1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
//===- AlgebraicSimplification.cpp - Simplify algebraic expressions -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewrites based on the basic rules of algebra
// (Commutativity, associativity, etc...) and strength reductions for math
// operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TypeUtilities.h"
#include <climits>
using namespace mlir;
//----------------------------------------------------------------------------//
// PowFOp strength reduction.
//----------------------------------------------------------------------------//
namespace {
struct PowFStrengthReduction : public OpRewritePattern<math::PowFOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::PowFOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
PowFStrengthReduction::matchAndRewrite(math::PowFOp op,
PatternRewriter &rewriter) const {
Location loc = op.getLoc();
Value x = op.getLhs();
FloatAttr scalarExponent;
DenseFPElementsAttr vectorExponent;
bool isScalar = matchPattern(op.getRhs(), m_Constant(&scalarExponent));
bool isVector = matchPattern(op.getRhs(), m_Constant(&vectorExponent));
// Returns true if exponent is a constant equal to `value`.
auto isExponentValue = [&](double value) -> bool {
if (isScalar)
return scalarExponent.getValue().isExactlyValue(value);
if (isVector && vectorExponent.isSplat())
return vectorExponent.getSplatValue<FloatAttr>()
.getValue()
.isExactlyValue(value);
return false;
};
// Maybe broadcasts scalar value into vector type compatible with `op`.
auto bcast = [&](Value value) -> Value {
if (auto vec = dyn_cast<VectorType>(op.getType()))
return rewriter.create<vector::BroadcastOp>(op.getLoc(), vec, value);
return value;
};
// Replace `pow(x, 1.0)` with `x`.
if (isExponentValue(1.0)) {
rewriter.replaceOp(op, x);
return success();
}
// Replace `pow(x, 2.0)` with `x * x`.
if (isExponentValue(2.0)) {
rewriter.replaceOpWithNewOp<arith::MulFOp>(op, ValueRange({x, x}));
return success();
}
// Replace `pow(x, 3.0)` with `x * x * x`.
if (isExponentValue(3.0)) {
Value square =
rewriter.create<arith::MulFOp>(op.getLoc(), ValueRange({x, x}));
rewriter.replaceOpWithNewOp<arith::MulFOp>(op, ValueRange({x, square}));
return success();
}
// Replace `pow(x, -1.0)` with `1.0 / x`.
if (isExponentValue(-1.0)) {
Value one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getFloatAttr(getElementTypeOrSelf(op.getType()), 1.0));
rewriter.replaceOpWithNewOp<arith::DivFOp>(op, ValueRange({bcast(one), x}));
return success();
}
// Replace `pow(x, 0.5)` with `sqrt(x)`.
if (isExponentValue(0.5)) {
rewriter.replaceOpWithNewOp<math::SqrtOp>(op, x);
return success();
}
// Replace `pow(x, -0.5)` with `rsqrt(x)`.
if (isExponentValue(-0.5)) {
rewriter.replaceOpWithNewOp<math::RsqrtOp>(op, x);
return success();
}
// Replace `pow(x, 0.75)` with `sqrt(sqrt(x)) * sqrt(x)`.
if (isExponentValue(0.75)) {
Value powHalf = rewriter.create<math::SqrtOp>(op.getLoc(), x);
Value powQuarter = rewriter.create<math::SqrtOp>(op.getLoc(), powHalf);
rewriter.replaceOpWithNewOp<arith::MulFOp>(op,
ValueRange{powHalf, powQuarter});
return success();
}
return failure();
}
//----------------------------------------------------------------------------//
// FPowIOp/IPowIOp strength reduction.
//----------------------------------------------------------------------------//
namespace {
template <typename PowIOpTy, typename DivOpTy, typename MulOpTy>
struct PowIStrengthReduction : public OpRewritePattern<PowIOpTy> {
unsigned exponentThreshold;
public:
PowIStrengthReduction(MLIRContext *context, unsigned exponentThreshold = 3,
PatternBenefit benefit = 1,
ArrayRef<StringRef> generatedNames = {})
: OpRewritePattern<PowIOpTy>(context, benefit, generatedNames),
exponentThreshold(exponentThreshold) {}
LogicalResult matchAndRewrite(PowIOpTy op,
PatternRewriter &rewriter) const final;
};
} // namespace
template <typename PowIOpTy, typename DivOpTy, typename MulOpTy>
LogicalResult
PowIStrengthReduction<PowIOpTy, DivOpTy, MulOpTy>::matchAndRewrite(
PowIOpTy op, PatternRewriter &rewriter) const {
Location loc = op.getLoc();
Value base = op.getLhs();
IntegerAttr scalarExponent;
DenseIntElementsAttr vectorExponent;
bool isScalar = matchPattern(op.getRhs(), m_Constant(&scalarExponent));
bool isVector = matchPattern(op.getRhs(), m_Constant(&vectorExponent));
// Simplify cases with known exponent value.
int64_t exponentValue = 0;
if (isScalar)
exponentValue = scalarExponent.getInt();
else if (isVector && vectorExponent.isSplat())
exponentValue = vectorExponent.getSplatValue<IntegerAttr>().getInt();
else
return failure();
// Maybe broadcasts scalar value into vector type compatible with `op`.
auto bcast = [&loc, &op, &rewriter](Value value) -> Value {
if (auto vec = dyn_cast<VectorType>(op.getType()))
return rewriter.create<vector::BroadcastOp>(loc, vec, value);
return value;
};
Value one;
Type opType = getElementTypeOrSelf(op.getType());
if constexpr (std::is_same_v<PowIOpTy, math::FPowIOp>)
one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getFloatAttr(opType, 1.0));
else
one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(opType, 1));
// Replace `[fi]powi(x, 0)` with `1`.
if (exponentValue == 0) {
rewriter.replaceOp(op, bcast(one));
return success();
}
bool exponentIsNegative = false;
if (exponentValue < 0) {
exponentIsNegative = true;
exponentValue *= -1;
}
// Bail out if `abs(exponent)` exceeds the threshold.
if (exponentValue > exponentThreshold)
return failure();
// Inverse the base for negative exponent, i.e. for
// `[fi]powi(x, negative_exponent)` set `x` to `1 / x`.
if (exponentIsNegative)
base = rewriter.create<DivOpTy>(loc, bcast(one), base);
Value result = base;
// Transform to naive sequence of multiplications:
// * For positive exponent case replace:
// `[fi]powi(x, positive_exponent)`
// with:
// x * x * x * ...
// * For negative exponent case replace:
// `[fi]powi(x, negative_exponent)`
// with:
// (1 / x) * (1 / x) * (1 / x) * ...
for (unsigned i = 1; i < exponentValue; ++i)
result = rewriter.create<MulOpTy>(loc, result, base);
rewriter.replaceOp(op, result);
return success();
}
//----------------------------------------------------------------------------//
void mlir::populateMathAlgebraicSimplificationPatterns(
RewritePatternSet &patterns) {
patterns
.add<PowFStrengthReduction,
PowIStrengthReduction<math::IPowIOp, arith::DivSIOp, arith::MulIOp>,
PowIStrengthReduction<math::FPowIOp, arith::DivFOp, arith::MulFOp>>(
patterns.getContext());
}
|