1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
//===- ExpandStridedMetadata.cpp - Simplify this operation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// The pass expands memref operations that modify the metadata of a memref
/// (sizes, offset, strides) into a sequence of easier to analyze constructs.
/// In particular, this pass transforms operations into explicit sequence of
/// operations that model the effect of this operation on the different
/// metadata. This pass uses affine constructs to materialize these effects.
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include <optional>
namespace mlir {
namespace memref {
#define GEN_PASS_DEF_EXPANDSTRIDEDMETADATA
#include "mlir/Dialect/MemRef/Transforms/Passes.h.inc"
} // namespace memref
} // namespace mlir
using namespace mlir;
using namespace mlir::affine;
namespace {
struct StridedMetadata {
Value basePtr;
OpFoldResult offset;
SmallVector<OpFoldResult> sizes;
SmallVector<OpFoldResult> strides;
};
/// From `subview(memref, subOffset, subSizes, subStrides))` compute
///
/// \verbatim
/// baseBuffer, baseOffset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// strides#i = baseStrides#i * subSizes#i
/// offset = baseOffset + sum(subOffset#i * baseStrides#i)
/// sizes = subSizes
/// \endverbatim
///
/// and return {baseBuffer, offset, sizes, strides}
static FailureOr<StridedMetadata>
resolveSubviewStridedMetadata(RewriterBase &rewriter,
memref::SubViewOp subview) {
// Build a plain extract_strided_metadata(memref) from subview(memref).
Location origLoc = subview.getLoc();
Value source = subview.getSource();
auto sourceType = cast<MemRefType>(source.getType());
unsigned sourceRank = sourceType.getRank();
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(origLoc, source);
auto [sourceStrides, sourceOffset] = getStridesAndOffset(sourceType);
// Compute the new strides and offset from the base strides and offset:
// newStride#i = baseStride#i * subStride#i
// offset = baseOffset + sum(subOffsets#i * newStrides#i)
SmallVector<OpFoldResult> strides;
SmallVector<OpFoldResult> subStrides = subview.getMixedStrides();
auto origStrides = newExtractStridedMetadata.getStrides();
// Hold the affine symbols and values for the computation of the offset.
SmallVector<OpFoldResult> values(2 * sourceRank + 1);
SmallVector<AffineExpr> symbols(2 * sourceRank + 1);
bindSymbolsList(rewriter.getContext(), MutableArrayRef{symbols});
AffineExpr expr = symbols.front();
values[0] = ShapedType::isDynamic(sourceOffset)
? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
: rewriter.getIndexAttr(sourceOffset);
SmallVector<OpFoldResult> subOffsets = subview.getMixedOffsets();
AffineExpr s0 = rewriter.getAffineSymbolExpr(0);
AffineExpr s1 = rewriter.getAffineSymbolExpr(1);
for (unsigned i = 0; i < sourceRank; ++i) {
// Compute the stride.
OpFoldResult origStride =
ShapedType::isDynamic(sourceStrides[i])
? origStrides[i]
: OpFoldResult(rewriter.getIndexAttr(sourceStrides[i]));
strides.push_back(makeComposedFoldedAffineApply(
rewriter, origLoc, s0 * s1, {subStrides[i], origStride}));
// Build up the computation of the offset.
unsigned baseIdxForDim = 1 + 2 * i;
unsigned subOffsetForDim = baseIdxForDim;
unsigned origStrideForDim = baseIdxForDim + 1;
expr = expr + symbols[subOffsetForDim] * symbols[origStrideForDim];
values[subOffsetForDim] = subOffsets[i];
values[origStrideForDim] = origStride;
}
// Compute the offset.
OpFoldResult finalOffset =
makeComposedFoldedAffineApply(rewriter, origLoc, expr, values);
// The final result is <baseBuffer, offset, sizes, strides>.
// Thus we need 1 + 1 + subview.getRank() + subview.getRank(), to hold all
// the values.
auto subType = cast<MemRefType>(subview.getType());
unsigned subRank = subType.getRank();
// The sizes of the final type are defined directly by the input sizes of
// the subview.
// Moreover subviews can drop some dimensions, some strides and sizes may
// not end up in the final <base, offset, sizes, strides> value that we are
// replacing.
// Do the filtering here.
SmallVector<OpFoldResult> subSizes = subview.getMixedSizes();
llvm::SmallBitVector droppedDims = subview.getDroppedDims();
SmallVector<OpFoldResult> finalSizes;
finalSizes.reserve(subRank);
SmallVector<OpFoldResult> finalStrides;
finalStrides.reserve(subRank);
for (unsigned i = 0; i < sourceRank; ++i) {
if (droppedDims.test(i))
continue;
finalSizes.push_back(subSizes[i]);
finalStrides.push_back(strides[i]);
}
assert(finalSizes.size() == subRank &&
"Should have populated all the values at this point");
return StridedMetadata{newExtractStridedMetadata.getBaseBuffer(), finalOffset,
finalSizes, finalStrides};
}
/// Replace `dst = subview(memref, subOffset, subSizes, subStrides))`
/// With
///
/// \verbatim
/// baseBuffer, baseOffset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// strides#i = baseStrides#i * subSizes#i
/// offset = baseOffset + sum(subOffset#i * baseStrides#i)
/// sizes = subSizes
/// dst = reinterpret_cast baseBuffer, offset, sizes, strides
/// \endverbatim
///
/// In other words, get rid of the subview in that expression and canonicalize
/// on its effects on the offset, the sizes, and the strides using affine.apply.
struct SubviewFolder : public OpRewritePattern<memref::SubViewOp> {
public:
using OpRewritePattern<memref::SubViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::SubViewOp subview,
PatternRewriter &rewriter) const override {
FailureOr<StridedMetadata> stridedMetadata =
resolveSubviewStridedMetadata(rewriter, subview);
if (failed(stridedMetadata)) {
return rewriter.notifyMatchFailure(subview,
"failed to resolve subview metadata");
}
rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
subview, subview.getType(), stridedMetadata->basePtr,
stridedMetadata->offset, stridedMetadata->sizes,
stridedMetadata->strides);
return success();
}
};
/// Pattern to replace `extract_strided_metadata(subview)`
/// With
///
/// \verbatim
/// baseBuffer, baseOffset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// strides#i = baseStrides#i * subSizes#i
/// offset = baseOffset + sum(subOffset#i * baseStrides#i)
/// sizes = subSizes
/// \verbatim
///
/// with `baseBuffer`, `offset`, `sizes` and `strides` being
/// the replacements for the original `extract_strided_metadata`.
struct ExtractStridedMetadataOpSubviewFolder
: OpRewritePattern<memref::ExtractStridedMetadataOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
PatternRewriter &rewriter) const override {
auto subviewOp = op.getSource().getDefiningOp<memref::SubViewOp>();
if (!subviewOp)
return failure();
FailureOr<StridedMetadata> stridedMetadata =
resolveSubviewStridedMetadata(rewriter, subviewOp);
if (failed(stridedMetadata)) {
return rewriter.notifyMatchFailure(
op, "failed to resolve metadata in terms of source subview op");
}
Location loc = subviewOp.getLoc();
SmallVector<Value> results;
results.reserve(subviewOp.getType().getRank() * 2 + 2);
results.push_back(stridedMetadata->basePtr);
results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc,
stridedMetadata->offset));
results.append(
getValueOrCreateConstantIndexOp(rewriter, loc, stridedMetadata->sizes));
results.append(getValueOrCreateConstantIndexOp(rewriter, loc,
stridedMetadata->strides));
rewriter.replaceOp(op, results);
return success();
}
};
/// Compute the expanded sizes of the given \p expandShape for the
/// \p groupId-th reassociation group.
/// \p origSizes hold the sizes of the source shape as values.
/// This is used to compute the new sizes in cases of dynamic shapes.
///
/// sizes#i =
/// baseSizes#groupId / product(expandShapeSizes#j,
/// for j in group excluding reassIdx#i)
/// Where reassIdx#i is the reassociation index at index i in \p groupId.
///
/// \post result.size() == expandShape.getReassociationIndices()[groupId].size()
///
/// TODO: Move this utility function directly within ExpandShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
static SmallVector<OpFoldResult>
getExpandedSizes(memref::ExpandShapeOp expandShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes, unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
expandShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
unsigned groupSize = reassocGroup.size();
SmallVector<OpFoldResult> expandedSizes(groupSize);
uint64_t productOfAllStaticSizes = 1;
std::optional<unsigned> dynSizeIdx;
MemRefType expandShapeType = expandShape.getResultType();
// Fill up all the statically known sizes.
for (unsigned i = 0; i < groupSize; ++i) {
uint64_t dimSize = expandShapeType.getDimSize(reassocGroup[i]);
if (ShapedType::isDynamic(dimSize)) {
assert(!dynSizeIdx && "There must be at most one dynamic size per group");
dynSizeIdx = i;
continue;
}
productOfAllStaticSizes *= dimSize;
expandedSizes[i] = builder.getIndexAttr(dimSize);
}
// Compute the dynamic size using the original size and all the other known
// static sizes:
// expandSize = origSize / productOfAllStaticSizes.
if (dynSizeIdx) {
AffineExpr s0 = builder.getAffineSymbolExpr(0);
expandedSizes[*dynSizeIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(), s0.floorDiv(productOfAllStaticSizes),
origSizes[groupId]);
}
return expandedSizes;
}
/// Compute the expanded strides of the given \p expandShape for the
/// \p groupId-th reassociation group.
/// \p origStrides and \p origSizes hold respectively the strides and sizes
/// of the source shape as values.
/// This is used to compute the strides in cases of dynamic shapes and/or
/// dynamic stride for this reassociation group.
///
/// strides#i =
/// origStrides#reassDim * product(expandShapeSizes#j, for j in
/// reassIdx#i+1..reassIdx#i+group.size-1)
///
/// Where reassIdx#i is the reassociation index for at index i in \p groupId
/// and expandShapeSizes#j is either:
/// - The constant size at dimension j, derived directly from the result type of
/// the expand_shape op, or
/// - An affine expression: baseSizes#reassDim / product of all constant sizes
/// in expandShapeSizes. (Remember expandShapeSizes has at most one dynamic
/// element.)
///
/// \post result.size() == expandShape.getReassociationIndices()[groupId].size()
///
/// TODO: Move this utility function directly within ExpandShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
SmallVector<OpFoldResult> getExpandedStrides(memref::ExpandShapeOp expandShape,
OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes,
ArrayRef<OpFoldResult> origStrides,
unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
expandShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
unsigned groupSize = reassocGroup.size();
MemRefType expandShapeType = expandShape.getResultType();
std::optional<int64_t> dynSizeIdx;
// Fill up the expanded strides, with the information we can deduce from the
// resulting shape.
uint64_t currentStride = 1;
SmallVector<OpFoldResult> expandedStrides(groupSize);
for (int i = groupSize - 1; i >= 0; --i) {
expandedStrides[i] = builder.getIndexAttr(currentStride);
uint64_t dimSize = expandShapeType.getDimSize(reassocGroup[i]);
if (ShapedType::isDynamic(dimSize)) {
assert(!dynSizeIdx && "There must be at most one dynamic size per group");
dynSizeIdx = i;
continue;
}
currentStride *= dimSize;
}
// Collect the statically known information about the original stride.
Value source = expandShape.getSrc();
auto sourceType = cast<MemRefType>(source.getType());
auto [strides, offset] = getStridesAndOffset(sourceType);
OpFoldResult origStride = ShapedType::isDynamic(strides[groupId])
? origStrides[groupId]
: builder.getIndexAttr(strides[groupId]);
// Apply the original stride to all the strides.
int64_t doneStrideIdx = 0;
// If we saw a dynamic dimension, we need to fix-up all the strides up to
// that dimension with the dynamic size.
if (dynSizeIdx) {
int64_t productOfAllStaticSizes = currentStride;
assert(ShapedType::isDynamic(sourceType.getDimSize(groupId)) &&
"We shouldn't be able to change dynamicity");
OpFoldResult origSize = origSizes[groupId];
AffineExpr s0 = builder.getAffineSymbolExpr(0);
AffineExpr s1 = builder.getAffineSymbolExpr(1);
for (; doneStrideIdx < *dynSizeIdx; ++doneStrideIdx) {
int64_t baseExpandedStride =
cast<IntegerAttr>(expandedStrides[doneStrideIdx].get<Attribute>())
.getInt();
expandedStrides[doneStrideIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(),
(s0 * baseExpandedStride).floorDiv(productOfAllStaticSizes) * s1,
{origSize, origStride});
}
}
// Now apply the origStride to the remaining dimensions.
AffineExpr s0 = builder.getAffineSymbolExpr(0);
for (; doneStrideIdx < groupSize; ++doneStrideIdx) {
int64_t baseExpandedStride =
cast<IntegerAttr>(expandedStrides[doneStrideIdx].get<Attribute>())
.getInt();
expandedStrides[doneStrideIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(), s0 * baseExpandedStride, {origStride});
}
return expandedStrides;
}
/// Produce an OpFoldResult object with \p builder at \p loc representing
/// `prod(valueOrConstant#i, for i in {indices})`,
/// where valueOrConstant#i is maybeConstant[i] when \p isDymamic is false,
/// values[i] otherwise.
///
/// \pre for all index in indices: index < values.size()
/// \pre for all index in indices: index < maybeConstants.size()
static OpFoldResult
getProductOfValues(ArrayRef<int64_t> indices, OpBuilder &builder, Location loc,
ArrayRef<int64_t> maybeConstants,
ArrayRef<OpFoldResult> values,
llvm::function_ref<bool(int64_t)> isDynamic) {
AffineExpr productOfValues = builder.getAffineConstantExpr(1);
SmallVector<OpFoldResult> inputValues;
unsigned numberOfSymbols = 0;
unsigned groupSize = indices.size();
for (unsigned i = 0; i < groupSize; ++i) {
productOfValues =
productOfValues * builder.getAffineSymbolExpr(numberOfSymbols++);
unsigned srcIdx = indices[i];
int64_t maybeConstant = maybeConstants[srcIdx];
inputValues.push_back(isDynamic(maybeConstant)
? values[srcIdx]
: builder.getIndexAttr(maybeConstant));
}
return makeComposedFoldedAffineApply(builder, loc, productOfValues,
inputValues);
}
/// Compute the collapsed size of the given \p collpaseShape for the
/// \p groupId-th reassociation group.
/// \p origSizes hold the sizes of the source shape as values.
/// This is used to compute the new sizes in cases of dynamic shapes.
///
/// Conceptually this helper function computes:
/// `prod(origSizes#i, for i in {ressociationGroup[groupId]})`.
///
/// \post result.size() == 1, in other words, each group collapse to one
/// dimension.
///
/// TODO: Move this utility function directly within CollapseShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
static SmallVector<OpFoldResult>
getCollapsedSize(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes, unsigned groupId) {
SmallVector<OpFoldResult> collapsedSize;
MemRefType collapseShapeType = collapseShape.getResultType();
uint64_t size = collapseShapeType.getDimSize(groupId);
if (!ShapedType::isDynamic(size)) {
collapsedSize.push_back(builder.getIndexAttr(size));
return collapsedSize;
}
// We are dealing with a dynamic size.
// Build the affine expr of the product of the original sizes involved in that
// group.
Value source = collapseShape.getSrc();
auto sourceType = cast<MemRefType>(source.getType());
SmallVector<int64_t, 2> reassocGroup =
collapseShape.getReassociationIndices()[groupId];
collapsedSize.push_back(getProductOfValues(
reassocGroup, builder, collapseShape.getLoc(), sourceType.getShape(),
origSizes, ShapedType::isDynamic));
return collapsedSize;
}
/// Compute the collapsed stride of the given \p collpaseShape for the
/// \p groupId-th reassociation group.
/// \p origStrides and \p origSizes hold respectively the strides and sizes
/// of the source shape as values.
/// This is used to compute the strides in cases of dynamic shapes and/or
/// dynamic stride for this reassociation group.
///
/// Conceptually this helper function returns the stride of the inner most
/// dimension of that group in the original shape.
///
/// \post result.size() == 1, in other words, each group collapse to one
/// dimension.
static SmallVector<OpFoldResult>
getCollapsedStride(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes,
ArrayRef<OpFoldResult> origStrides, unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
collapseShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
Value source = collapseShape.getSrc();
auto sourceType = cast<MemRefType>(source.getType());
auto [strides, offset] = getStridesAndOffset(sourceType);
SmallVector<OpFoldResult> groupStrides;
ArrayRef<int64_t> srcShape = sourceType.getShape();
for (int64_t currentDim : reassocGroup) {
// Skip size-of-1 dimensions, since right now their strides may be
// meaningless.
// FIXME: size-of-1 dimensions shouldn't be used in collapse shape, unless
// they are truly contiguous. When they are truly contiguous, we shouldn't
// need to skip them.
if (srcShape[currentDim] == 1)
continue;
int64_t currentStride = strides[currentDim];
groupStrides.push_back(ShapedType::isDynamic(currentStride)
? origStrides[currentDim]
: builder.getIndexAttr(currentStride));
}
if (groupStrides.empty()) {
// We're dealing with a 1x1x...x1 shape. The stride is meaningless,
// but we still have to make the type system happy.
MemRefType collapsedType = collapseShape.getResultType();
auto [collapsedStrides, collapsedOffset] =
getStridesAndOffset(collapsedType);
int64_t finalStride = collapsedStrides[groupId];
if (ShapedType::isDynamic(finalStride)) {
// Look for a dynamic stride. At this point we don't know which one is
// desired, but they are all equally good/bad.
for (int64_t currentDim : reassocGroup) {
assert(srcShape[currentDim] == 1 &&
"We should be dealing with 1x1x...x1");
if (ShapedType::isDynamic(strides[currentDim]))
return {origStrides[currentDim]};
}
llvm_unreachable("We should have found a dynamic stride");
}
return {builder.getIndexAttr(finalStride)};
}
// For the general case, we just want the minimum stride
// since the collapsed dimensions are contiguous.
auto minMap = AffineMap::getMultiDimIdentityMap(groupStrides.size(),
builder.getContext());
return {makeComposedFoldedAffineMin(builder, collapseShape.getLoc(), minMap,
groupStrides)};
}
/// Replace `baseBuffer, offset, sizes, strides =
/// extract_strided_metadata(reshapeLike(memref))`
/// With
///
/// \verbatim
/// baseBuffer, offset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// sizes = getReshapedSizes(reshapeLike)
/// strides = getReshapedStrides(reshapeLike)
/// \endverbatim
///
///
/// Notice that `baseBuffer` and `offset` are unchanged.
///
/// In other words, get rid of the expand_shape in that expression and
/// materialize its effects on the sizes and the strides using affine apply.
template <typename ReassociativeReshapeLikeOp,
SmallVector<OpFoldResult> (*getReshapedSizes)(
ReassociativeReshapeLikeOp, OpBuilder &,
ArrayRef<OpFoldResult> /*origSizes*/, unsigned /*groupId*/),
SmallVector<OpFoldResult> (*getReshapedStrides)(
ReassociativeReshapeLikeOp, OpBuilder &,
ArrayRef<OpFoldResult> /*origSizes*/,
ArrayRef<OpFoldResult> /*origStrides*/, unsigned /*groupId*/)>
struct ReshapeFolder : public OpRewritePattern<ReassociativeReshapeLikeOp> {
public:
using OpRewritePattern<ReassociativeReshapeLikeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ReassociativeReshapeLikeOp reshape,
PatternRewriter &rewriter) const override {
// Build a plain extract_strided_metadata(memref) from
// extract_strided_metadata(reassociative_reshape_like(memref)).
Location origLoc = reshape.getLoc();
Value source = reshape.getSrc();
auto sourceType = cast<MemRefType>(source.getType());
unsigned sourceRank = sourceType.getRank();
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(origLoc, source);
// Collect statically known information.
auto [strides, offset] = getStridesAndOffset(sourceType);
MemRefType reshapeType = reshape.getResultType();
unsigned reshapeRank = reshapeType.getRank();
OpFoldResult offsetOfr =
ShapedType::isDynamic(offset)
? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
: rewriter.getIndexAttr(offset);
// Get the special case of 0-D out of the way.
if (sourceRank == 0) {
SmallVector<OpFoldResult> ones(reshapeRank, rewriter.getIndexAttr(1));
auto memrefDesc = rewriter.create<memref::ReinterpretCastOp>(
origLoc, reshapeType, newExtractStridedMetadata.getBaseBuffer(),
offsetOfr, /*sizes=*/ones, /*strides=*/ones);
rewriter.replaceOp(reshape, memrefDesc.getResult());
return success();
}
SmallVector<OpFoldResult> finalSizes;
finalSizes.reserve(reshapeRank);
SmallVector<OpFoldResult> finalStrides;
finalStrides.reserve(reshapeRank);
// Compute the reshaped strides and sizes from the base strides and sizes.
SmallVector<OpFoldResult> origSizes =
getAsOpFoldResult(newExtractStridedMetadata.getSizes());
SmallVector<OpFoldResult> origStrides =
getAsOpFoldResult(newExtractStridedMetadata.getStrides());
unsigned idx = 0, endIdx = reshape.getReassociationIndices().size();
for (; idx != endIdx; ++idx) {
SmallVector<OpFoldResult> reshapedSizes =
getReshapedSizes(reshape, rewriter, origSizes, /*groupId=*/idx);
SmallVector<OpFoldResult> reshapedStrides = getReshapedStrides(
reshape, rewriter, origSizes, origStrides, /*groupId=*/idx);
unsigned groupSize = reshapedSizes.size();
for (unsigned i = 0; i < groupSize; ++i) {
finalSizes.push_back(reshapedSizes[i]);
finalStrides.push_back(reshapedStrides[i]);
}
}
assert(((isa<memref::ExpandShapeOp>(reshape) && idx == sourceRank) ||
(isa<memref::CollapseShapeOp>(reshape) && idx == reshapeRank)) &&
"We should have visited all the input dimensions");
assert(finalSizes.size() == reshapeRank &&
"We should have populated all the values");
auto memrefDesc = rewriter.create<memref::ReinterpretCastOp>(
origLoc, reshapeType, newExtractStridedMetadata.getBaseBuffer(),
offsetOfr, finalSizes, finalStrides);
rewriter.replaceOp(reshape, memrefDesc.getResult());
return success();
}
};
/// Replace `base, offset, sizes, strides =
/// extract_strided_metadata(allocLikeOp)`
///
/// With
///
/// ```
/// base = reinterpret_cast allocLikeOp(allocSizes) to a flat memref<eltTy>
/// offset = 0
/// sizes = allocSizes
/// strides#i = prod(allocSizes#j, for j in {i+1..rank-1})
/// ```
///
/// The transformation only applies if the allocLikeOp has been normalized.
/// In other words, the affine_map must be an identity.
template <typename AllocLikeOp>
struct ExtractStridedMetadataOpAllocFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
public:
using OpRewritePattern<memref::ExtractStridedMetadataOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
PatternRewriter &rewriter) const override {
auto allocLikeOp = op.getSource().getDefiningOp<AllocLikeOp>();
if (!allocLikeOp)
return failure();
auto memRefType = cast<MemRefType>(allocLikeOp.getResult().getType());
if (!memRefType.getLayout().isIdentity())
return rewriter.notifyMatchFailure(
allocLikeOp, "alloc-like operations should have been normalized");
Location loc = op.getLoc();
int rank = memRefType.getRank();
// Collect the sizes.
ValueRange dynamic = allocLikeOp.getDynamicSizes();
SmallVector<OpFoldResult> sizes;
sizes.reserve(rank);
unsigned dynamicPos = 0;
for (int64_t size : memRefType.getShape()) {
if (ShapedType::isDynamic(size))
sizes.push_back(dynamic[dynamicPos++]);
else
sizes.push_back(rewriter.getIndexAttr(size));
}
// Strides (just creates identity strides).
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
AffineExpr expr = rewriter.getAffineConstantExpr(1);
unsigned symbolNumber = 0;
for (int i = rank - 2; i >= 0; --i) {
expr = expr * rewriter.getAffineSymbolExpr(symbolNumber++);
assert(i + 1 + symbolNumber == sizes.size() &&
"The ArrayRef should encompass the last #symbolNumber sizes");
ArrayRef<OpFoldResult> sizesInvolvedInStride(&sizes[i + 1], symbolNumber);
strides[i] = makeComposedFoldedAffineApply(rewriter, loc, expr,
sizesInvolvedInStride);
}
// Put all the values together to replace the results.
SmallVector<Value> results;
results.reserve(rank * 2 + 2);
auto baseBufferType = cast<MemRefType>(op.getBaseBuffer().getType());
int64_t offset = 0;
if (allocLikeOp.getType() == baseBufferType)
results.push_back(allocLikeOp);
else
results.push_back(rewriter.create<memref::ReinterpretCastOp>(
loc, baseBufferType, allocLikeOp, offset,
/*sizes=*/ArrayRef<int64_t>(),
/*strides=*/ArrayRef<int64_t>()));
// Offset.
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, offset));
for (OpFoldResult size : sizes)
results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc, size));
for (OpFoldResult stride : strides)
results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc, stride));
rewriter.replaceOp(op, results);
return success();
}
};
/// Replace `base, offset, sizes, strides =
/// extract_strided_metadata(get_global)`
///
/// With
///
/// ```
/// base = reinterpret_cast get_global to a flat memref<eltTy>
/// offset = 0
/// sizes = allocSizes
/// strides#i = prod(allocSizes#j, for j in {i+1..rank-1})
/// ```
///
/// It is expected that the memref.get_global op has static shapes
/// and identity affine_map for the layout.
struct ExtractStridedMetadataOpGetGlobalFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
public:
using OpRewritePattern<memref::ExtractStridedMetadataOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
PatternRewriter &rewriter) const override {
auto getGlobalOp = op.getSource().getDefiningOp<memref::GetGlobalOp>();
if (!getGlobalOp)
return failure();
auto memRefType = cast<MemRefType>(getGlobalOp.getResult().getType());
if (!memRefType.getLayout().isIdentity()) {
return rewriter.notifyMatchFailure(
getGlobalOp,
"get-global operation result should have been normalized");
}
Location loc = op.getLoc();
int rank = memRefType.getRank();
// Collect the sizes.
ArrayRef<int64_t> sizes = memRefType.getShape();
assert(!llvm::any_of(sizes, ShapedType::isDynamic) &&
"unexpected dynamic shape for result of `memref.get_global` op");
// Strides (just creates identity strides).
SmallVector<int64_t> strides = computeSuffixProduct(sizes);
// Put all the values together to replace the results.
SmallVector<Value> results;
results.reserve(rank * 2 + 2);
auto baseBufferType = cast<MemRefType>(op.getBaseBuffer().getType());
int64_t offset = 0;
if (getGlobalOp.getType() == baseBufferType)
results.push_back(getGlobalOp);
else
results.push_back(rewriter.create<memref::ReinterpretCastOp>(
loc, baseBufferType, getGlobalOp, offset,
/*sizes=*/ArrayRef<int64_t>(),
/*strides=*/ArrayRef<int64_t>()));
// Offset.
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, offset));
for (auto size : sizes)
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, size));
for (auto stride : strides)
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, stride));
rewriter.replaceOp(op, results);
return success();
}
};
/// Rewrite memref.extract_aligned_pointer_as_index of a ViewLikeOp to the
/// source of the ViewLikeOp.
class RewriteExtractAlignedPointerAsIndexOfViewLikeOp
: public OpRewritePattern<memref::ExtractAlignedPointerAsIndexOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractAlignedPointerAsIndexOp extractOp,
PatternRewriter &rewriter) const override {
auto viewLikeOp =
extractOp.getSource().getDefiningOp<ViewLikeOpInterface>();
if (!viewLikeOp)
return rewriter.notifyMatchFailure(extractOp, "not a ViewLike source");
rewriter.updateRootInPlace(extractOp, [&]() {
extractOp.getSourceMutable().assign(viewLikeOp.getViewSource());
});
return success();
}
};
/// Replace `base, offset, sizes, strides =
/// extract_strided_metadata(
/// reinterpret_cast(src, srcOffset, srcSizes, srcStrides))`
/// With
/// ```
/// base, ... = extract_strided_metadata(src)
/// offset = srcOffset
/// sizes = srcSizes
/// strides = srcStrides
/// ```
///
/// In other words, consume the `reinterpret_cast` and apply its effects
/// on the offset, sizes, and strides.
class ExtractStridedMetadataOpReinterpretCastFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
PatternRewriter &rewriter) const override {
auto reinterpretCastOp = extractStridedMetadataOp.getSource()
.getDefiningOp<memref::ReinterpretCastOp>();
if (!reinterpretCastOp)
return failure();
Location loc = extractStridedMetadataOp.getLoc();
// Check if the source is suitable for extract_strided_metadata.
SmallVector<Type> inferredReturnTypes;
if (failed(extractStridedMetadataOp.inferReturnTypes(
rewriter.getContext(), loc, {reinterpretCastOp.getSource()},
/*attributes=*/{}, /*properties=*/nullptr, /*regions=*/{},
inferredReturnTypes)))
return rewriter.notifyMatchFailure(
reinterpretCastOp, "reinterpret_cast source's type is incompatible");
auto memrefType = cast<MemRefType>(reinterpretCastOp.getResult().getType());
unsigned rank = memrefType.getRank();
SmallVector<OpFoldResult> results;
results.resize_for_overwrite(rank * 2 + 2);
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(
loc, reinterpretCastOp.getSource());
// Register the base_buffer.
results[0] = newExtractStridedMetadata.getBaseBuffer();
// Register the new offset.
results[1] = getValueOrCreateConstantIndexOp(
rewriter, loc, reinterpretCastOp.getMixedOffsets()[0]);
const unsigned sizeStartIdx = 2;
const unsigned strideStartIdx = sizeStartIdx + rank;
SmallVector<OpFoldResult> sizes = reinterpretCastOp.getMixedSizes();
SmallVector<OpFoldResult> strides = reinterpretCastOp.getMixedStrides();
for (unsigned i = 0; i < rank; ++i) {
results[sizeStartIdx + i] = sizes[i];
results[strideStartIdx + i] = strides[i];
}
rewriter.replaceOp(extractStridedMetadataOp,
getValueOrCreateConstantIndexOp(rewriter, loc, results));
return success();
}
};
/// Replace `base, offset =
/// extract_strided_metadata(extract_strided_metadata(src)#0)`
/// With
/// ```
/// base, ... = extract_strided_metadata(src)
/// offset = 0
/// ```
class ExtractStridedMetadataOpExtractStridedMetadataFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
PatternRewriter &rewriter) const override {
auto sourceExtractStridedMetadataOp =
extractStridedMetadataOp.getSource()
.getDefiningOp<memref::ExtractStridedMetadataOp>();
if (!sourceExtractStridedMetadataOp)
return failure();
Location loc = extractStridedMetadataOp.getLoc();
rewriter.replaceOp(extractStridedMetadataOp,
{sourceExtractStridedMetadataOp.getBaseBuffer(),
getValueOrCreateConstantIndexOp(
rewriter, loc, rewriter.getIndexAttr(0))});
return success();
}
};
} // namespace
void memref::populateExpandStridedMetadataPatterns(
RewritePatternSet &patterns) {
patterns.add<SubviewFolder,
ReshapeFolder<memref::ExpandShapeOp, getExpandedSizes,
getExpandedStrides>,
ReshapeFolder<memref::CollapseShapeOp, getCollapsedSize,
getCollapsedStride>,
ExtractStridedMetadataOpAllocFolder<memref::AllocOp>,
ExtractStridedMetadataOpAllocFolder<memref::AllocaOp>,
ExtractStridedMetadataOpGetGlobalFolder,
RewriteExtractAlignedPointerAsIndexOfViewLikeOp,
ExtractStridedMetadataOpReinterpretCastFolder,
ExtractStridedMetadataOpExtractStridedMetadataFolder>(
patterns.getContext());
}
void memref::populateResolveExtractStridedMetadataPatterns(
RewritePatternSet &patterns) {
patterns.add<ExtractStridedMetadataOpAllocFolder<memref::AllocOp>,
ExtractStridedMetadataOpAllocFolder<memref::AllocaOp>,
ExtractStridedMetadataOpGetGlobalFolder,
ExtractStridedMetadataOpSubviewFolder,
RewriteExtractAlignedPointerAsIndexOfViewLikeOp,
ExtractStridedMetadataOpReinterpretCastFolder,
ExtractStridedMetadataOpExtractStridedMetadataFolder>(
patterns.getContext());
}
//===----------------------------------------------------------------------===//
// Pass registration
//===----------------------------------------------------------------------===//
namespace {
struct ExpandStridedMetadataPass final
: public memref::impl::ExpandStridedMetadataBase<
ExpandStridedMetadataPass> {
void runOnOperation() override;
};
} // namespace
void ExpandStridedMetadataPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
memref::populateExpandStridedMetadataPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
std::unique_ptr<Pass> memref::createExpandStridedMetadataPass() {
return std::make_unique<ExpandStridedMetadataPass>();
}
|