1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
//===- MemRefMemorySlot.cpp - Memory Slot Interfaces ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Mem2Reg-related interfaces for MemRef dialect
// operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/IR/MemRefMemorySlot.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Value.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Interfaces/MemorySlotInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
/// Walks over the indices of the elements of a tensor of a given `shape` by
/// updating `index` in place to the next index. This returns failure if the
/// provided index was the last index.
static LogicalResult nextIndex(ArrayRef<int64_t> shape,
MutableArrayRef<int64_t> index) {
for (size_t i = 0; i < shape.size(); ++i) {
index[i]++;
if (index[i] < shape[i])
return success();
index[i] = 0;
}
return failure();
}
/// Calls `walker` for each index within a tensor of a given `shape`, providing
/// the index as an array attribute of the coordinates.
template <typename CallableT>
static void walkIndicesAsAttr(MLIRContext *ctx, ArrayRef<int64_t> shape,
CallableT &&walker) {
Type indexType = IndexType::get(ctx);
SmallVector<int64_t> shapeIter(shape.size(), 0);
do {
SmallVector<Attribute> indexAsAttr;
for (int64_t dim : shapeIter)
indexAsAttr.push_back(IntegerAttr::get(indexType, dim));
walker(ArrayAttr::get(ctx, indexAsAttr));
} while (succeeded(nextIndex(shape, shapeIter)));
}
//===----------------------------------------------------------------------===//
// Interfaces for AllocaOp
//===----------------------------------------------------------------------===//
static bool isSupportedElementType(Type type) {
return llvm::isa<MemRefType>(type) ||
OpBuilder(type.getContext()).getZeroAttr(type);
}
SmallVector<MemorySlot> memref::AllocaOp::getPromotableSlots() {
MemRefType type = getType();
if (!isSupportedElementType(type.getElementType()))
return {};
if (!type.hasStaticShape())
return {};
// Make sure the memref contains only a single element.
if (type.getNumElements() != 1)
return {};
return {MemorySlot{getResult(), type.getElementType()}};
}
Value memref::AllocaOp::getDefaultValue(const MemorySlot &slot,
RewriterBase &rewriter) {
assert(isSupportedElementType(slot.elemType));
// TODO: support more types.
return TypeSwitch<Type, Value>(slot.elemType)
.Case([&](MemRefType t) {
return rewriter.create<memref::AllocaOp>(getLoc(), t);
})
.Default([&](Type t) {
return rewriter.create<arith::ConstantOp>(getLoc(), t,
rewriter.getZeroAttr(t));
});
}
void memref::AllocaOp::handlePromotionComplete(const MemorySlot &slot,
Value defaultValue,
RewriterBase &rewriter) {
if (defaultValue.use_empty())
rewriter.eraseOp(defaultValue.getDefiningOp());
rewriter.eraseOp(*this);
}
void memref::AllocaOp::handleBlockArgument(const MemorySlot &slot,
BlockArgument argument,
RewriterBase &rewriter) {}
SmallVector<DestructurableMemorySlot>
memref::AllocaOp::getDestructurableSlots() {
MemRefType memrefType = getType();
auto destructurable = llvm::dyn_cast<DestructurableTypeInterface>(memrefType);
if (!destructurable)
return {};
std::optional<DenseMap<Attribute, Type>> destructuredType =
destructurable.getSubelementIndexMap();
if (!destructuredType)
return {};
DenseMap<Attribute, Type> indexMap;
for (auto const &[index, type] : *destructuredType)
indexMap.insert({index, MemRefType::get({}, type)});
return {DestructurableMemorySlot{{getMemref(), memrefType}, indexMap}};
}
DenseMap<Attribute, MemorySlot>
memref::AllocaOp::destructure(const DestructurableMemorySlot &slot,
const SmallPtrSetImpl<Attribute> &usedIndices,
RewriterBase &rewriter) {
rewriter.setInsertionPointAfter(*this);
DenseMap<Attribute, MemorySlot> slotMap;
auto memrefType = llvm::cast<DestructurableTypeInterface>(getType());
for (Attribute usedIndex : usedIndices) {
Type elemType = memrefType.getTypeAtIndex(usedIndex);
MemRefType elemPtr = MemRefType::get({}, elemType);
auto subAlloca = rewriter.create<memref::AllocaOp>(getLoc(), elemPtr);
slotMap.try_emplace<MemorySlot>(usedIndex,
{subAlloca.getResult(), elemType});
}
return slotMap;
}
void memref::AllocaOp::handleDestructuringComplete(
const DestructurableMemorySlot &slot, RewriterBase &rewriter) {
assert(slot.ptr == getResult());
rewriter.eraseOp(*this);
}
//===----------------------------------------------------------------------===//
// Interfaces for LoadOp/StoreOp
//===----------------------------------------------------------------------===//
bool memref::LoadOp::loadsFrom(const MemorySlot &slot) {
return getMemRef() == slot.ptr;
}
bool memref::LoadOp::storesTo(const MemorySlot &slot) { return false; }
Value memref::LoadOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
llvm_unreachable("getStored should not be called on LoadOp");
}
bool memref::LoadOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
if (blockingUses.size() != 1)
return false;
Value blockingUse = (*blockingUses.begin())->get();
return blockingUse == slot.ptr && getMemRef() == slot.ptr &&
getResult().getType() == slot.elemType;
}
DeletionKind memref::LoadOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
// `canUsesBeRemoved` checked this blocking use must be the loaded slot
// pointer.
rewriter.replaceAllUsesWith(getResult(), reachingDefinition);
return DeletionKind::Delete;
}
/// Returns the index of a memref in attribute form, given its indices.
static Attribute getAttributeIndexFromIndexOperands(MLIRContext *ctx,
ValueRange indices) {
SmallVector<Attribute> index;
for (Value coord : indices) {
IntegerAttr coordAttr;
if (!matchPattern(coord, m_Constant<IntegerAttr>(&coordAttr)))
return {};
index.push_back(coordAttr);
}
return ArrayAttr::get(ctx, index);
}
bool memref::LoadOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
if (slot.ptr != getMemRef())
return false;
Attribute index =
getAttributeIndexFromIndexOperands(getContext(), getIndices());
if (!index)
return false;
usedIndices.insert(index);
return true;
}
DeletionKind memref::LoadOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
Attribute index =
getAttributeIndexFromIndexOperands(getContext(), getIndices());
const MemorySlot &memorySlot = subslots.at(index);
rewriter.updateRootInPlace(*this, [&]() {
setMemRef(memorySlot.ptr);
getIndicesMutable().clear();
});
return DeletionKind::Keep;
}
bool memref::StoreOp::loadsFrom(const MemorySlot &slot) { return false; }
bool memref::StoreOp::storesTo(const MemorySlot &slot) {
return getMemRef() == slot.ptr;
}
Value memref::StoreOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
return getValue();
}
bool memref::StoreOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
if (blockingUses.size() != 1)
return false;
Value blockingUse = (*blockingUses.begin())->get();
return blockingUse == slot.ptr && getMemRef() == slot.ptr &&
getValue() != slot.ptr && getValue().getType() == slot.elemType;
}
DeletionKind memref::StoreOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return DeletionKind::Delete;
}
bool memref::StoreOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
if (slot.ptr != getMemRef() || getValue() == slot.ptr)
return false;
Attribute index =
getAttributeIndexFromIndexOperands(getContext(), getIndices());
if (!index || !slot.elementPtrs.contains(index))
return false;
usedIndices.insert(index);
return true;
}
DeletionKind memref::StoreOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
Attribute index =
getAttributeIndexFromIndexOperands(getContext(), getIndices());
const MemorySlot &memorySlot = subslots.at(index);
rewriter.updateRootInPlace(*this, [&]() {
setMemRef(memorySlot.ptr);
getIndicesMutable().clear();
});
return DeletionKind::Keep;
}
//===----------------------------------------------------------------------===//
// Interfaces for destructurable types
//===----------------------------------------------------------------------===//
namespace {
struct MemRefDestructurableTypeExternalModel
: public DestructurableTypeInterface::ExternalModel<
MemRefDestructurableTypeExternalModel, MemRefType> {
std::optional<DenseMap<Attribute, Type>>
getSubelementIndexMap(Type type) const {
auto memrefType = llvm::cast<MemRefType>(type);
constexpr int64_t maxMemrefSizeForDestructuring = 16;
if (!memrefType.hasStaticShape() ||
memrefType.getNumElements() > maxMemrefSizeForDestructuring ||
memrefType.getNumElements() == 1)
return {};
DenseMap<Attribute, Type> destructured;
walkIndicesAsAttr(
memrefType.getContext(), memrefType.getShape(), [&](Attribute index) {
destructured.insert({index, memrefType.getElementType()});
});
return destructured;
}
Type getTypeAtIndex(Type type, Attribute index) const {
auto memrefType = llvm::cast<MemRefType>(type);
auto coordArrAttr = llvm::dyn_cast<ArrayAttr>(index);
if (!coordArrAttr || coordArrAttr.size() != memrefType.getShape().size())
return {};
Type indexType = IndexType::get(memrefType.getContext());
for (const auto &[coordAttr, dimSize] :
llvm::zip(coordArrAttr, memrefType.getShape())) {
auto coord = llvm::dyn_cast<IntegerAttr>(coordAttr);
if (!coord || coord.getType() != indexType || coord.getInt() < 0 ||
coord.getInt() >= dimSize)
return {};
}
return memrefType.getElementType();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Register external models
//===----------------------------------------------------------------------===//
void mlir::memref::registerMemorySlotExternalModels(DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, BuiltinDialect *dialect) {
MemRefType::attachInterface<MemRefDestructurableTypeExternalModel>(*ctx);
});
}
|