizes) {
  auto padValue = padOp.getConstantPaddingValue();
  if (!padValue) {
    LDBG("pad value is not constant: " << padOp << "\n");
    return failure();
  }

  ArrayRef<int64_t> resultTensorShape = padOp.getResultType().getShape();
  if (failed(isValidMaskedInputVector(resultTensorShape, inputVectorSizes)))
    return failure();

  if (llvm::any_of(padOp.getLow(), [](Value v) {
        std::optional<int64_t> res = getConstantIntValue(v);
        return !res.has_value() || res.value() != 0;
      })) {
    LDBG("low pad must all be zero: " << padOp << "\n");
    return failure();
  }

  return success();
}

/// Preconditions for scalable vectors.
static LogicalResult
vectorizeScalableVectorPrecondition(Operation *op,
                                    ArrayRef<int64_t> inputVectorSizes,
                                    ArrayRef<bool> inputScalableVecDims) {
  assert(inputVectorSizes.size() == inputScalableVecDims.size() &&
         "Number of input vector sizes and scalable dims doesn't match");

  if (inputVectorSizes.empty())
    return success();

  if (!areValidScalableVecDims(inputScalableVecDims)) {
    LDBG("Non-trailing scalable vector dimensions are not supported\n");
    return failure();
  }

  bool isScalable = inputScalableVecDims.back();
  if (!isScalable)
    return success();

  // Only element-wise ops supported in the presence of scalable dims.
  auto linalgOp = dyn_cast<LinalgOp>(op);
  return success(linalgOp && isElementwise(linalgOp));
}

LogicalResult mlir::linalg::vectorizeOpPrecondition(
    Operation *op, ArrayRef<int64_t> inputVectorSizes,
    ArrayRef<bool> inputScalableVecDims, bool vectorizeNDExtract) {
  if (failed(vectorizeScalableVectorPrecondition(op, inputVectorSizes,
                                                 inputScalableVecDims)))
    return failure();

  return TypeSwitch<Operation *, LogicalResult>(op)
      .Case<linalg::LinalgOp>([&](auto linalgOp) {
        return vectorizeLinalgOpPrecondition(linalgOp, inputVectorSizes,
                                             vectorizeNDExtract);
      })
      .Case<tensor::PadOp>([&](auto padOp) {
        return vectorizePadOpPrecondition(padOp, inputVectorSizes);
      })
      .Default([](auto) { return failure(); });
}

/// Converts affine.apply Ops to arithmetic operations.
static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) {
  OpBuilder::InsertionGuard g(rewriter);
  auto toReplace = linalgOp.getBlock()->getOps<affine::AffineApplyOp>();

  for (auto op : make_early_inc_range(toReplace)) {
    rewriter.setInsertionPoint(op);
    auto expanded = affine::expandAffineExpr(
        rewriter, op->getLoc(), op.getAffineMap().getResult(0),
        op.getOperands().take_front(op.getAffineMap().getNumDims()),
        op.getOperands().take_back(op.getAffineMap().getNumSymbols()));
    rewriter.replaceOp(op, expanded);
  }
}

/// Emit a suitable vector form for an operation. If provided,
/// `inputVectorSizes` are used to vectorize this operation. `inputVectorSizes`
/// must match the rank of the iteration space of the operation and the input
/// vector sizes must be greater than or equal to their counterpart iteration
/// space sizes, if static. `inputVectorShapes` also allows the vectorization of
/// operations with dynamic shapes.
LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op,
                                      ArrayRef<int64_t> inputVectorSizes,
                                      ArrayRef<bool> inputScalableVecDims,
                                      bool vectorizeNDExtract) {
  LDBG("Attempting to vectorize:\n" << *op << "\n");
  LDBG("Input vector sizes: ");
  LLVM_DEBUG(llvm::interleaveComma(inputVectorSizes, llvm::dbgs()));
  LLVM_DEBUG(llvm::dbgs() << "\n");
  LDBG("Input scalable vector dims: ");
  LLVM_DEBUG(llvm::interleaveComma(inputScalableVecDims, llvm::dbgs()));
  LLVM_DEBUG(llvm::dbgs() << "\n");

  if (failed(vectorizeOpPrecondition(op, inputVectorSizes, inputScalableVecDims,
                                     vectorizeNDExtract))) {
    LDBG("Vectorization pre-conditions failed\n");
    return failure();
  }

  // Initialize vectorization state.
  VectorizationState state(rewriter);
  if (auto linalgOp = dyn_cast<linalg::LinalgOp>(op)) {
    if (failed(state.initState(rewriter, linalgOp, inputVectorSizes,
                               inputScalableVecDims))) {
      LDBG("Vectorization state couldn't be initialized\n");
      return failure();
    }
  }

  SmallVector<Value> results;
  auto vectorizeResult =
      TypeSwitch<Operation *, LogicalResult>(op)
          .Case<linalg::LinalgOp>([&](auto linalgOp) {
            // TODO: isaConvolutionOpInterface that can also infer from generic
            // features. Will require stride/dilation attributes inference.
            FailureOr<Operation *> convOr =
                vectorizeConvolution(rewriter, linalgOp);
            if (succeeded(convOr)) {
              llvm::append_range(results, (*convOr)->getResults());
              return success();
            }

            LDBG("Vectorize generic by broadcasting to the canonical vector "
                 "shape\n");

            // Pre-process before proceeding.
            convertAffineApply(rewriter, linalgOp);

            // TODO: 'vectorize' takes in a 'RewriterBase' which is up-casted
            // to 'OpBuilder' when it is passed over to some methods like
            // 'vectorizeAsLinalgGeneric'. This is highly problematic: if we
            // erase an op within these methods, the actual rewriter won't be
            // notified and we will end up with read-after-free issues!
            return vectorizeAsLinalgGeneric(rewriter, state, linalgOp, results);
          })
          .Case<tensor::PadOp>([&](auto padOp) {
            return vectorizeAsTensorPadOp(rewriter, padOp, inputVectorSizes,
                                          results);
          })
          .Default([](auto) { return failure(); });

  if (failed(vectorizeResult)) {
    LDBG("Vectorization failed\n");
    return failure();
  }

  if (!results.empty())
    rewriter.replaceOp(op, results);
  else
    rewriter.eraseOp(op);

  return success();
}

LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter,
                                          memref::CopyOp copyOp) {

  auto srcType = cast<MemRefType>(copyOp.getSource().getType());
  auto dstType = cast<MemRefType>(copyOp.getTarget().getType());
  if (!srcType.hasStaticShape() || !dstType.hasStaticShape())
    return failure();

  auto srcElementType = getElementTypeOrSelf(srcType);
  auto dstElementType = getElementTypeOrSelf(dstType);
  if (!VectorType::isValidElementType(srcElementType) ||
      !VectorType::isValidElementType(dstElementType))
    return failure();

  auto readType = VectorType::get(srcType.getShape(), srcElementType);
  auto writeType = VectorType::get(dstType.getShape(), dstElementType);

  Location loc = copyOp->getLoc();
  Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
  SmallVector<Value> indices(srcType.getRank(), zero);

  Value readValue = rewriter.create<vector::TransferReadOp>(
      loc, readType, copyOp.getSource(), indices,
      rewriter.getMultiDimIdentityMap(srcType.getRank()));
  if (cast<VectorType>(readValue.getType()).getRank() == 0) {
    readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue);
    readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue);
  }
  Operation *writeValue = rewriter.create<vector::TransferWriteOp>(
      loc, readValue, copyOp.getTarget(), indices,
      rewriter.getMultiDimIdentityMap(srcType.getRank()));
  rewriter.replaceOp(copyOp, writeValue->getResults());
  return success();
}

//----------------------------------------------------------------------------//
// Misc. vectorization patterns.
//----------------------------------------------------------------------------//

/// Helper function that retrieves the value of an IntegerAttr.
static int64_t getIntFromAttr(Attribute attr) {
  return cast<IntegerAttr>(attr).getInt();
}

/// Given an ArrayRef of OpFoldResults, return a vector of Values.
/// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are
/// not supported.
static SmallVector<Value> ofrToIndexValues(RewriterBase &rewriter, Location loc,
                                           ArrayRef<OpFoldResult> ofrs) {
  SmallVector<Value> result;
  for (auto o : ofrs) {
    if (auto val = llvm::dyn_cast_if_present<Value>(o)) {
      result.push_back(val);
    } else {
      result.push_back(rewriter.create<arith::ConstantIndexOp>(
          loc, getIntFromAttr(o.template get<Attribute>())));
    }
  }
  return result;
}

/// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and
/// InsertSliceOp. For now, only constant padding values are supported.
/// If there is enough static type information, TransferReadOps and
/// TransferWriteOps may be generated instead of InsertSliceOps.
struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern {
  GenericPadOpVectorizationPattern(MLIRContext *context,
                                   PatternBenefit benefit = 1)
      : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {}
  /// Vectorize the copying of a tensor::PadOp's source. This is possible if
  /// each dimension size is statically know in the source type or the result
  /// type (or both).
  static LogicalResult tryVectorizeCopy(RewriterBase &rewriter,
                                        tensor::PadOp padOp, Value dest) {
    auto sourceType = padOp.getSourceType();
    auto resultType = padOp.getResultType();
    if (!VectorType::isValidElementType(sourceType.getElementType()))
      return failure();

    // Copy cannot be vectorized if pad value is non-constant and source shape
    // is dynamic. In case of a dynamic source shape, padding must be appended
    // by TransferReadOp, but TransferReadOp supports only constant padding.
    auto padValue = padOp.getConstantPaddingValue();
    if (!padValue) {
      if (!sourceType.hasStaticShape())
        return failure();
      // Create dummy padding value.
      auto elemType = sourceType.getElementType();
      padValue = rewriter.create<arith::ConstantOp>(
          padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
    }

    SmallVector<int64_t> vecShape;
    SmallVector<bool> readInBounds;
    SmallVector<bool> writeInBounds;
    for (unsigned i = 0; i < sourceType.getRank(); ++i) {
      if (!sourceType.isDynamicDim(i)) {
        vecShape.push_back(sourceType.getDimSize(i));
        // Source shape is statically known: Neither read nor write are
        // out-of- bounds.
        readInBounds.push_back(true);
        writeInBounds.push_back(true);
      } else if (!resultType.isDynamicDim(i)) {
        // Source shape is not statically known, but result shape is.
        // Vectorize with size of result shape. This may be larger than the
        // source size.
        vecShape.push_back(resultType.getDimSize(i));
        // Read may be out-of-bounds because the result size could be larger
        // than the source size.
        readInBounds.push_back(false);
        // Write is out-of-bounds if low padding > 0.
        writeInBounds.push_back(
            getConstantIntValue(padOp.getMixedLowPad()[i]) ==
            static_cast<int64_t>(0));
      } else {
        // Neither source nor result dim of padOp is static. Cannot vectorize
        // the copy.
        return failure();
      }
    }
    auto vecType = VectorType::get(vecShape, sourceType.getElementType());

    // Generate TransferReadOp.
    SmallVector<Value> readIndices(
        vecType.getRank(),
        rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
    auto read = rewriter.create<vector::TransferReadOp>(
        padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue,
        ArrayRef<bool>{readInBounds});

    // If `dest` is a FillOp and the TransferWriteOp would overwrite the
    // entire tensor, write directly to the FillOp's operand.
    if (llvm::equal(vecShape, resultType.getShape()) &&
        llvm::all_of(writeInBounds, [](bool b) { return b; }))
      if (auto fill = dest.getDefiningOp<FillOp>())
        dest = fill.output();

    // Generate TransferWriteOp.
    auto writeIndices =
        ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
    rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
        padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds});

    return success();
  }
};

/// Base pattern for rewriting tensor::PadOps whose result is consumed by a
/// given operation type OpTy.
template <typename OpTy>
struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> {
  using OpRewritePattern<tensor::PadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::PadOp padOp,
                                PatternRewriter &rewriter) const final {
    bool changed = false;
    // Insert users in vector, because some users may be replaced/removed.
    for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
      if (auto op = dyn_cast<OpTy>(user))
        changed |= rewriteUser(rewriter, padOp, op).succeeded();
    return success(changed);
  }

protected:
  virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
                                    tensor::PadOp padOp, OpTy op) const = 0;
};

/// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.:
/// ```
/// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %r = vector.transfer_read %0[%c0, %c0], %cst
///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
/// ```
/// is rewritten to:
/// ```
/// %r = vector.transfer_read %src[%c0, %c0], %padding
///     {in_bounds = [true, true]}
///     : tensor<?x?xf32>, vector<17x5xf32>
/// ```
/// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
/// sure that the original padding value %cst was never used.
///
/// This rewrite is possible if:
/// - `xferOp` has no out-of-bounds dims or mask.
/// - Low padding is static 0.
/// - Single, scalar padding value.
struct PadOpVectorizationWithTransferReadPattern
    : public VectorizePadOpUserPattern<vector::TransferReadOp> {
  using VectorizePadOpUserPattern<
      vector::TransferReadOp>::VectorizePadOpUserPattern;

  LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
                            vector::TransferReadOp xferOp) const override {
    // Low padding must be static 0.
    if (!padOp.hasZeroLowPad())
      return failure();
    // Pad value must be a constant.
    auto padValue = padOp.getConstantPaddingValue();
    if (!padValue)
      return failure();
    // Padding value of existing `xferOp` is unused.
    if (xferOp.hasOutOfBoundsDim() || xferOp.getMask())
      return failure();

    rewriter.updateRootInPlace(xferOp, [&]() {
      SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
      xferOp->setAttr(xferOp.getInBoundsAttrName(),
                      rewriter.getBoolArrayAttr(inBounds));
      xferOp.getSourceMutable().assign(padOp.getSource());
      xferOp.getPaddingMutable().assign(padValue);
    });

    return success();
  }
};

/// Rewrite use of tensor::PadOp result in TransferWriteOp.
/// This pattern rewrites TransferWriteOps that write to a padded tensor
/// value, where the same amount of padding is immediately removed again after
/// the write. In such cases, the TransferWriteOp can write to the non-padded
/// tensor value and apply out-of-bounds masking. E.g.:
/// ```
/// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
///     : tensor<...> to tensor<?x?xf32>
/// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %2 = vector.transfer_write %vec, %1[...]
///     : vector<17x5xf32>, tensor<17x5xf32>
/// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
///     : tensor<17x5xf32> to tensor<?x?xf32>
/// ```
/// is rewritten to:
/// ```
/// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
///     : tensor<...> to tensor<?x?xf32>
/// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>,
/// tensor<?x?xf32>
/// ```
/// Note: It is important that the ExtractSliceOp %r resizes the result of the
/// TransferWriteOp to the same size as the input of the TensorPadOp (or an
/// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ
/// from %r's old dimensions.
///
/// This rewrite is possible if:
/// - Low padding is static 0.
/// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
///   ExtractSliceOp trims the same amount of padding that was added
///   beforehand.
/// - Single, scalar padding value.
struct PadOpVectorizationWithTransferWritePattern
    : public VectorizePadOpUserPattern<vector::TransferWriteOp> {
  using VectorizePadOpUserPattern<
      vector::TransferWriteOp>::VectorizePadOpUserPattern;

  LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
                            vector::TransferWriteOp xferOp) const override {
    // TODO: support 0-d corner case.
    if (xferOp.getTransferRank() == 0)
      return failure();

    // Low padding must be static 0.
    if (!padOp.hasZeroLowPad())
      return failure();
    // Pad value must be a constant.
    auto padValue = padOp.getConstantPaddingValue();
    if (!padValue)
      return failure();
    // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
    if (!xferOp->hasOneUse())
      return failure();
    auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
    if (!trimPadding)
      return failure();
    // Only static zero offsets supported when trimming padding.
    if (!trimPadding.hasZeroOffset())
      return failure();
    // trimPadding must remove the amount of padding that was added earlier.
    if (!hasSameTensorSize(padOp.getSource(), trimPadding))
      return failure();

    // Insert the new TransferWriteOp at position of the old TransferWriteOp.
    rewriter.setInsertionPoint(xferOp);

    SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
    auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
        xferOp, padOp.getSource().getType(), xferOp.getVector(),
        padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(),
        xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds));
    rewriter.replaceOp(trimPadding, newXferOp->getResult(0));

    return success();
  }

  /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
  /// i.e., same dimensions.
  ///
  /// Dimensions may be static, dynamic or mix of both. In case of dynamic
  /// dimensions, this function tries to infer the (static) tensor size by
  /// looking at the defining op and utilizing op-specific knowledge.
  ///
  /// This is a conservative analysis. In case equal tensor sizes cannot be
  /// proven statically, this analysis returns `false` even though the tensor
  /// sizes may turn out to be equal at runtime.
  bool hasSameTensorSize(Value beforePadding,
                         tensor::ExtractSliceOp afterTrimming) const {
    // If the input to tensor::PadOp is a CastOp, try with with both CastOp
    // result and CastOp operand.
    if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
      if (hasSameTensorSize(castOp.getSource(), afterTrimming))
        return true;

    auto t1 = dyn_cast<RankedTensorType>(beforePadding.getType());
    auto t2 = dyn_cast<RankedTensorType>(afterTrimming.getType());
    // Only RankedTensorType supported.
    if (!t1 || !t2)
      return false;
    // Rank of both values must be the same.
    if (t1.getRank() != t2.getRank())
      return false;

    // All static dimensions must be the same. Mixed cases (e.g., dimension
    // static in `t1` but dynamic in `t2`) are not supported.
    for (unsigned i = 0; i < t1.getRank(); ++i) {
      if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
        return false;
      if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
        return false;
    }

    // Nothing more to check if all dimensions are static.
    if (t1.getNumDynamicDims() == 0)
      return true;

    // All dynamic sizes must be the same. The only supported case at the
    // moment is when `beforePadding` is an ExtractSliceOp (or a cast
    // thereof).

    // Apart from CastOp, only ExtractSliceOp is supported.
    auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
    if (!beforeSlice)
      return false;

    assert(static_cast<size_t>(t1.getRank()) ==
           beforeSlice.getMixedSizes().size());
    assert(static_cast<size_t>(t2.getRank()) ==
           afterTrimming.getMixedSizes().size());

    for (unsigned i = 0; i < t1.getRank(); ++i) {
      // Skip static dimensions.
      if (!t1.isDynamicDim(i))
        continue;
      auto size1 = beforeSlice.getMixedSizes()[i];
      auto size2 = afterTrimming.getMixedSizes()[i];

      // Case 1: Same value or same constant int.
      if (isEqualConstantIntOrValue(size1, size2))
        continue;

      // Other cases: Take a deeper look at defining ops of values.
      auto v1 = llvm::dyn_cast_if_present<Value>(size1);
      auto v2 = llvm::dyn_cast_if_present<Value>(size2);
      if (!v1 || !v2)
        return false;

      // Case 2: Both values are identical AffineMinOps. (Should not happen if
      // CSE is run.)
      auto minOp1 = v1.getDefiningOp<affine::AffineMinOp>();
      auto minOp2 = v2.getDefiningOp<affine::AffineMinOp>();
      if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
          minOp1.getOperands() == minOp2.getOperands())
        continue;

      // Add additional cases as needed.
    }

    // All tests passed.
    return true;
  }
};

/// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.:
/// ```
/// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
/// %r = tensor.insert_slice %0
///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
/// ```
/// is rewritten to:
/// ```
/// %0 = vector.transfer_read %src[%c0, %c0], %padding
///     : tensor<?x?xf32>, vector<17x5xf32>
/// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
/// ```
///
/// This rewrite is possible if:
/// - Low padding is static 0.
/// - `padOp` result shape is static.
/// - The entire padded tensor is inserted.
///   (Implies that sizes of `insertOp` are all static.)
/// - Only unit strides in `insertOp`.
/// - Single, scalar padding value.
/// - `padOp` result not used as destination.
struct PadOpVectorizationWithInsertSlicePattern
    : public VectorizePadOpUserPattern<tensor::InsertSliceOp> {
  using VectorizePadOpUserPattern<
      tensor::InsertSliceOp>::VectorizePadOpUserPattern;

  LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
                            tensor::InsertSliceOp insertOp) const override {
    // Low padding must be static 0.
    if (!padOp.hasZeroLowPad())
      return failure();
    // Only unit stride supported.
    if (!insertOp.hasUnitStride())
      return failure();
    // Pad value must be a constant.
    auto padValue = padOp.getConstantPaddingValue();
    if (!padValue)
      return failure();
    // Dynamic shapes not supported.
    if (!cast<ShapedType>(padOp.getResult().getType()).hasStaticShape())
      return failure();
    // Pad result not used as destination.
    if (insertOp.getDest() == padOp.getResult())
      return failure();

    auto vecType = VectorType::get(padOp.getType().getShape(),
                                   padOp.getType().getElementType());
    unsigned vecRank = vecType.getRank();
    unsigned tensorRank = insertOp.getType().getRank();

    // Check if sizes match: Insert the entire tensor into most minor dims.
    // (No permutations allowed.)
    SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
    expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
    if (!llvm::all_of(
            llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
              return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
            }))
      return failure();

    // Insert the TransferReadOp and TransferWriteOp at the position of the
    // InsertSliceOp.
    rewriter.setInsertionPoint(insertOp);

    // Generate TransferReadOp: Read entire source tensor and add high
    // padding.
    SmallVector<Value> readIndices(
        vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
    auto read = rewriter.create<vector::TransferReadOp>(
        padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue);

    // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
    // specified offsets. Write is fully in-bounds because a InsertSliceOp's
    // source must fit into the destination at the specified offsets.
    auto writeIndices =
        ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
    SmallVector<bool> inBounds(vecRank, true);
    rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
        insertOp, read, insertOp.getDest(), writeIndices,
        ArrayRef<bool>{inBounds});

    return success();
  }
};

void mlir::linalg::populatePadOpVectorizationPatterns(
    RewritePatternSet &patterns, PatternBenefit baseBenefit) {
  patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(),
                                                 baseBenefit);
  // Try these specialized patterns first before resorting to the generic one.
  patterns.add<PadOpVectorizationWithTransferReadPattern,
               PadOpVectorizationWithTransferWritePattern,
               PadOpVectorizationWithInsertSlicePattern>(
      patterns.getContext(), baseBenefit.getBenefit() + 1);
}

//----------------------------------------------------------------------------//
// Forwarding patterns
//----------------------------------------------------------------------------//

/// Check whether there is any interleaved use of any `values` between
/// `firstOp` and `secondOp`. Conservatively return `true` if any op or value
/// is in a different block.
static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
                                    ValueRange values) {
  if (firstOp->getBlock() != secondOp->getBlock() ||
      !firstOp->isBeforeInBlock(secondOp)) {
    LDBG("interleavedUses precondition failed, firstOp: "
         << *firstOp << ", second op: " << *secondOp << "\n");
    return true;
  }
  for (auto v : values) {
    for (auto &u : v.getUses()) {
      Operation *owner = u.getOwner();
      if (owner == firstOp || owner == secondOp)
        continue;
      // TODO: this is too conservative, use dominance info in the future.
      if (owner->getBlock() == firstOp->getBlock() &&
          (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
        continue;
      LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
                                    << ", second op: " << *secondOp << "\n");
      return true;
    }
  }
  return false;
}

/// Return the unique subview use of `v` if it is indeed unique, null
/// otherwise.
static memref::SubViewOp getSubViewUseIfUnique(Value v) {
  memref::SubViewOp subViewOp;
  for (auto &u : v.getUses()) {
    if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
      if (subViewOp)
        return memref::SubViewOp();
      subViewOp = newSubViewOp;
    }
  }
  return subViewOp;
}

/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
    vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {

  // TODO: support mask.
  if (xferOp.getMask())
    return rewriter.notifyMatchFailure(xferOp, "unsupported mask");

  // Transfer into `view`.
  Value viewOrAlloc = xferOp.getSource();
  if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
      !viewOrAlloc.getDefiningOp<memref::AllocOp>())
    return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc");

  // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
  memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
  if (!subViewOp)
    return rewriter.notifyMatchFailure(xferOp, "no subview found");
  Value subView = subViewOp.getResult();

  // Find the copy into `subView` without interleaved uses.
  memref::CopyOp copyOp;
  for (auto &u : subView.getUses()) {
    if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) {
      assert(isa<MemRefType>(newCopyOp.getTarget().getType()));
      if (newCopyOp.getTarget() != subView)
        continue;
      if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
        continue;
      copyOp = newCopyOp;
      break;
    }
  }
  if (!copyOp)
    return rewriter.notifyMatchFailure(xferOp, "no copy found");

  // Find the fill into `viewOrAlloc` without interleaved uses before the
  // copy.
  FillOp maybeFillOp;
  for (auto &u : viewOrAlloc.getUses()) {
    if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
      assert(isa<MemRefType>(newFillOp.output().getType()));
      if (newFillOp.output() != viewOrAlloc)
        continue;
      if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
        continue;
      maybeFillOp = newFillOp;
      break;
    }
  }
  // Ensure padding matches.
  if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value())
    return rewriter.notifyMatchFailure(xferOp,
                                       "padding value does not match fill");

  // `in` is the subview that memref.copy reads. Replace it.
  Value in = copyOp.getSource();

  // memref.copy + linalg.fill can be used to create a padded local buffer.
  // The `masked` attribute is only valid on this padded buffer.
  // When forwarding to vector.transfer_read, the attribute must be reset
  // conservatively.
  Value res = rewriter.create<vector::TransferReadOp>(
      xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(),
      xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(),
      // in_bounds is explicitly reset
      /*inBoundsAttr=*/ArrayAttr());

  if (maybeFillOp)
    rewriter.eraseOp(maybeFillOp);
  rewriter.eraseOp(copyOp);
  rewriter.replaceOp(xferOp, res);

  return success();
}

/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
    vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
  // TODO: support mask.
  if (xferOp.getMask())
    return rewriter.notifyMatchFailure(xferOp, "unsupported mask");

  // Transfer into `viewOrAlloc`.
  Value viewOrAlloc = xferOp.getSource();
  if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
      !viewOrAlloc.getDefiningOp<memref::AllocOp>())
    return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc");

  // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
  memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
  if (!subViewOp)
    return rewriter.notifyMatchFailure(xferOp, "no subview found");
  Value subView = subViewOp.getResult();

  // Find the copy from `subView` without interleaved uses.
  memref::CopyOp copyOp;
  for (auto &u : subViewOp.getResult().getUses()) {
    if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) {
      if (newCopyOp.getSource() != subView)
        continue;
      if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
        continue;
      copyOp = newCopyOp;
      break;
    }
  }
  if (!copyOp)
    return rewriter.notifyMatchFailure(xferOp, "no copy found");

  // `out` is the subview copied into that we replace.
  assert(isa<MemRefType>(copyOp.getTarget().getType()));
  Value out = copyOp.getTarget();

  // Forward vector.transfer into copy.
  // memref.copy + linalg.fill can be used to create a padded local buffer.
  // The `masked` attribute is only valid on this padded buffer.
  // When forwarding to vector.transfer_write, the attribute must be reset
  // conservatively.
  rewriter.create<vector::TransferWriteOp>(
      xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(),
      xferOp.getPermutationMapAttr(), xferOp.getMask(),
      // in_bounds is explicitly reset
      /*inBoundsAttr=*/ArrayAttr());

  rewriter.eraseOp(copyOp);
  rewriter.eraseOp(xferOp);

  return success();
}

//===----------------------------------------------------------------------===//
// Convolution vectorization patterns
//===----------------------------------------------------------------------===//

template <int N>
static void bindShapeDims(ShapedType shapedType) {}

template <int N, typename IntTy, typename... IntTy2>
static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) {
  val = shapedType.getShape()[N];
  bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...);
}

/// Bind a pack of int& to the leading dimensions of shapedType.getShape().
template <typename... IntTy>
static void bindShapeDims(ShapedType shapedType, IntTy &...vals) {
  bindShapeDims<0>(shapedType, vals...);
}

namespace {
bool isCastOfBlockArgument(Operation *op) {
  return isa<CastOpInterface>(op) && op->getNumOperands() == 1 &&
         isa<BlockArgument>(op->getOperand(0));
}

bool isSupportedPoolKind(vector::CombiningKind kind) {
  switch (kind) {
  case vector::CombiningKind::ADD:
  case vector::CombiningKind::MAXF:
  case vector::CombiningKind::MAXSI:
  case vector::CombiningKind::MAXUI:
  case vector::CombiningKind::MINF:
  case vector::CombiningKind::MINSI:
  case vector::CombiningKind::MINUI:
    return true;
  default:
    return false;
  }
}

/// Generate a vector implementation for either:
/// ```
///   Op def: (     w,     kw  )
///    Iters: ({Par(), Red()})
///   Layout: {{w + kw}, {kw}, {w}}
/// ```
/// kw is unrolled.
///
/// or
///
/// ```
///   Op def: (     n,     w,     c,    kw,    f  )
///    Iters: ({Par(), Par(), Par(), Red(), Red()})
///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
///
/// or
///
/// ```
///   Op def: (     n,     c,     w,    f,    kw )
///    Iters: ({Par(), Par(), Par(), Red(), Red()})
///   Layout: {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
///
/// or
///
/// ```
///   Op def: (     n,     w,     c,    kw )
///    Iters: ({Par(), Par(), Par(), Red()})
///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
/// ```
/// kw is unrolled, w is unrolled iff dilationW > 1.
struct Conv1DGenerator
    : public StructuredGenerator<LinalgOp, utils::IteratorType> {
  Conv1DGenerator(RewriterBase &rewriter, LinalgOp linalgOp, int strideW,
                  int dilationW)
      : StructuredGenerator<LinalgOp, utils::IteratorType>(rewriter, linalgOp),
        strideW(strideW), dilationW(dilationW) {
    // Determine whether `linalgOp` can be generated with this generator
    if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1)
      return;
    lhsShaped = linalgOp.getDpsInputOperand(0)->get();
    rhsShaped = linalgOp.getDpsInputOperand(1)->get();
    resShaped = linalgOp.getDpsInitOperand(0)->get();
    lhsShapedType = dyn_cast<ShapedType>(lhsShaped.getType());
    rhsShapedType = dyn_cast<ShapedType>(rhsShaped.getType());
    resShapedType = dyn_cast<ShapedType>(resShaped.getType());
    if (!lhsShapedType || !rhsShapedType || !resShapedType)
      return;
    // (LHS has dimension NCW/NWC and RES has dimension NFW/NCW/NWF/NWC) OR
    // (non-channeled convolution -> LHS and RHS both have single dimensions).
    if (!((lhsShapedType.getRank() == 3 && resShapedType.getRank() == 3) ||
          (lhsShapedType.getRank() == 1 && resShapedType.getRank() == 1)))
      return;

    Operation *reduceOp = matchLinalgReduction(linalgOp.getDpsInitOperand(0));
    if (!reduceOp)
      return;
    redOp = reduceOp->getName().getIdentifier();

    if (!setOperKind(reduceOp))
      return;
    auto maybeKind = getCombinerOpKind(reduceOp);
    if (!maybeKind || (*maybeKind != vector::CombiningKind::ADD &&
                       (oper != Pool || !isSupportedPoolKind(*maybeKind)))) {
      return;
    }

    auto rhsRank = rhsShapedType.getRank();
    switch (oper) {
    case Conv:
      if (rhsRank != 1 && rhsRank != 2 && rhsRank != 3)
        return;
      break;
    case Pool:
      if (rhsRank != 1)
        return;
      break;
    }
    // The op is now known to be valid.
    valid = true;
  }

  /// Generate a vector implementation for:
  /// ```
  ///   Op def: (     w,     kw  )
  ///    Iters: ({Par(), Red()})
  ///   Layout: {{w + kw}, {kw}, {w}}
  /// ```
  /// kw is always unrolled.
  ///
  /// or
  ///
  /// ```
  ///   Op def: (     n,     w,     c,    kw,    f  )
  ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
  ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
  /// ```
  /// kw is always unrolled.
  /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
  /// > 1.
  FailureOr<Operation *> conv(Conv1DOpOrder conv1DOpOrder) {
    if (!valid)
      return rewriter.notifyMatchFailure(op, "unvectorizable 1-D conv/pool");

    int64_t nSize, wSize, cSize, kwSize, fSize;
    SmallVector<int64_t, 3> lhsShape, rhsShape, resShape;
    bool isSingleChanneled = (conv1DOpOrder == Conv1DOpOrder::W);
    switch (conv1DOpOrder) {
    case Conv1DOpOrder::W:
      // Initialize unused dimensions
      nSize = fSize = cSize = 0;
      // out{W}
      bindShapeDims(resShapedType, wSize);
      // kernel{kw}
      bindShapeDims(rhsShapedType, kwSize);
      lhsShape = {// iw = ow + kw - 1
                  //   (i.e. 16 convolved with 3 -> 14)
                  (wSize + kwSize - 1)};
      rhsShape = {kwSize};
      resShape = {wSize};
      break;
    case Conv1DOpOrder::Nwc:
      // out{n, w, f}
      bindShapeDims(resShapedType, nSize, wSize, fSize);
      switch (oper) {
      case Conv:
        // kernel{kw, c, f}
        bindShapeDims(rhsShapedType, kwSize, cSize);
        break;
      case Pool:
        // kernel{kw}
        bindShapeDims(rhsShapedType, kwSize);
        cSize = fSize;
        break;
      }
      lhsShape = {nSize,
                  // iw = ow * sw + kw *  dw - 1
                  //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
                  // Perform the proper inclusive -> exclusive -> inclusive.
                  ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) -
                      1,
                  cSize};
      switch (oper) {
      case Conv:
        rhsShape = {kwSize, cSize, fSize};
        break;
      case Pool:
        rhsShape = {kwSize};
        break;
      }
      resShape = {nSize, wSize, fSize};
      break;
    case Conv1DOpOrder::Ncw:
      // out{n, f, w}
      bindShapeDims(resShapedType, nSize, fSize, wSize);
      switch (oper) {
      case Conv:
        // kernel{f, c, kw}
        bindShapeDims(rhsShapedType, fSize, cSize, kwSize);
        break;
      case Pool:
        // kernel{kw}
        bindShapeDims(rhsShapedType, kwSize);
        cSize = fSize;
        break;
      }
      lhsShape = {nSize, cSize,
                  // iw = ow * sw + kw *  dw - 1
                  //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
                  // Perform the proper inclusive -> exclusive -> inclusive.
                  ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) -
                      1};
      switch (oper) {
      case Conv:
        rhsShape = {fSize, cSize, kwSize};
        break;
      case Pool:
        rhsShape = {kwSize};
        break;
      }
      resShape = {nSize, fSize, wSize};
      break;
    }

    vector::TransferWriteOp write;
    Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);

    // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
    // When strideW == 1, we can batch the contiguous loads and avoid
    // unrolling
    int64_t wSizeStep = strideW == 1 ? wSize : 1;

    Type lhsEltType = lhsShapedType.getElementType();
    Type rhsEltType = rhsShapedType.getElementType();
    Type resEltType = resShapedType.getElementType();
    auto lhsType = VectorType::get(lhsShape, lhsEltType);
    auto rhsType = VectorType::get(rhsShape, rhsEltType);
    auto resType = VectorType::get(resShape, resEltType);
    // Zero padding with the corresponding dimensions for lhs, rhs and res.
    SmallVector<Value> lhsPadding(lhsShape.size(), zero);
    SmallVector<Value> rhsPadding(rhsShape.size(), zero);
    SmallVector<Value> resPadding(resShape.size(), zero);

    // Read the whole lhs, rhs and res in one shot (with zero padding).
    Value lhs = rewriter.create<vector::TransferReadOp>(loc, lhsType, lhsShaped,
                                                        lhsPadding);
    // This is needed only for Conv.
    Value rhs = nullptr;
    if (oper == Conv)
      rhs = rewriter.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
                                                    rhsPadding);
    Value res = rewriter.create<vector::TransferReadOp>(loc, resType, resShaped,
                                                        resPadding);

    // The base vectorization case for channeled convolution is input: {n,w,c},
    // weight: {kw,c,f}, output: {n,w,f}. To reuse the base pattern
    // vectorization case, we do pre transpose on input, weight, and output.
    switch (conv1DOpOrder) {
    case Conv1DOpOrder::W:
    case Conv1DOpOrder::Nwc:
      // Base case, so no transposes necessary.
      break;
    case Conv1DOpOrder::Ncw: {
      // To match base vectorization case, we pre-transpose current case.
      // ncw -> nwc
      static constexpr std::array<int64_t, 3> permLhs = {0, 2, 1};
      lhs = rewriter.create<vector::TransposeOp>(loc, lhs, permLhs);
      // fcw -> wcf
      static constexpr std::array<int64_t, 3> permRhs = {2, 1, 0};

      // This is needed only for Conv.
      if (oper == Conv)
        rhs = rewriter.create<vector::TransposeOp>(loc, rhs, permRhs);
      // nfw -> nwf
      static constexpr std::array<int64_t, 3> permRes = {0, 2, 1};
      res = rewriter.create<vector::TransposeOp>(loc, res, permRes);
      break;
    }
    }

    //===------------------------------------------------------------------===//
    // Begin vector-only rewrite part
    //===------------------------------------------------------------------===//
    // Unroll along kw and read slices of lhs and rhs.
    SmallVector<Value> lhsVals, rhsVals, resVals;
    lhsVals = extractConvInputSlices(rewriter, loc, lhs, nSize, wSize, cSize,
                                     kwSize, strideW, dilationW, wSizeStep,
                                     isSingleChanneled);
    // Do not do for pooling.
    if (oper == Conv)
      rhsVals = extractConvFilterSlices(rewriter, loc, rhs, kwSize);
    resVals = extractConvResultSlices(rewriter, loc, res, nSize, wSize, fSize,
                                      wSizeStep, isSingleChanneled);

    auto linearIndex = [&](int64_t kw, int64_t w) {
      return kw * (wSize / wSizeStep) + w;
    };

    // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} or
    // perform outerproduct for non-channeled convolution or
    // perform simple arith operation for pooling
    for (int64_t kw = 0; kw < kwSize; ++kw) {
      for (int64_t w = 0; w < wSize; w += wSizeStep) {
        switch (oper) {
        case Conv:
          if (isSingleChanneled) {
            resVals[w] = conv1dSliceAsOuterProduct(rewriter, loc,
                                                   lhsVals[linearIndex(kw, w)],
                                                   rhsVals[kw], resVals[w]);
          } else {
            resVals[w] = conv1dSliceAsContraction(rewriter, loc,
                                                  lhsVals[linearIndex(kw, w)],
                                                  rhsVals[kw], resVals[w]);
          }
          break;
        case Pool:
          resVals[w] = pool1dSlice(rewriter, loc, lhsVals[linearIndex(kw, w)],
                                   resVals[w]);
          break;
        }
      }
    }

    res = insertConvResultSlices(rewriter, loc, res, wSize, wSizeStep, resVals,
                                 isSingleChanneled);
    //===------------------------------------------------------------------===//
    // End vector-only rewrite part
    //===------------------------------------------------------------------===//

    // The base vectorization case for channeled convolution is output: {n,w,f}
    // To reuse the result from base pattern vectorization case, we post
    // transpose the base case result.
    switch (conv1DOpOrder) {
    case Conv1DOpOrder::W:
    case Conv1DOpOrder::Nwc:
      // Base case, so no transposes necessary.
      break;
    case Conv1DOpOrder::Ncw: {
      // nwf -> nfw
      static constexpr std::array<int64_t, 3> perm = {0, 2, 1};
      res = rewriter.create<vector::TransposeOp>(loc, res, perm);
      break;
    }
    }

    return rewriter
        .create<vector::TransferWriteOp>(loc, res, resShaped, resPadding)
        .getOperation();
  }

  // Take a value and widen to have the same element type as `ty`.
  Value promote(RewriterBase &rewriter, Location loc, Value val, Type ty) {
    const Type srcElementType = getElementTypeOrSelf(val.getType());
    const Type dstElementType = getElementTypeOrSelf(ty);
    assert(isa<IntegerType>(dstElementType) || isa<FloatType>(dstElementType));
    if (srcElementType == dstElementType)
      return val;

    const int64_t srcWidth = srcElementType.getIntOrFloatBitWidth();
    const int64_t dstWidth = dstElementType.getIntOrFloatBitWidth();
    const Type dstType =
        cast<ShapedType>(val.getType()).cloneWith(std::nullopt, dstElementType);

    if (isa<IntegerType>(srcElementType) && isa<FloatType>(dstElementType)) {
      return rewriter.create<arith::SIToFPOp>(loc, dstType, val);
    }

    if (isa<FloatType>(srcElementType) && isa<FloatType>(dstElementType) &&
        srcWidth < dstWidth)
      return rewriter.create<arith::ExtFOp>(loc, dstType, val);

    if (isa<IntegerType>(srcElementType) && isa<IntegerType>(dstElementType) &&
        srcWidth < dstWidth)
      return rewriter.create<arith::ExtSIOp>(loc, dstType, val);

    assert(false && "unhandled promotion case");
    return nullptr;
  }

  // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
  Value conv1dSliceAsContraction(RewriterBase &rewriter, Location loc,
                                 Value lhs, Value rhs, Value res) {
    vector::IteratorType par = vector::IteratorType::parallel;
    vector::IteratorType red = vector::IteratorType::reduction;
    AffineExpr n, w, f, c;
    bindDims(ctx, n, w, f, c);
    lhs = promote(rewriter, loc, lhs, res.getType());
    rhs = promote(rewriter, loc, rhs, res.getType());
    return rewriter.create<vector::ContractionOp>(
        loc, lhs, rhs, res,
        /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
        /*iteratorTypes=*/ArrayRef<vector::IteratorType>{par, par, par, red});
  }

  // Create an outerproduct: lhs{w} * rhs{1} -> res{w} for single channel
  // convolution.
  Value conv1dSliceAsOuterProduct(RewriterBase &rewriter, Location loc,
                                  Value lhs, Value rhs, Value res) {
    return rewriter.create<vector::OuterProductOp>(
        loc, res.getType(), lhs, rhs, res, vector::CombiningKind::ADD);
  }

  // Create a reduction: lhs{n, w, c} -> res{n, w, c}
  Value pool1dSlice(RewriterBase &rewriter, Location loc, Value lhs,
                    Value res) {
    if (isPoolExt)
      lhs = rewriter.create(loc, poolExtOp, lhs, res.getType())->getResult(0);
    return rewriter
        .create(loc, redOp, ArrayRef<Value>{lhs, res}, res.getType())
        ->getResult(0);
  }

  /// Generate a vector implementation for:
  /// ```
  ///   Op def: (     n,     w,     c,    kw)
  ///    Iters: ({Par(), Par(), Par(), Red()})
  ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
  /// ```
  /// kw is always unrolled.
  /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
  /// > 1.
  FailureOr<Operation *> depthwiseConv() {
    if (!valid)
      return rewriter.notifyMatchFailure(op, "unvectorizable depthwise conv");

    int64_t nSize, wSize, cSize, kwSize;
    // kernel{kw, c}
    bindShapeDims(rhsShapedType, kwSize, cSize);
    // out{n, w, c}
    bindShapeDims(resShapedType, nSize, wSize);

    vector::TransferWriteOp write;
    Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);

    // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
    // When strideW == 1, we can batch the contiguous loads and avoid
    // unrolling
    int64_t wSizeStep = strideW == 1 ? wSize : 1;

    Type lhsEltType = lhsShapedType.getElementType();
    Type rhsEltType = rhsShapedType.getElementType();
    Type resEltType = resShapedType.getElementType();
    VectorType lhsType = VectorType::get(
        {nSize,
         // iw = ow * sw + kw *  dw - 1
         //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
         ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
         cSize},
        lhsEltType);
    VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType);
    VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType);

    // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0,
    // 0].
    Value lhs = rewriter.create<vector::TransferReadOp>(
        loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
    // Read rhs slice of size {kw, c} @ [0, 0].
    Value rhs = rewriter.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
                                                        ValueRange{zero, zero});
    // Read res slice of size {n, w, c} @ [0, 0, 0].
    Value res = rewriter.create<vector::TransferReadOp>(
        loc, resType, resShaped, ValueRange{zero, zero, zero});

    //===------------------------------------------------------------------===//
    // Begin vector-only rewrite part
    //===------------------------------------------------------------------===//
    // Unroll along kw and read slices of lhs and rhs.
    SmallVector<Value> lhsVals, rhsVals, resVals;
    // Extract lhs slice of size {n, wSizeStep, c}
    //   @ [0, sw * w + dw * kw, 0].
    for (int64_t kw = 0; kw < kwSize; ++kw) {
      for (int64_t w = 0; w < wSize; w += wSizeStep) {
        lhsVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
            loc, lhs,
            /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
            /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
            /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
      }
    }
    // Extract rhs slice of size {c} @ [kw].
    for (int64_t kw = 0; kw < kwSize; ++kw) {
      rhsVals.push_back(rewriter.create<vector::ExtractOp>(
          loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
    }
    // Extract res slice: {n, wSizeStep, c} @ [0, w, 0].
    for (int64_t w = 0; w < wSize; w += wSizeStep) {
      resVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>(
          loc, res,
          /*offsets=*/ArrayRef<int64_t>{0, w, 0},
          /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
          /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
    }

    auto linearIndex = [&](int64_t kw, int64_t w) {
      return kw * (wSize / wSizeStep) + w;
    };

    // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c}
    for (int64_t kw = 0; kw < kwSize; ++kw) {
      for (int64_t w = 0; w < wSize; w += wSizeStep) {
        resVals[w] = depthwiseConv1dSliceAsMulAcc(rewriter, loc,
                                                  lhsVals[linearIndex(kw, w)],
                                                  rhsVals[kw], resVals[w]);
      }
    }

    // Its possible we failed to create the Fma.
    if (!llvm::all_of(resVals, [](Value v) { return v; })) {
      // Manually revert (in reverse order) to avoid leaving a bad IR state.
      for (auto &collection :
           {resVals, rhsVals, lhsVals, {res, rhs, lhs, zero}})
        for (Value v : collection)
          rewriter.eraseOp(v.getDefiningOp());
      return rewriter.notifyMatchFailure(op, "failed to create FMA");
    }

    // Write back res slice: {n, wSizeStep, c} @ [0, w, 0].
    // This does not depend on kw.
    for (int64_t w = 0; w < wSize; w += wSizeStep) {
      res = rewriter.create<vector::InsertStridedSliceOp>(
          loc, resVals[w], res,
          /*offsets=*/ArrayRef<int64_t>{0, w, 0},
          /*strides=*/ArrayRef<int64_t>{1, 1, 1});
    }
    //===------------------------------------------------------------------===//
    // End vector-only rewrite part
    //===------------------------------------------------------------------===//

    // Write back res slice of size {n, w, c} @ [0, 0, 0].
    return rewriter
        .create<vector::TransferWriteOp>(loc, res, resShaped,
                                         ValueRange{zero, zero, zero})
        .getOperation();
  }

  /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to MulAcc
  Value depthwiseConv1dSliceAsMulAcc(RewriterBase &rewriter, Location loc,
                                     Value lhs, Value rhs, Value res) {
    auto rhsTy = cast<ShapedType>(rhs.getType());
    auto resTy = cast<ShapedType>(res.getType());

    // TODO(suderman): Change this to use a vector.ima intrinsic.
    lhs = promote(rewriter, loc, lhs, resTy);

    rhs = rewriter.create<vector::BroadcastOp>(
        loc, resTy.clone(rhsTy.getElementType()), rhs);
    rhs = promote(rewriter, loc, rhs, resTy);

    if (!lhs || !rhs)
      return nullptr;

    if (isa<FloatType>(resTy.getElementType()))
      return rewriter.create<vector::FMAOp>(loc, lhs, rhs, res);

    auto mul = rewriter.create<arith::MulIOp>(loc, lhs, rhs);
    return rewriter.create<arith::AddIOp>(loc, mul, res);
  }

  /// Entry point for non-channeled convolution:
  ///   {{w + kw}, {kw}, {w}}
  FailureOr<Operation *> generateNonChanneledConv() {
    AffineExpr w, kw;
    bindDims(ctx, w, kw);
    if (!iters({Par(), Red()}))
      return rewriter.notifyMatchFailure(op,
                                         "failed to match conv::W 1-par 1-red");

    // No transposition needed.
    if (layout({/*lhsIndex*/ {w + kw},
                /*rhsIndex*/ {kw},
                /*resIndex*/ {w}}))
      return conv(Conv1DOpOrder::W);

    return rewriter.notifyMatchFailure(op, "not a conv::W layout");
  }

  /// Entry point that transposes into the common form:
  ///   {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
  FailureOr<Operation *> generateNwcConv() {
    AffineExpr n, w, f, kw, c;
    bindDims(ctx, n, w, f, kw, c);
    if (!iters({Par(), Par(), Par(), Red(), Red()}))
      return rewriter.notifyMatchFailure(
          op, "failed to match conv::Nwc 3-par 2-red");

    // No transposition needed.
    if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
                /*rhsIndex*/ {kw, c, f},
                /*resIndex*/ {n, w, f}}))
      return conv(Conv1DOpOrder::Nwc);

    return rewriter.notifyMatchFailure(op, "not a conv::Nwc layout");
  }

  /// Entry point that transposes into the common form:
  ///   {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}}
  FailureOr<Operation *> generateNcwConv() {
    AffineExpr n, w, f, kw, c;
    bindDims(ctx, n, f, w, c, kw);
    if (!iters({Par(), Par(), Par(), Red(), Red()}))
      return rewriter.notifyMatchFailure(
          op, "failed to match conv::Ncw 3-par 2-red");

    if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw},
                /*rhsIndex*/ {f, c, kw},
                /*resIndex*/ {n, f, w}}))
      return conv(Conv1DOpOrder::Ncw);

    return rewriter.notifyMatchFailure(op, "not a conv::Ncw layout");
  }

  /// Entry point that transposes into the common form:
  ///   {{n, strideW * w + dilationW * kw, c}, {kw}, {n, w, c}} for pooling
  FailureOr<Operation *> generateNwcPooling() {
    AffineExpr n, w, c, kw;
    bindDims(ctx, n, w, c, kw);
    if (!iters({Par(), Par(), Par(), Red()}))
      return rewriter.notifyMatchFailure(op,
                                         "failed to match pooling 3-par 1-red");

    // No transposition needed.
    if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
                /*rhsIndex*/ {kw},
                /*resIndex*/ {n, w, c}}))
      return conv(Conv1DOpOrder::Nwc);

    return rewriter.notifyMatchFailure(op, "not a pooling::Nwc layout");
  }

  /// Entry point that transposes into the common form:
  ///   {{n, c, strideW * w + dilationW * kw}, {kw}, {n, c, w}} for pooling
  FailureOr<Operation *> generateNcwPooling() {
    AffineExpr n, w, c, kw;
    bindDims(ctx, n, c, w, kw);
    if (!iters({Par(), Par(), Par(), Red()}))
      return rewriter.notifyMatchFailure(op,
                                         "failed to match pooling 3-par 1-red");

    if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw},
                /*rhsIndex*/ {kw},
                /*resIndex*/ {n, c, w}}))
      return conv(Conv1DOpOrder::Ncw);

    return rewriter.notifyMatchFailure(op, "not a pooling::Ncw layout");
  }

  /// Entry point that transposes into the common form:
  ///   {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
  FailureOr<Operation *> generateDilatedConv() {
    AffineExpr n, w, c, kw;
    bindDims(ctx, n, w, c, kw);
    if (!iters({Par(), Par(), Par(), Red()}))
      return rewriter.notifyMatchFailure(
          op, "failed to match depthwise::Nwc conv 3-par 1-red");

    // No transposition needed.
    if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
                /*rhsIndex*/ {kw, c},
                /*resIndex*/ {n, w, c}}))
      return depthwiseConv();

    return rewriter.notifyMatchFailure(op, "not a depthwise::Nwc layout");
  }

private:
  enum OperKind { Conv, Pool };
  bool valid = false;
  OperKind oper = Conv;
  StringAttr redOp;
  StringAttr poolExtOp;
  bool isPoolExt = false;
  int strideW, dilationW;
  Value lhsShaped, rhsShaped, resShaped;
  ShapedType lhsShapedType, rhsShapedType, resShapedType;

  // Sets oper, poolExtOp and isPoolExt for valid conv/pooling ops.
  // Returns true iff it is a valid conv/pooling op.
  // If (region has 2 ops (reduction + yield) or 3 ops (extension + reduction
  // + yield) and rhs is not used) then it is the body of a pooling
  // If conv, check for single `mul` predecessor. The `mul` operands must be
  // block arguments or extension of block arguments.
  // Otherwise, check for one or zero `ext` predecessor. The `ext` operands
  // must be block arguments or extension of block arguments.
  bool setOperKind(Operation *reduceOp) {
    int numBlockArguments = llvm::count_if(
        reduceOp->getOperands(), [](Value v) { return isa<BlockArgument>(v); });
    switch (numBlockArguments) {
    case 1: {
      // Will be convolution if feeder is a MulOp.
      // Otherwise, if it can be pooling.
      auto feedValIt = llvm::find_if(reduceOp->getOperands(), [](Value v) {
        return !isa<BlockArgument>(v);
      });
      Operation *feedOp = (*feedValIt).getDefiningOp();
      if (isCastOfBlockArgument(feedOp)) {
        oper = Pool;
        isPoolExt = true;
        poolExtOp = feedOp->getName().getIdentifier();
      } else if (!(isa<arith::MulIOp, arith::MulFOp>(feedOp) &&
                   llvm::all_of(feedOp->getOperands(), [](Value v) {
                     if (isa<BlockArgument>(v))
                       return true;
                     if (Operation *op = v.getDefiningOp())
                       return isCastOfBlockArgument(op);
                     return false;
                   }))) {
        return false;
      }
      return true;
    }
    case 2:
      // Must be pooling
      oper = Pool;
      isPoolExt = false;
      return true;
    default:
      return false;
    }
  }
};
} // namespace

/// Helper function to vectorize a LinalgOp with convolution semantics.
// TODO: extend the generic vectorization to support windows and drop this.
static FailureOr<Operation *> vectorizeConvolution(RewriterBase &rewriter,
                                                   LinalgOp op) {
  // The ConvolutionOpInterface gives us guarantees of existence for
  // strides/dilations. However, we do not need to rely on those, we can simply
  // use them if present, otherwise use the default and let the generic conv.
  // matcher in the ConvGenerator succeed or fail.
  auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides");
  auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations");
  auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
  auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
  Conv1DGenerator e(rewriter, op, stride, dilation);
  auto res = e.generateNonChanneledConv();
  if (succeeded(res))
    return res;
  res = e.generateNwcConv();
  if (succeeded(res))
    return res;
  res = e.generateNcwConv();
  if (succeeded(res))
    return res;
  res = e.generateNwcPooling();
  if (succeeded(res))
    return res;
  res = e.generateNcwPooling();
  if (succeeded(res))
    return res;
  return e.generateDilatedConv();
}

struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> {
  using OpInterfaceRewritePattern::OpInterfaceRewritePattern;

  LogicalResult matchAndRewrite(LinalgOp op,
                                PatternRewriter &rewriter) const override {
    FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op);
    if (failed(resultOrFail))
      return failure();
    Operation *newOp = *resultOrFail;
    if (newOp->getNumResults() == 0) {
      rewriter.eraseOp(op.getOperation());
      return success();
    }
    assert(newOp->getNumResults() == 1 && "expected single result");
    rewriter.replaceOp(op.getOperation(), newOp->getResult(0));
    return success();
  }
};

void mlir::linalg::populateConvolutionVectorizationPatterns(
    RewritePatternSet &patterns, PatternBenefit benefit) {
  patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
}