1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
//===- RuntimeOpVerification.cpp - Op Verification ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/Transforms/RuntimeOpVerification.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Interfaces/RuntimeVerifiableOpInterface.h"
using namespace mlir;
/// Generate an error message string for the given op and the specified error.
static std::string generateErrorMessage(Operation *op, const std::string &msg) {
std::string buffer;
llvm::raw_string_ostream stream(buffer);
OpPrintingFlags flags;
stream << "ERROR: Runtime op verification failed\n";
op->print(stream, flags);
stream << "\n^ " << msg;
stream << "\nLocation: ";
op->getLoc().print(stream);
return stream.str();
}
namespace mlir {
namespace memref {
namespace {
struct CastOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<CastOpInterface,
CastOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto castOp = cast<CastOp>(op);
auto srcType = cast<BaseMemRefType>(castOp.getSource().getType());
// Nothing to check if the result is an unranked memref.
auto resultType = dyn_cast<MemRefType>(castOp.getType());
if (!resultType)
return;
if (isa<UnrankedMemRefType>(srcType)) {
// Check rank.
Value srcRank = builder.create<RankOp>(loc, castOp.getSource());
Value resultRank =
builder.create<arith::ConstantIndexOp>(loc, resultType.getRank());
Value isSameRank = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcRank, resultRank);
builder.create<cf::AssertOp>(loc, isSameRank,
generateErrorMessage(op, "rank mismatch"));
}
// Get source offset and strides. We do not have an op to get offsets and
// strides from unranked memrefs, so cast the source to a type with fully
// dynamic layout, from which we can then extract the offset and strides.
// (Rank was already verified.)
int64_t dynamicOffset = ShapedType::kDynamic;
SmallVector<int64_t> dynamicShape(resultType.getRank(),
ShapedType::kDynamic);
auto stridedLayout = StridedLayoutAttr::get(builder.getContext(),
dynamicOffset, dynamicShape);
auto dynStridesType =
MemRefType::get(dynamicShape, resultType.getElementType(),
stridedLayout, resultType.getMemorySpace());
Value helperCast =
builder.create<CastOp>(loc, dynStridesType, castOp.getSource());
auto metadataOp = builder.create<ExtractStridedMetadataOp>(loc, helperCast);
// Check dimension sizes.
for (const auto &it : llvm::enumerate(resultType.getShape())) {
// Static dim size -> static/dynamic dim size does not need verification.
if (auto rankedSrcType = dyn_cast<MemRefType>(srcType))
if (!rankedSrcType.isDynamicDim(it.index()))
continue;
// Static/dynamic dim size -> dynamic dim size does not need verification.
if (resultType.isDynamicDim(it.index()))
continue;
Value srcDimSz =
builder.create<DimOp>(loc, castOp.getSource(), it.index());
Value resultDimSz =
builder.create<arith::ConstantIndexOp>(loc, it.value());
Value isSameSz = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcDimSz, resultDimSz);
builder.create<cf::AssertOp>(
loc, isSameSz,
generateErrorMessage(op, "size mismatch of dim " +
std::to_string(it.index())));
}
// Get result offset and strides.
int64_t resultOffset;
SmallVector<int64_t> resultStrides;
if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset)))
return;
// Check offset.
if (resultOffset != ShapedType::kDynamic) {
// Static/dynamic offset -> dynamic offset does not need verification.
Value srcOffset = metadataOp.getResult(1);
Value resultOffsetVal =
builder.create<arith::ConstantIndexOp>(loc, resultOffset);
Value isSameOffset = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcOffset, resultOffsetVal);
builder.create<cf::AssertOp>(loc, isSameOffset,
generateErrorMessage(op, "offset mismatch"));
}
// Check strides.
for (const auto &it : llvm::enumerate(resultStrides)) {
// Static/dynamic stride -> dynamic stride does not need verification.
if (it.value() == ShapedType::kDynamic)
continue;
Value srcStride =
metadataOp.getResult(2 + resultType.getRank() + it.index());
Value resultStrideVal =
builder.create<arith::ConstantIndexOp>(loc, it.value());
Value isSameStride = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcStride, resultStrideVal);
builder.create<cf::AssertOp>(
loc, isSameStride,
generateErrorMessage(op, "stride mismatch of dim " +
std::to_string(it.index())));
}
}
};
struct ExpandShapeOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<ExpandShapeOpInterface,
ExpandShapeOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto expandShapeOp = cast<ExpandShapeOp>(op);
// Verify that the expanded dim sizes are a product of the collapsed dim
// size.
for (const auto &it :
llvm::enumerate(expandShapeOp.getReassociationIndices())) {
Value srcDimSz =
builder.create<DimOp>(loc, expandShapeOp.getSrc(), it.index());
int64_t groupSz = 1;
bool foundDynamicDim = false;
for (int64_t resultDim : it.value()) {
if (expandShapeOp.getResultType().isDynamicDim(resultDim)) {
// Keep this assert here in case the op is extended in the future.
assert(!foundDynamicDim &&
"more than one dynamic dim found in reassoc group");
(void)foundDynamicDim;
foundDynamicDim = true;
continue;
}
groupSz *= expandShapeOp.getResultType().getDimSize(resultDim);
}
Value staticResultDimSz =
builder.create<arith::ConstantIndexOp>(loc, groupSz);
// staticResultDimSz must divide srcDimSz evenly.
Value mod =
builder.create<arith::RemSIOp>(loc, srcDimSz, staticResultDimSz);
Value isModZero = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, mod,
builder.create<arith::ConstantIndexOp>(loc, 0));
builder.create<cf::AssertOp>(
loc, isModZero,
generateErrorMessage(op, "static result dims in reassoc group do not "
"divide src dim evenly"));
}
}
};
} // namespace
} // namespace memref
} // namespace mlir
void mlir::memref::registerRuntimeVerifiableOpInterfaceExternalModels(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, memref::MemRefDialect *dialect) {
CastOp::attachInterface<CastOpInterface>(*ctx);
ExpandShapeOp::attachInterface<ExpandShapeOpInterface>(*ctx);
// Load additional dialects of which ops may get created.
ctx->loadDialect<arith::ArithDialect, cf::ControlFlowDialect>();
});
}
|