1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
|
//===- PolynomialApproximation.cpp - Approximate math operations ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements expansion of math operations to fast approximations
// that do not rely on any of the library functions.
//
//===----------------------------------------------------------------------===//
#include <climits>
#include <cmath>
#include <cstddef>
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Approximation.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/Dialect/X86Vector/X86VectorDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace mlir;
using namespace mlir::math;
using namespace mlir::vector;
// Returns vector shape if the type is a vector. Returns an empty shape if it is
// not a vector.
static ArrayRef<int64_t> vectorShape(Type type) {
auto vectorType = dyn_cast<VectorType>(type);
return vectorType ? vectorType.getShape() : ArrayRef<int64_t>();
}
static ArrayRef<int64_t> vectorShape(Value value) {
return vectorShape(value.getType());
}
//----------------------------------------------------------------------------//
// Broadcast scalar types and values into vector types and values.
//----------------------------------------------------------------------------//
// Broadcasts scalar type into vector type (iff shape is non-scalar).
static Type broadcast(Type type, ArrayRef<int64_t> shape) {
assert(!isa<VectorType>(type) && "must be scalar type");
return !shape.empty() ? VectorType::get(shape, type) : type;
}
// Broadcasts scalar value into vector (iff shape is non-scalar).
static Value broadcast(ImplicitLocOpBuilder &builder, Value value,
ArrayRef<int64_t> shape) {
assert(!isa<VectorType>(value.getType()) && "must be scalar value");
auto type = broadcast(value.getType(), shape);
return !shape.empty() ? builder.create<BroadcastOp>(type, value) : value;
}
//----------------------------------------------------------------------------//
// Helper function to handle n-D vectors with 1-D operations.
//----------------------------------------------------------------------------//
// Expands and unrolls n-D vector operands into multiple fixed size 1-D vectors
// and calls the compute function with 1-D vector operands. Stitches back all
// results into the original n-D vector result.
//
// Examples: vectorWidth = 8
// - vector<4x8xf32> unrolled 4 times
// - vector<16xf32> expanded to vector<2x8xf32> and unrolled 2 times
// - vector<4x16xf32> expanded to vector<4x2x8xf32> and unrolled 4*2 times
//
// Some math approximations rely on ISA-specific operations that only accept
// fixed size 1-D vectors (e.g. AVX expects vectors of width 8).
//
// It is the caller's responsibility to verify that the inner dimension is
// divisible by the vectorWidth, and that all operands have the same vector
// shape.
static Value
handleMultidimensionalVectors(ImplicitLocOpBuilder &builder,
ValueRange operands, int64_t vectorWidth,
llvm::function_ref<Value(ValueRange)> compute) {
assert(!operands.empty() && "operands must be not empty");
assert(vectorWidth > 0 && "vector width must be larger than 0");
VectorType inputType = cast<VectorType>(operands[0].getType());
ArrayRef<int64_t> inputShape = inputType.getShape();
// If input shape matches target vector width, we can just call the
// user-provided compute function with the operands.
if (inputShape == llvm::ArrayRef(vectorWidth))
return compute(operands);
// Check if the inner dimension has to be expanded, or we can directly iterate
// over the outer dimensions of the vector.
int64_t innerDim = inputShape.back();
int64_t expansionDim = innerDim / vectorWidth;
assert((innerDim % vectorWidth == 0) && "invalid inner dimension size");
// Maybe expand operands to the higher rank vector shape that we'll use to
// iterate over and extract one dimensional vectors.
SmallVector<int64_t> expandedShape(inputShape.begin(), inputShape.end());
SmallVector<Value> expandedOperands(operands);
if (expansionDim > 1) {
// Expand shape from [..., innerDim] to [..., expansionDim, vectorWidth].
expandedShape.insert(expandedShape.end() - 1, expansionDim);
expandedShape.back() = vectorWidth;
for (unsigned i = 0; i < operands.size(); ++i) {
auto operand = operands[i];
auto eltType = cast<VectorType>(operand.getType()).getElementType();
auto expandedType = VectorType::get(expandedShape, eltType);
expandedOperands[i] =
builder.create<vector::ShapeCastOp>(expandedType, operand);
}
}
// Iterate over all outer dimensions of the compute shape vector type.
auto iterationDims = ArrayRef<int64_t>(expandedShape).drop_back();
int64_t maxIndex = computeMaxLinearIndex(iterationDims);
auto strides = computeStrides(iterationDims);
// Compute results for each one dimensional vector.
SmallVector<Value> results(maxIndex);
for (int64_t i = 0; i < maxIndex; ++i) {
auto offsets = delinearize(i, strides);
SmallVector<Value> extracted(expandedOperands.size());
for (const auto &tuple : llvm::enumerate(expandedOperands))
extracted[tuple.index()] =
builder.create<vector::ExtractOp>(tuple.value(), offsets);
results[i] = compute(extracted);
}
// Stitch results together into one large vector.
Type resultEltType = cast<VectorType>(results[0].getType()).getElementType();
Type resultExpandedType = VectorType::get(expandedShape, resultEltType);
Value result = builder.create<arith::ConstantOp>(
resultExpandedType, builder.getZeroAttr(resultExpandedType));
for (int64_t i = 0; i < maxIndex; ++i)
result = builder.create<vector::InsertOp>(results[i], result,
delinearize(i, strides));
// Reshape back to the original vector shape.
return builder.create<vector::ShapeCastOp>(
VectorType::get(inputShape, resultEltType), result);
}
//----------------------------------------------------------------------------//
// Helper functions to create constants.
//----------------------------------------------------------------------------//
static Value floatCst(ImplicitLocOpBuilder &builder, float value,
Type elementType) {
assert((elementType.isF16() || elementType.isF32()) &&
"x must be f16 or f32 type.");
return builder.create<arith::ConstantOp>(
builder.getFloatAttr(elementType, value));
}
static Value f32Cst(ImplicitLocOpBuilder &builder, double value) {
return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value));
}
static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) {
return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value));
}
static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) {
Value i32Value = i32Cst(builder, static_cast<int32_t>(bits));
return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value);
}
//----------------------------------------------------------------------------//
// Helper functions to build math functions approximations.
//----------------------------------------------------------------------------//
// Return the minimum of the two values or NaN if value is NaN
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound) {
return builder.create<arith::SelectOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, value, bound),
value, bound);
}
// Return the maximum of the two values or NaN if value is NaN
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound) {
return builder.create<arith::SelectOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::UGT, value, bound),
value, bound);
}
// Return the clamped value or NaN if value is NaN
static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
Value upperBound) {
return max(builder, min(builder, value, upperBound), lowerBound);
}
// Decomposes given floating point value `arg` into a normalized fraction and
// an integral power of two (see std::frexp). Returned values have float type.
static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
bool isPositive = false) {
assert(getElementTypeOrSelf(arg).isF32() && "arg must be f32 type");
ArrayRef<int64_t> shape = vectorShape(arg);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto i32 = builder.getIntegerType(32);
auto i32Vec = broadcast(i32, shape);
auto f32Vec = broadcast(builder.getF32Type(), shape);
Value cst126f = f32Cst(builder, 126.0f);
Value cstHalf = f32Cst(builder, 0.5f);
Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u);
// Bitcast to i32 for bitwise operations.
Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf);
Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask);
Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg);
// Compute normalized fraction.
Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask));
Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half));
Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1);
// Compute exponent.
Value arg0 = isPositive ? arg : builder.create<math::AbsFOp>(arg);
Value biasedExponentBits = builder.create<arith::ShRUIOp>(
builder.create<arith::BitcastOp>(i32Vec, arg0),
bcast(i32Cst(builder, 23)));
Value biasedExponent =
builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits);
Value exponent =
builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f));
return {normalizedFraction, exponent};
}
// Computes exp2 for an i32 argument.
static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) {
assert(getElementTypeOrSelf(arg).isInteger(32) && "arg must be i32 type");
ArrayRef<int64_t> shape = vectorShape(arg);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto f32Vec = broadcast(builder.getF32Type(), shape);
// The exponent of f32 located at 23-bit.
auto exponetBitLocation = bcast(i32Cst(builder, 23));
// Set the exponent bias to zero.
auto bias = bcast(i32Cst(builder, 127));
Value biasedArg = builder.create<arith::AddIOp>(arg, bias);
Value exp2ValueInt =
builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation);
Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt);
return exp2ValueF32;
}
namespace {
Value makePolynomialCalculation(ImplicitLocOpBuilder &builder,
llvm::ArrayRef<Value> coeffs, Value x) {
Type elementType = getElementTypeOrSelf(x);
assert((elementType.isF32() || elementType.isF16()) &&
"x must be f32 or f16 type");
ArrayRef<int64_t> shape = vectorShape(x);
if (coeffs.empty())
return broadcast(builder, floatCst(builder, 0.0f, elementType), shape);
if (coeffs.size() == 1)
return coeffs[0];
Value res = builder.create<math::FmaOp>(x, coeffs[coeffs.size() - 1],
coeffs[coeffs.size() - 2]);
for (auto i = ptrdiff_t(coeffs.size()) - 3; i >= 0; --i) {
res = builder.create<math::FmaOp>(x, res, coeffs[i]);
}
return res;
}
} // namespace
//----------------------------------------------------------------------------//
// Helper function/pattern to insert casts for reusing F32 bit expansion.
//----------------------------------------------------------------------------//
template <typename T>
LogicalResult insertCasts(Operation *op, PatternRewriter &rewriter) {
// Conservatively only allow where the operand and result types are exactly 1.
Type origType = op->getResultTypes().front();
for (Type t : llvm::drop_begin(op->getResultTypes()))
if (origType != t)
return rewriter.notifyMatchFailure(op, "required all types to match");
for (Type t : op->getOperandTypes())
if (origType != t)
return rewriter.notifyMatchFailure(op, "required all types to match");
// Skip if already F32 or larger than 32 bits.
if (getElementTypeOrSelf(origType).isF32() ||
getElementTypeOrSelf(origType).getIntOrFloatBitWidth() > 32)
return failure();
// Create F32 equivalent type.
Type newType;
if (auto shaped = dyn_cast<ShapedType>(origType)) {
newType = shaped.clone(rewriter.getF32Type());
} else if (isa<FloatType>(origType)) {
newType = rewriter.getF32Type();
} else {
return rewriter.notifyMatchFailure(op,
"unable to find F32 equivalent type");
}
Location loc = op->getLoc();
SmallVector<Value> operands;
for (auto operand : op->getOperands())
operands.push_back(rewriter.create<arith::ExtFOp>(loc, newType, operand));
auto result =
rewriter.create<T>(loc, TypeRange{newType}, operands, op->getAttrs());
rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, origType, result);
return success();
}
namespace {
// Pattern to cast to F32 to reuse F32 expansion as fallback for single-result
// op.
// TODO: Consider revising to avoid adding multiple casts for a subgraph that is
// all in lower precision. Currently this is only fallback support and performs
// simplistic casting.
template <typename T>
struct ReuseF32Expansion : public OpRewritePattern<T> {
public:
using OpRewritePattern<T>::OpRewritePattern;
LogicalResult matchAndRewrite(T op, PatternRewriter &rewriter) const final {
static_assert(
T::template hasTrait<mlir::OpTrait::SameOperandsAndResultType>(),
"requires same operands and result types");
return insertCasts<T>(op, rewriter);
}
};
} // namespace
//----------------------------------------------------------------------------//
// AtanOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct AtanApproximation : public OpRewritePattern<math::AtanOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::AtanOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
AtanApproximation::matchAndRewrite(math::AtanOp op,
PatternRewriter &rewriter) const {
auto operand = op.getOperand();
if (!getElementTypeOrSelf(operand).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
Value abs = builder.create<math::AbsFOp>(operand);
auto one = broadcast(builder, f32Cst(builder, 1.0), shape);
// When 0.66 < x <= 2.41 we do (x-1) / (x+1):
auto twoThirds = broadcast(builder, f32Cst(builder, 0.66), shape);
Value cmp2 =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, abs, twoThirds);
Value addone = builder.create<arith::AddFOp>(abs, one);
Value subone = builder.create<arith::SubFOp>(abs, one);
Value xnum = builder.create<arith::SelectOp>(cmp2, subone, abs);
Value xden = builder.create<arith::SelectOp>(cmp2, addone, one);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// Break into the <= 0.66 or > 2.41 we do x or 1/x:
auto tan3pio8 = bcast(f32Cst(builder, 2.41421356237309504880));
Value cmp1 =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, abs, tan3pio8);
xnum = builder.create<arith::SelectOp>(cmp1, one, xnum);
xden = builder.create<arith::SelectOp>(cmp1, abs, xden);
Value x = builder.create<arith::DivFOp>(xnum, xden);
Value xx = builder.create<arith::MulFOp>(x, x);
// Perform the Taylor series approximation for atan over the range
// [0.0, 0.66].
auto p0 = bcast(f32Cst(builder, -8.750608600031904122785e-01));
auto p1 = bcast(f32Cst(builder, -1.615753718733365076637e+01));
auto p2 = bcast(f32Cst(builder, -7.500855792314704667340e+01));
auto p3 = bcast(f32Cst(builder, -1.228866684490136173410e+02));
auto p4 = bcast(f32Cst(builder, -6.485021904942025371773e+01));
auto q0 = bcast(f32Cst(builder, +2.485846490142306297962e+01));
auto q1 = bcast(f32Cst(builder, +1.650270098316988542046e+02));
auto q2 = bcast(f32Cst(builder, +4.328810604912902668951e+02));
auto q3 = bcast(f32Cst(builder, +4.853903996359136964868e+02));
auto q4 = bcast(f32Cst(builder, +1.945506571482613964425e+02));
// Apply the polynomial approximation for the numerator:
Value n = p0;
n = builder.create<math::FmaOp>(xx, n, p1);
n = builder.create<math::FmaOp>(xx, n, p2);
n = builder.create<math::FmaOp>(xx, n, p3);
n = builder.create<math::FmaOp>(xx, n, p4);
n = builder.create<arith::MulFOp>(n, xx);
// Apply the polynomial approximation for the denominator:
Value d = q0;
d = builder.create<math::FmaOp>(xx, d, q1);
d = builder.create<math::FmaOp>(xx, d, q2);
d = builder.create<math::FmaOp>(xx, d, q3);
d = builder.create<math::FmaOp>(xx, d, q4);
// Compute approximation of theta:
Value ans0 = builder.create<arith::DivFOp>(n, d);
ans0 = builder.create<math::FmaOp>(ans0, x, x);
// Correct for the input mapping's angles:
Value mpi4 = bcast(f32Cst(builder, llvm::numbers::pi / 4));
Value ans2 = builder.create<arith::AddFOp>(mpi4, ans0);
Value ans = builder.create<arith::SelectOp>(cmp2, ans2, ans0);
Value mpi2 = bcast(f32Cst(builder, llvm::numbers::pi / 2));
Value ans1 = builder.create<arith::SubFOp>(mpi2, ans0);
ans = builder.create<arith::SelectOp>(cmp1, ans1, ans);
// Correct for signing of the input.
rewriter.replaceOpWithNewOp<math::CopySignOp>(op, ans, operand);
return success();
}
//----------------------------------------------------------------------------//
// AtanOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct Atan2Approximation : public OpRewritePattern<math::Atan2Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::Atan2Op op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
Atan2Approximation::matchAndRewrite(math::Atan2Op op,
PatternRewriter &rewriter) const {
auto y = op.getOperand(0);
auto x = op.getOperand(1);
if (!getElementTypeOrSelf(x).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
ArrayRef<int64_t> shape = vectorShape(op.getResult());
// Compute atan in the valid range.
auto div = builder.create<arith::DivFOp>(y, x);
auto atan = builder.create<math::AtanOp>(div);
// Determine what the atan would be for a 180 degree rotation.
auto zero = broadcast(builder, f32Cst(builder, 0.0f), shape);
auto pi = broadcast(builder, f32Cst(builder, 3.14159265359f), shape);
auto addPi = builder.create<arith::AddFOp>(atan, pi);
auto subPi = builder.create<arith::SubFOp>(atan, pi);
auto atanGt =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, atan, zero);
auto flippedAtan = builder.create<arith::SelectOp>(atanGt, subPi, addPi);
// Determine whether to directly use atan or use the 180 degree flip
auto xGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zero);
Value result = builder.create<arith::SelectOp>(xGt, atan, flippedAtan);
// Handle x = 0, y > 0
Value xZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, x, zero);
Value yGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, y, zero);
Value isHalfPi = builder.create<arith::AndIOp>(xZero, yGt);
auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
result = builder.create<arith::SelectOp>(isHalfPi, halfPi, result);
// Handle x = 0, y < 0
Value yLt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, y, zero);
Value isNegativeHalfPiPi = builder.create<arith::AndIOp>(xZero, yLt);
auto negativeHalfPiPi =
broadcast(builder, f32Cst(builder, -1.57079632679f), shape);
result = builder.create<arith::SelectOp>(isNegativeHalfPiPi, negativeHalfPiPi,
result);
// Handle x = 0, y = 0;
Value yZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, y, zero);
Value isNan = builder.create<arith::AndIOp>(xZero, yZero);
Value cstNan = broadcast(builder, f32FromBits(builder, 0x7fc00000), shape);
result = builder.create<arith::SelectOp>(isNan, cstNan, result);
rewriter.replaceOp(op, result);
return success();
}
//----------------------------------------------------------------------------//
// TanhOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct TanhApproximation : public OpRewritePattern<math::TanhOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::TanhOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
TanhApproximation::matchAndRewrite(math::TanhOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// Clamp operand into [plusClamp, minusClamp] range.
Value minusClamp = bcast(f32Cst(builder, -7.99881172180175781f));
Value plusClamp = bcast(f32Cst(builder, 7.99881172180175781f));
Value x = clamp(builder, op.getOperand(), minusClamp, plusClamp);
// Mask for tiny values that are approximated with `operand`.
Value tiny = bcast(f32Cst(builder, 0.0004f));
Value tinyMask = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OLT, builder.create<math::AbsFOp>(op.getOperand()),
tiny);
// The monomial coefficients of the numerator polynomial (odd).
Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f));
Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f));
Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f));
Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f));
Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f));
Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f));
Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f));
// The monomial coefficients of the denominator polynomial (even).
Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f));
Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f));
Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f));
Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f));
// Since the polynomials are odd/even, we need x^2.
Value x2 = builder.create<arith::MulFOp>(x, x);
// Evaluate the numerator polynomial p.
Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11);
p = builder.create<math::FmaOp>(x2, p, alpha9);
p = builder.create<math::FmaOp>(x2, p, alpha7);
p = builder.create<math::FmaOp>(x2, p, alpha5);
p = builder.create<math::FmaOp>(x2, p, alpha3);
p = builder.create<math::FmaOp>(x2, p, alpha1);
p = builder.create<arith::MulFOp>(x, p);
// Evaluate the denominator polynomial q.
Value q = builder.create<math::FmaOp>(x2, beta6, beta4);
q = builder.create<math::FmaOp>(x2, q, beta2);
q = builder.create<math::FmaOp>(x2, q, beta0);
// Divide the numerator by the denominator.
Value res = builder.create<arith::SelectOp>(
tinyMask, x, builder.create<arith::DivFOp>(p, q));
rewriter.replaceOp(op, res);
return success();
}
#define LN2_VALUE \
0.693147180559945309417232121458176568075500134360255254120680009493393621L
#define LOG2E_VALUE \
1.442695040888963407359924681001892137426645954152985934135449406931109219L
//----------------------------------------------------------------------------//
// LogOp and Log2Op approximation.
//----------------------------------------------------------------------------//
namespace {
template <typename Op>
struct LogApproximationBase : public OpRewritePattern<Op> {
using OpRewritePattern<Op>::OpRewritePattern;
/// Base 2 if 'base2' is set; natural logarithm (base e) otherwise.
LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter,
bool base2) const;
};
} // namespace
// This approximation comes from Julien Pommier's SSE math library.
// Link: http://gruntthepeon.free.fr/ssemath
template <typename Op>
LogicalResult
LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter,
bool base2) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
Value cstZero = bcast(f32Cst(builder, 0.0f));
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
// The smallest non denormalized float number.
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u));
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
Value cstNan = bcast(f32FromBits(builder, 0x7fc00000));
// Polynomial coefficients.
Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f));
Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f));
Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f));
Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f));
Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f));
Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f));
Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f));
Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f));
Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f));
Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f));
Value x = op.getOperand();
// Truncate input values to the minimum positive normal.
x = max(builder, x, cstMinNormPos);
// Extract significant in the range [0.5,1) and exponent.
std::pair<Value, Value> pair = frexp(builder, x, /*isPositive=*/true);
x = pair.first;
Value e = pair.second;
// Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift
// by -1.0. The values are then centered around 0, which improves the
// stability of the polynomial evaluation:
//
// if( x < SQRTHF ) {
// e -= 1;
// x = x + x - 1.0;
// } else { x = x - 1.0; }
Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x,
cstCephesSQRTHF);
Value tmp = builder.create<arith::SelectOp>(mask, x, cstZero);
x = builder.create<arith::SubFOp>(x, cstOne);
e = builder.create<arith::SubFOp>(
e, builder.create<arith::SelectOp>(mask, cstOne, cstZero));
x = builder.create<arith::AddFOp>(x, tmp);
Value x2 = builder.create<arith::MulFOp>(x, x);
Value x3 = builder.create<arith::MulFOp>(x2, x);
// Evaluate the polynomial approximant of degree 8 in three parts.
Value y0, y1, y2;
y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1);
y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4);
y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7);
y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2);
y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5);
y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8);
y0 = builder.create<math::FmaOp>(y0, x3, y1);
y0 = builder.create<math::FmaOp>(y0, x3, y2);
y0 = builder.create<arith::MulFOp>(y0, x3);
y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0);
x = builder.create<arith::AddFOp>(x, y0);
if (base2) {
Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
x = builder.create<math::FmaOp>(x, cstLog2e, e);
} else {
Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
x = builder.create<math::FmaOp>(e, cstLn2, x);
}
Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT,
op.getOperand(), cstZero);
Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstZero);
Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstPosInf);
// Filter out invalid values:
// • x == 0 -> -INF
// • x < 0 -> NAN
// • x == +INF -> +INF
Value aproximation = builder.create<arith::SelectOp>(
zeroMask, cstMinusInf,
builder.create<arith::SelectOp>(
invalidMask, cstNan,
builder.create<arith::SelectOp>(posInfMask, cstPosInf, x)));
rewriter.replaceOp(op, aproximation);
return success();
}
namespace {
struct LogApproximation : public LogApproximationBase<math::LogOp> {
using LogApproximationBase::LogApproximationBase;
LogicalResult matchAndRewrite(math::LogOp op,
PatternRewriter &rewriter) const final {
return logMatchAndRewrite(op, rewriter, /*base2=*/false);
}
};
} // namespace
namespace {
struct Log2Approximation : public LogApproximationBase<math::Log2Op> {
using LogApproximationBase::LogApproximationBase;
LogicalResult matchAndRewrite(math::Log2Op op,
PatternRewriter &rewriter) const final {
return logMatchAndRewrite(op, rewriter, /*base2=*/true);
}
};
} // namespace
//----------------------------------------------------------------------------//
// Log1p approximation.
//----------------------------------------------------------------------------//
namespace {
struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::Log1pOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
// Approximate log(1+x).
LogicalResult
Log1pApproximation::matchAndRewrite(math::Log1pOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// Approximate log(1+x) using the following, due to W. Kahan:
// u = x + 1.0;
// if (u == 1.0 || u == inf) return x;
// return x * log(u) / (u - 1.0);
// ^^^^^^^^^^^^^^^^^^^^^^
// "logLarge" below.
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value x = op.getOperand();
Value u = builder.create<arith::AddFOp>(x, cstOne);
Value uSmall =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne);
Value logU = builder.create<math::LogOp>(u);
Value uInf =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU);
Value logLarge = builder.create<arith::MulFOp>(
x, builder.create<arith::DivFOp>(
logU, builder.create<arith::SubFOp>(u, cstOne)));
Value approximation = builder.create<arith::SelectOp>(
builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge);
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Erf approximation.
//----------------------------------------------------------------------------//
// Approximates erf(x) with
// a - P(x)/Q(x)
// where P and Q are polynomials of degree 4.
// Different coefficients are chosen based on the value of x.
// The approximation error is ~2.5e-07.
// Boost's minimax tool that utilizes the Remez method was used to find the
// coefficients.
LogicalResult
ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op,
PatternRewriter &rewriter) const {
Value operand = op.getOperand();
Type elementType = getElementTypeOrSelf(operand);
if (!(elementType.isF32() || elementType.isF16()))
return rewriter.notifyMatchFailure(op,
"only f32 and f16 type is supported.");
ArrayRef<int64_t> shape = vectorShape(operand);
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
const int intervalsCount = 3;
const int polyDegree = 4;
Value zero = bcast(floatCst(builder, 0, elementType));
Value one = bcast(floatCst(builder, 1, elementType));
Value pp[intervalsCount][polyDegree + 1];
pp[0][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
pp[0][1] = bcast(floatCst(builder, +1.12837916222975858e+00f, elementType));
pp[0][2] = bcast(floatCst(builder, -5.23018562988006470e-01f, elementType));
pp[0][3] = bcast(floatCst(builder, +2.09741709609267072e-01f, elementType));
pp[0][4] = bcast(floatCst(builder, +2.58146801602987875e-02f, elementType));
pp[1][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
pp[1][1] = bcast(floatCst(builder, +1.12750687816789140e+00f, elementType));
pp[1][2] = bcast(floatCst(builder, -3.64721408487825775e-01f, elementType));
pp[1][3] = bcast(floatCst(builder, +1.18407396425136952e-01f, elementType));
pp[1][4] = bcast(floatCst(builder, +3.70645533056476558e-02f, elementType));
pp[2][0] = bcast(floatCst(builder, -3.30093071049483172e-03f, elementType));
pp[2][1] = bcast(floatCst(builder, +3.51961938357697011e-03f, elementType));
pp[2][2] = bcast(floatCst(builder, -1.41373622814988039e-03f, elementType));
pp[2][3] = bcast(floatCst(builder, +2.53447094961941348e-04f, elementType));
pp[2][4] = bcast(floatCst(builder, -1.71048029455037401e-05f, elementType));
Value qq[intervalsCount][polyDegree + 1];
qq[0][0] = bcast(floatCst(builder, +1.000000000000000000e+00f, elementType));
qq[0][1] = bcast(floatCst(builder, -4.635138185962547255e-01f, elementType));
qq[0][2] = bcast(floatCst(builder, +5.192301327279782447e-01f, elementType));
qq[0][3] = bcast(floatCst(builder, -1.318089722204810087e-01f, elementType));
qq[0][4] = bcast(floatCst(builder, +7.397964654672315005e-02f, elementType));
qq[1][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
qq[1][1] = bcast(floatCst(builder, -3.27607011824493086e-01f, elementType));
qq[1][2] = bcast(floatCst(builder, +4.48369090658821977e-01f, elementType));
qq[1][3] = bcast(floatCst(builder, -8.83462621207857930e-02f, elementType));
qq[1][4] = bcast(floatCst(builder, +5.72442770283176093e-02f, elementType));
qq[2][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
qq[2][1] = bcast(floatCst(builder, -2.06069165953913769e+00f, elementType));
qq[2][2] = bcast(floatCst(builder, +1.62705939945477759e+00f, elementType));
qq[2][3] = bcast(floatCst(builder, -5.83389859211130017e-01f, elementType));
qq[2][4] = bcast(floatCst(builder, +8.21908939856640930e-02f, elementType));
Value offsets[intervalsCount];
offsets[0] = bcast(floatCst(builder, 0.0f, elementType));
offsets[1] = bcast(floatCst(builder, 0.0f, elementType));
offsets[2] = bcast(floatCst(builder, 1.0f, elementType));
Value bounds[intervalsCount];
bounds[0] = bcast(floatCst(builder, 0.8f, elementType));
bounds[1] = bcast(floatCst(builder, 2.0f, elementType));
bounds[2] = bcast(floatCst(builder, 3.75f, elementType));
Value isNegativeArg =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
Value negArg = builder.create<arith::NegFOp>(operand);
Value x = builder.create<arith::SelectOp>(isNegativeArg, negArg, operand);
Value offset = offsets[0];
Value p[polyDegree + 1];
Value q[polyDegree + 1];
for (int i = 0; i <= polyDegree; ++i) {
p[i] = pp[0][i];
q[i] = qq[0][i];
}
// TODO: maybe use vector stacking to reduce the number of selects.
Value isLessThanBound[intervalsCount];
for (int j = 0; j < intervalsCount - 1; ++j) {
isLessThanBound[j] =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, bounds[j]);
for (int i = 0; i <= polyDegree; ++i) {
p[i] = builder.create<arith::SelectOp>(isLessThanBound[j], p[i],
pp[j + 1][i]);
q[i] = builder.create<arith::SelectOp>(isLessThanBound[j], q[i],
qq[j + 1][i]);
}
offset = builder.create<arith::SelectOp>(isLessThanBound[j], offset,
offsets[j + 1]);
}
isLessThanBound[intervalsCount - 1] = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::ULT, x, bounds[intervalsCount - 1]);
Value pPoly = makePolynomialCalculation(builder, p, x);
Value qPoly = makePolynomialCalculation(builder, q, x);
Value rationalPoly = builder.create<arith::DivFOp>(pPoly, qPoly);
Value formula = builder.create<arith::AddFOp>(offset, rationalPoly);
formula = builder.create<arith::SelectOp>(isLessThanBound[intervalsCount - 1],
formula, one);
// erf is odd function: erf(x) = -erf(-x).
Value negFormula = builder.create<arith::NegFOp>(formula);
Value res =
builder.create<arith::SelectOp>(isNegativeArg, negFormula, formula);
rewriter.replaceOp(op, res);
return success();
}
//----------------------------------------------------------------------------//
// Exp approximation.
//----------------------------------------------------------------------------//
namespace {
Value clampWithNormals(ImplicitLocOpBuilder &builder,
const llvm::ArrayRef<int64_t> shape, Value value,
float lowerBound, float upperBound) {
assert(!std::isnan(lowerBound));
assert(!std::isnan(upperBound));
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto selectCmp = [&builder](auto pred, Value value, Value bound) {
return builder.create<arith::SelectOp>(
builder.create<arith::CmpFOp>(pred, value, bound), value, bound);
};
// Note: prefer UGE/ULE vs. UGT/ULT, since they generate vmaxps/vminps vs.
// vcmpleps+vmovaps on x86_64. The latter outcome is also obtained with
// arith::{Max,Min}FOp.
value = selectCmp(arith::CmpFPredicate::UGE, value,
bcast(f32Cst(builder, lowerBound)));
value = selectCmp(arith::CmpFPredicate::ULE, value,
bcast(f32Cst(builder, upperBound)));
return value;
}
struct ExpApproximation : public OpRewritePattern<math::ExpOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::ExpOp op,
PatternRewriter &rewriter) const final;
};
LogicalResult
ExpApproximation::matchAndRewrite(math::ExpOp op,
PatternRewriter &rewriter) const {
auto shape = vectorShape(op.getOperand().getType());
auto elementTy = getElementTypeOrSelf(op.getType());
if (!elementTy.isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto add = [&](Value a, Value b) -> Value {
return builder.create<arith::AddFOp>(a, b);
};
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
auto fmla = [&](Value a, Value b, Value c) {
return builder.create<math::FmaOp>(a, b, c);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};
// Polynomial approximation from Cephes.
//
// To compute e^x, we re-express it as
//
// e^x = e^(a + b)
// = e^(a + n log(2))
// = e^a * 2^n.
//
// We choose n = round(x / log(2)), restricting the value of `a` to
// (-log(2)/2, log(2)/2). We then use a polynomial to compute e^a. The
// relative error between our approximation and the true value of e^a is less
// than 2^-22.5 for all values of `a` within this range.
// Restrict input to a small range, including some values that evaluate to
// +/- inf. Note that for our lower bound, we choose log(2^-126) instead of
// log(F32_EPSILON). We do so because this routine always flushes denormal
// floating points to 0. Therefore, we only need to worry about exponentiating
// up to the smallest representable non-denormal floating point, which is
// 2^-126.
// Constants.
Value cst_half = bcast(f32Cst(builder, 0.5f));
Value cst_one = bcast(f32Cst(builder, 1.0f));
// 1/log(2)
Value cst_log2ef = bcast(f32Cst(builder, 1.44269504088896341f));
Value cst_exp_c1 = bcast(f32Cst(builder, -0.693359375f));
Value cst_exp_c2 = bcast(f32Cst(builder, 2.12194440e-4f));
Value cst_exp_p0 = bcast(f32Cst(builder, 1.9875691500E-4f));
Value cst_exp_p1 = bcast(f32Cst(builder, 1.3981999507E-3f));
Value cst_exp_p2 = bcast(f32Cst(builder, 8.3334519073E-3f));
Value cst_exp_p3 = bcast(f32Cst(builder, 4.1665795894E-2f));
Value cst_exp_p4 = bcast(f32Cst(builder, 1.6666665459E-1f));
Value cst_exp_p5 = bcast(f32Cst(builder, 5.0000001201E-1f));
// Our computations below aren't particularly sensitive to the exact choices
// here, so we choose values a bit larger/smaller than
//
// log(F32_MAX) = 88.723...
// log(2^-126) = -87.337...
Value x = op.getOperand();
x = clampWithNormals(builder, shape, x, -87.8f, 88.8f);
Value n = floor(fmla(x, cst_log2ef, cst_half));
// When we eventually do the multiplication in e^a * 2^n, we need to handle
// the case when n > 127, the max fp32 exponent (so 2^n == inf) but e^a < 1
// (so e^a * 2^n != inf). There's a similar problem for n < -126, the
// smallest fp32 exponent.
//
// A straightforward solution would be to detect n out of range and split it
// up, doing
//
// e^a * 2^n = e^a * 2^(n1 + n2)
// = (2^n1 * e^a) * 2^n2.
//
// But it turns out this approach is quite slow, probably because it
// manipulates subnormal values.
//
// The approach we use instead is to clamp n to [-127, 127]. Let n' be the
// value of n clamped to [-127, 127]. In the case where n' = 127, `a` can grow
// up to as large as 88.8 - 127 * log(2) which is about 0.7703. Even though
// this value of `a` is outside our previously specified range, e^a will still
// only have a relative error of approximately 2^-16 at worse. In practice
// this seems to work well enough; it passes our exhaustive tests, breaking
// only one result, and by one ulp (we return exp(88.7228394) = max-float but
// we should return inf).
//
// In the case where n' = -127, the original input value of x is so small that
// e^x, our final answer, is less than 2^-126. Since 2^-126 is the smallest
// normal floating point, and since we flush denormals, we simply return 0. We
// do this in a branchless way by observing that our code for constructing 2^n
// produces 0 if n = -127.
//
// The proof that n' = -127 implies e^x < 2^-126 is as follows:
//
// n' = -127 implies n <= -127
// implies round(x / log(2)) <= -127
// implies x/log(2) < -126.5
// implies x < -126.5 * log(2)
// implies e^x < e^(-126.5 * log(2))
// implies e^x < 2^-126.5 < 2^-126
//
// This proves that n' = -127 implies e^x < 2^-126.
n = clampWithNormals(builder, shape, n, -127.0f, 127.0f);
// Computes x = x - n' * log(2), the value for `a`
x = fmla(cst_exp_c1, n, x);
x = fmla(cst_exp_c2, n, x);
// Polynomial to compute z = e^a, accurate for a in (-0.5, 0.5).
Value z = fmla(x, cst_exp_p0, cst_exp_p1);
z = fmla(z, x, cst_exp_p2);
z = fmla(z, x, cst_exp_p3);
z = fmla(z, x, cst_exp_p4);
z = fmla(z, x, cst_exp_p5);
z = fmla(z, mul(x, x), x);
z = add(cst_one, z);
// Convert n' to an i32. This is safe because we clamped it above.
auto i32_vec = broadcast(builder.getI32Type(), shape);
Value n_i32 = builder.create<arith::FPToSIOp>(i32_vec, n);
// Creates the value 2^n' if -126 <= n' <= 127 and 0 if n' = -127.
Value pow2 = exp2I32(builder, n_i32);
// Return z * 2^n' if -126 <= n' <= 127 and 0 if n = -127.
Value ret = mul(z, pow2);
rewriter.replaceOp(op, ret);
return mlir::success();
}
} // namespace
//----------------------------------------------------------------------------//
// ExpM1 approximation.
//----------------------------------------------------------------------------//
namespace {
struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::ExpM1Op op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ExpM1Approximation::matchAndRewrite(math::ExpM1Op op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// expm1(x) = exp(x) - 1 = u - 1.
// We have to handle it carefully when x is near 0, i.e. u ~= 1,
// and when the input is ~= -inf, i.e. u - 1 ~= -1.
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value cstNegOne = bcast(f32Cst(builder, -1.0f));
Value x = op.getOperand();
Value u = builder.create<math::ExpOp>(x);
Value uEqOneOrNaN =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::UEQ, u, cstOne);
Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne);
Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne);
// logU = log(u) ~= x
Value logU = builder.create<math::LogOp>(u);
// Detect exp(x) = +inf; written this way to avoid having to form +inf.
Value isInf =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u);
// (u - 1) * (x / ~x)
Value expm1 = builder.create<arith::MulFOp>(
uMinusOne, builder.create<arith::DivFOp>(x, logU));
expm1 = builder.create<arith::SelectOp>(isInf, u, expm1);
Value approximation = builder.create<arith::SelectOp>(
uEqOneOrNaN, x,
builder.create<arith::SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1));
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Sin and Cos approximation.
//----------------------------------------------------------------------------//
namespace {
template <bool isSine, typename OpTy>
struct SinAndCosApproximation : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final;
};
} // namespace
#define TWO_OVER_PI \
0.6366197723675813430755350534900574481378385829618257949906693762L
#define PI_OVER_2 \
1.5707963267948966192313216916397514420985846996875529104874722961L
// Approximates sin(x) or cos(x) by finding the best approximation polynomial in
// the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the
// reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y).
template <bool isSine, typename OpTy>
LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite(
OpTy op, PatternRewriter &rewriter) const {
static_assert(
llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value,
"SinAndCosApproximation pattern expects math::SinOp or math::CosOp");
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};
auto sub = [&](Value a, Value b) -> Value {
return builder.create<arith::SubFOp>(a, b);
};
auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
auto i32Vec = broadcast(builder.getI32Type(), shape);
auto fPToSingedInteger = [&](Value a) -> Value {
return builder.create<arith::FPToSIOp>(i32Vec, a);
};
auto modulo4 = [&](Value a) -> Value {
return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3)));
};
auto isEqualTo = [&](Value a, Value b) -> Value {
return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b);
};
auto isGreaterThan = [&](Value a, Value b) -> Value {
return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b);
};
auto select = [&](Value cond, Value t, Value f) -> Value {
return builder.create<arith::SelectOp>(cond, t, f);
};
auto fmla = [&](Value a, Value b, Value c) {
return builder.create<math::FmaOp>(a, b, c);
};
auto bitwiseOr = [&](Value a, Value b) {
return builder.create<arith::OrIOp>(a, b);
};
Value twoOverPi = bcast(f32Cst(builder, (float)TWO_OVER_PI));
Value piOverTwo = bcast(f32Cst(builder, (float)PI_OVER_2));
Value x = op.getOperand();
Value k = floor(mul(x, twoOverPi));
Value y = sub(x, mul(k, piOverTwo));
Value cstOne = bcast(f32Cst(builder, 1.0));
Value cstNegativeOne = bcast(f32Cst(builder, -1.0));
Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f));
Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f));
Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f));
Value cstSC8 =
bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f));
Value cstSC10 =
bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f));
Value cstCC2 = bcast(f32Cst(builder, -0.5f));
Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f));
Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f));
Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f));
Value cstCC10 =
bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f));
Value kMod4 = modulo4(fPToSingedInteger(k));
Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0)));
Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1)));
Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2)));
Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3)));
Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2);
Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1)))
: bitwiseOr(kR1, kR2);
Value y2 = mul(y, y);
Value base = select(sinuseCos, cstOne, y);
Value cstC2 = select(sinuseCos, cstCC2, cstSC2);
Value cstC4 = select(sinuseCos, cstCC4, cstSC4);
Value cstC6 = select(sinuseCos, cstCC6, cstSC6);
Value cstC8 = select(sinuseCos, cstCC8, cstSC8);
Value cstC10 = select(sinuseCos, cstCC10, cstSC10);
Value v1 = fmla(y2, cstC10, cstC8);
Value v2 = fmla(y2, v1, cstC6);
Value v3 = fmla(y2, v2, cstC4);
Value v4 = fmla(y2, v3, cstC2);
Value v5 = fmla(y2, v4, cstOne);
Value v6 = mul(base, v5);
Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6);
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Cbrt approximation.
//----------------------------------------------------------------------------//
namespace {
struct CbrtApproximation : public OpRewritePattern<math::CbrtOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::CbrtOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
// Estimation of cube-root using an algorithm defined in
// Hacker's Delight 2nd Edition.
LogicalResult
CbrtApproximation::matchAndRewrite(math::CbrtOp op,
PatternRewriter &rewriter) const {
auto operand = op.getOperand();
if (!getElementTypeOrSelf(operand).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
ArrayRef<int64_t> shape = vectorShape(operand);
Type floatTy = getElementTypeOrSelf(operand.getType());
Type intTy = b.getIntegerType(floatTy.getIntOrFloatBitWidth());
// Convert to vector types if necessary.
floatTy = broadcast(floatTy, shape);
intTy = broadcast(intTy, shape);
auto bconst = [&](TypedAttr attr) -> Value {
Value value = b.create<arith::ConstantOp>(attr);
return broadcast(b, value, shape);
};
// Declare the initial values:
Value intTwo = bconst(b.getI32IntegerAttr(2));
Value intFour = bconst(b.getI32IntegerAttr(4));
Value intEight = bconst(b.getI32IntegerAttr(8));
Value intMagic = bconst(b.getI32IntegerAttr(0x2a5137a0));
Value fpThird = bconst(b.getF32FloatAttr(0.33333333f));
Value fpTwo = bconst(b.getF32FloatAttr(2.0f));
Value fpZero = bconst(b.getF32FloatAttr(0.0f));
// Compute an approximation of one third:
// union {int ix; float x;};
// x = x0;
// ix = ix/4 + ix/16;
Value absValue = b.create<math::AbsFOp>(operand);
Value intValue = b.create<arith::BitcastOp>(intTy, absValue);
Value divideBy4 = b.create<arith::ShRSIOp>(intValue, intTwo);
Value divideBy16 = b.create<arith::ShRSIOp>(intValue, intFour);
intValue = b.create<arith::AddIOp>(divideBy4, divideBy16);
// ix = ix + ix/16;
divideBy16 = b.create<arith::ShRSIOp>(intValue, intFour);
intValue = b.create<arith::AddIOp>(intValue, divideBy16);
// ix = ix + ix/256;
Value divideBy256 = b.create<arith::ShRSIOp>(intValue, intEight);
intValue = b.create<arith::AddIOp>(intValue, divideBy256);
// ix = 0x2a5137a0 + ix;
intValue = b.create<arith::AddIOp>(intValue, intMagic);
// Perform one newtons step:
// x = 0.33333333f*(2.0f*x + x0/(x*x));
Value floatValue = b.create<arith::BitcastOp>(floatTy, intValue);
Value squared = b.create<arith::MulFOp>(floatValue, floatValue);
Value mulTwo = b.create<arith::MulFOp>(floatValue, fpTwo);
Value divSquared = b.create<arith::DivFOp>(absValue, squared);
floatValue = b.create<arith::AddFOp>(mulTwo, divSquared);
floatValue = b.create<arith::MulFOp>(floatValue, fpThird);
// x = 0.33333333f*(2.0f*x + x0/(x*x));
squared = b.create<arith::MulFOp>(floatValue, floatValue);
mulTwo = b.create<arith::MulFOp>(floatValue, fpTwo);
divSquared = b.create<arith::DivFOp>(absValue, squared);
floatValue = b.create<arith::AddFOp>(mulTwo, divSquared);
floatValue = b.create<arith::MulFOp>(floatValue, fpThird);
// Check for zero and restore sign.
Value isZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absValue, fpZero);
floatValue = b.create<arith::SelectOp>(isZero, fpZero, floatValue);
floatValue = b.create<math::CopySignOp>(floatValue, operand);
rewriter.replaceOp(op, floatValue);
return success();
}
//----------------------------------------------------------------------------//
// Rsqrt approximation.
//----------------------------------------------------------------------------//
namespace {
struct RsqrtApproximation : public OpRewritePattern<math::RsqrtOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::RsqrtOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
RsqrtApproximation::matchAndRewrite(math::RsqrtOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
// Only support already-vectorized rsqrt's.
if (shape.empty() || shape.back() % 8 != 0)
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
Value cstOnePointFive = bcast(f32Cst(builder, 1.5f));
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
Value negHalf = builder.create<arith::MulFOp>(op.getOperand(), cstNegHalf);
// Select only the inverse sqrt of positive normals (denormals are
// flushed to zero).
Value ltMinMask = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OLT, op.getOperand(), cstMinNormPos);
Value infMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstPosInf);
Value notNormalFiniteMask = builder.create<arith::OrIOp>(ltMinMask, infMask);
// Compute an approximate result.
Value yApprox = handleMultidimensionalVectors(
builder, op->getOperands(), 8, [&builder](ValueRange operands) -> Value {
return builder.create<x86vector::RsqrtOp>(operands);
});
// Do a single step of Newton-Raphson iteration to improve the approximation.
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
// It is essential to evaluate the inner term like this because forming
// y_n^2 may over- or underflow.
Value inner = builder.create<arith::MulFOp>(negHalf, yApprox);
Value fma = builder.create<math::FmaOp>(yApprox, inner, cstOnePointFive);
Value yNewton = builder.create<arith::MulFOp>(yApprox, fma);
// Select the result of the Newton-Raphson step for positive normal arguments.
// For other arguments, choose the output of the intrinsic. This will
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
// x is zero or a positive denormalized float (equivalent to flushing positive
// denormalized inputs to zero).
Value res =
builder.create<arith::SelectOp>(notNormalFiniteMask, yApprox, yNewton);
rewriter.replaceOp(op, res);
return success();
}
//----------------------------------------------------------------------------//
void mlir::populateMathPolynomialApproximationPatterns(
RewritePatternSet &patterns,
const MathPolynomialApproximationOptions &options) {
// Patterns for leveraging existing f32 lowerings on other data types.
patterns
.add<ReuseF32Expansion<math::AtanOp>, ReuseF32Expansion<math::Atan2Op>,
ReuseF32Expansion<math::TanhOp>, ReuseF32Expansion<math::LogOp>,
ReuseF32Expansion<math::Log2Op>, ReuseF32Expansion<math::Log1pOp>,
ReuseF32Expansion<math::ErfOp>, ReuseF32Expansion<math::ExpOp>,
ReuseF32Expansion<math::ExpM1Op>, ReuseF32Expansion<math::CbrtOp>,
ReuseF32Expansion<math::SinOp>, ReuseF32Expansion<math::CosOp>>(
patterns.getContext());
patterns.add<AtanApproximation, Atan2Approximation, TanhApproximation,
LogApproximation, Log2Approximation, Log1pApproximation,
ErfPolynomialApproximation, ExpApproximation, ExpM1Approximation,
CbrtApproximation, SinAndCosApproximation<true, math::SinOp>,
SinAndCosApproximation<false, math::CosOp>>(
patterns.getContext());
if (options.enableAvx2) {
patterns.add<RsqrtApproximation, ReuseF32Expansion<math::RsqrtOp>>(
patterns.getContext());
}
}
|