1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
|
//===- NVGPUTransformOps.cpp - Implementation of NVGPU transform ops ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/NVGPU/TransformOps/NVGPUTransformOps.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/NVGPU/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/TypeRange.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::nvgpu;
using namespace mlir::transform;
#define DEBUG_TYPE "nvgpu-transforms"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
#define DBGSNL() (llvm::dbgs() << "\n")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
//===---------------------------------------------------------------------===//
// CreateAsyncGroupsOp
//===---------------------------------------------------------------------===//
void transform::CreateAsyncGroupsOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
transform::consumesHandle(getTarget(), effects);
transform::producesHandle(getResult(), effects);
transform::modifiesPayload(effects);
}
DiagnosedSilenceableFailure transform::CreateAsyncGroupsOp::applyToOne(
TransformRewriter &rewriter, Operation *target,
ApplyToEachResultList &results, TransformState &state) {
nvgpu::createAsyncGroups(rewriter, target, getBypassL1());
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// PipelineSharedMemoryCopiesOp
//===----------------------------------------------------------------------===//
/// Returns true if the given type has the default memory space.
static bool hasDefaultMemorySpace(BaseMemRefType type) {
return !type.getMemorySpace() || type.getMemorySpaceAsInt() == 0;
}
/// Returns true if the given type has the shared (workgroup) memory space.
static bool hasSharedMemorySpace(BaseMemRefType type) {
auto space =
dyn_cast_if_present<gpu::AddressSpaceAttr>(type.getMemorySpace());
return space &&
space.getValue() == gpu::GPUDialect::getWorkgroupAddressSpace();
}
/// Returns the value produced by a load from the default memory space. Returns
/// null if the operation is not such a load.
static Value getValueLoadedFromGlobal(Operation *op) {
// TODO: consider an interface or leveraging the memory effects interface.
auto load = dyn_cast<vector::TransferReadOp>(op);
if (!load)
return nullptr;
auto loadType = dyn_cast<MemRefType>(load.getSource().getType());
if (!loadType || !hasDefaultMemorySpace(loadType))
return nullptr;
return load;
}
/// Returns true if the operation is storing the given value into shared memory.
static bool isStoreToShared(Operation *op, Value v) {
// TOD: consider an interface or leveraging the memory effects interface.
auto store = dyn_cast<vector::TransferWriteOp>(op);
if (!store || store.getVector() != v)
return false;
auto storeType = dyn_cast<MemRefType>(store.getSource().getType());
return storeType || hasSharedMemorySpace(storeType);
}
/// Returns true if the operation is a load from the default memory space the
/// result of which is only stored into the shared memory space.
static bool isLoadFromGlobalStoredToShared(Operation *op) {
Value loaded = getValueLoadedFromGlobal(op);
if (!loaded || !loaded.hasOneUse())
return false;
return isStoreToShared(*loaded.getUsers().begin(), loaded);
}
/// Populate `ops` with the set of operations that belong to the stage 0 of the
/// pipelined version of the given loop when pipelining copies to shared memory.
/// Specifically, this collects:
///
/// 1. all loads from global memory, both sync and async;
/// 2. the barriers for async loads.
///
/// In particular, barriers are omitted if they do not dominate at least one
/// async load for which there is not yet a barrier.
static LogicalResult
collectStage0PipeliningOps(scf::ForOp forOp,
llvm::SmallPtrSet<Operation *, 16> &ops) {
llvm::SmallPtrSet<Operation *, 4> barriers;
for (Operation &op : *forOp.getBody()) {
// Bail on nested ops for now.
if (op.getNumRegions() > 0)
return failure();
if (isa<gpu::BarrierOp>(op)) {
barriers.insert(&op);
continue;
}
if (isa<nvgpu::DeviceAsyncCopyOp, nvgpu::DeviceAsyncCreateGroupOp>(op)) {
ops.insert(&op);
ops.insert(std::make_move_iterator(barriers.begin()),
std::make_move_iterator(barriers.end()));
assert(barriers.empty() &&
"expected to have moved the barriers into another set");
continue;
}
if (isLoadFromGlobalStoredToShared(&op)) {
ops.insert(&op);
continue;
}
}
return success();
}
/// Hook for the loop pipeliner that sets the "num groups in flight" attribute
/// of async wait operations corresponding to pipelined shared memory copies.
// TODO: this currently assumes that there are no groups that could be in flight
// in the existing code.
static void
setAsyncWaitGroupsInFlight(OpBuilder &builder, Operation *op,
scf::PipeliningOption::PipelinerPart part,
unsigned iteration, unsigned depth) {
// Based on the order of copies within the loop we need to set the number
// of copies in flight, unless it is already set.
auto waitOp = dyn_cast<nvgpu::DeviceAsyncWaitOp>(op);
if (!waitOp || waitOp.getNumGroups())
return;
int numGroupInFlight = 0;
if (part == scf::PipeliningOption::PipelinerPart::Kernel ||
part == scf::PipeliningOption::PipelinerPart::Prologue) {
numGroupInFlight = depth - 1;
} else {
// By construction there should be no wait op in the prologue as all the
// wait should be in the last stage.
assert(part == scf::PipeliningOption::PipelinerPart::Epilogue);
// Based on the schedule we pick we know how many groups are in flight for
// each iteration of the epilogue.
numGroupInFlight = depth - 1 - iteration;
}
waitOp.setNumGroups(numGroupInFlight);
}
/// Hook for the loop pipeliner that populates `ops` with the stage information
/// as follows:
///
/// - operations in `stage0Ops` (typically loads from global memory and
/// related barriers) are at stage 0;
/// - operations in the backward slice of any stage0Ops are all at stage 0;
/// - other operations are at stage `depth`;
/// - the internal order of the pipelined loop has ops at stage `depth` first,
/// then those at stage 0, with relative order within each group preserved.
///
static void getPipelineStages(
scf::ForOp forOp,
std::vector<std::pair<Operation *, unsigned>> &opsWithPipelineStages,
unsigned depth, llvm::SmallPtrSetImpl<Operation *> &stage0Ops) {
SetVector<Operation *> dependencies;
BackwardSliceOptions options([&](Operation *visited) {
return visited->getBlock() == forOp.getBody();
});
options.inclusive = true;
for (Operation &op : forOp.getBody()->getOperations()) {
if (stage0Ops.contains(&op))
getBackwardSlice(&op, &dependencies, options);
}
for (Operation &op : forOp.getBody()->getOperations()) {
if (!dependencies.contains(&op) && !isa<scf::YieldOp>(op))
opsWithPipelineStages.emplace_back(&op, depth);
}
for (Operation &op : forOp.getBody()->getOperations()) {
if (dependencies.contains(&op))
opsWithPipelineStages.emplace_back(&op, 0);
}
}
/// Hook for the loop pipeliner. Replaces op with a predicated version and
/// returns the resulting operation. Returns the original op if the predication
/// isn't necessary for the given op. Returns null if predication is needed but
/// not supported.
static Operation *replaceOpWithPredicatedOp(RewriterBase &rewriter,
Operation *op, Value predicate) {
// Some operations may be fine to execute "speculatively" more times than the
// original number of iterations, in particular side-effect free operations
// and barriers, even if they cannot be predicated.
if (isMemoryEffectFree(op) ||
isa<gpu::BarrierOp, nvgpu::DeviceAsyncCreateGroupOp,
nvgpu::DeviceAsyncWaitOp>(op)) {
return op;
}
// Otherwise, only async copies can currently be predicated.
auto asyncCopyOp = dyn_cast<nvgpu::DeviceAsyncCopyOp>(op);
if (!asyncCopyOp)
return nullptr;
// Create srcElement Value based on `predicate`. The next lines generate
// the following code:
//
// srcElement = (pred) ? prevSrcElements : 0;
//
Location loc = asyncCopyOp->getLoc();
Value dstElements =
rewriter.create<arith::ConstantOp>(loc, asyncCopyOp.getDstElementsAttr());
Value originalSrcElement =
asyncCopyOp.getSrcElements() ? asyncCopyOp.getSrcElements() : dstElements;
Value c0Index = rewriter.create<arith::ConstantIndexOp>(loc, 0);
auto srcElements = rewriter.create<arith::SelectOp>(
loc, predicate, originalSrcElement, c0Index);
auto asyncCopyZeroFillOp = rewriter.create<nvgpu::DeviceAsyncCopyOp>(
loc, nvgpu::DeviceAsyncTokenType::get(asyncCopyOp.getContext()),
asyncCopyOp.getDst(), asyncCopyOp.getDstIndices(), asyncCopyOp.getSrc(),
asyncCopyOp.getSrcIndices(), asyncCopyOp.getDstElements(), srcElements,
UnitAttr());
rewriter.replaceOp(asyncCopyOp, asyncCopyZeroFillOp);
return asyncCopyZeroFillOp;
}
/// Applies loop pipelining with the given depth to the given loop so that
/// copies into the shared memory are pipelined. Doesn't affect other loops.
/// Returns a pair containing the error state and the pipelined op, the latter
/// being null in case of any failure. The error state contains a definite error
/// if the IR has been modified and a silenceable error otherwise.
static std::tuple<DiagnosedSilenceableFailure, scf::ForOp>
pipelineForSharedCopies(RewriterBase &rewriter, scf::ForOp forOp, int64_t depth,
bool epiloguePeeling) {
llvm::SmallPtrSet<Operation *, 16> stage0Ops;
if (failed(collectStage0PipeliningOps(forOp, stage0Ops))) {
return std::make_tuple(
emitSilenceableFailure(forOp, "cannot find stage 0 ops for pipelining"),
scf::ForOp());
}
if (stage0Ops.empty()) {
return std::make_tuple(
emitSilenceableFailure(forOp, "no shared memory copy"), scf::ForOp());
}
scf::PipeliningOption options;
unsigned maxDepth = depth;
auto setAnnotation = [&](Operation *op,
scf::PipeliningOption::PipelinerPart part,
unsigned iteration) {
return setAsyncWaitGroupsInFlight(rewriter, op, part, iteration, maxDepth);
};
options.getScheduleFn =
[&](scf::ForOp schedulingFor,
std::vector<std::pair<Operation *, unsigned>> &ops) {
if (schedulingFor != forOp)
return;
return getPipelineStages(forOp, ops, maxDepth, stage0Ops);
};
options.annotateFn = setAnnotation;
if (!epiloguePeeling) {
options.peelEpilogue = false;
options.predicateFn = replaceOpWithPredicatedOp;
}
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(forOp);
bool modifiedIR;
FailureOr<scf::ForOp> maybePipelined =
pipelineForLoop(rewriter, forOp, options, &modifiedIR);
if (succeeded(maybePipelined)) {
return std::make_tuple(DiagnosedSilenceableFailure::success(),
*maybePipelined);
}
return std::make_tuple(
modifiedIR
? DiagnosedSilenceableFailure::definiteFailure()
: emitSilenceableFailure(forOp, "pipelining preconditions failed"),
scf::ForOp());
}
DiagnosedSilenceableFailure PipelineSharedMemoryCopiesOp::applyToOne(
TransformRewriter &rewriter, scf::ForOp forOp,
ApplyToEachResultList &results, TransformState &state) {
auto [diag, pipelined] = pipelineForSharedCopies(
rewriter, forOp, static_cast<int64_t>(getDepth()), getPeelEpilogue());
if (diag.succeeded()) {
results.push_back(pipelined);
return DiagnosedSilenceableFailure::success();
}
if (diag.isDefiniteFailure()) {
auto diag = emitDefiniteFailure("irreversible pipelining failure");
if (!getPeelEpilogue()) {
diag.attachNote(forOp->getLoc()) << "couldn't predicate?";
diag.attachNote(getLoc()) << "try setting " << getPeelEpilogueAttrName();
}
return diag;
}
return std::move(diag);
}
//===----------------------------------------------------------------------===//
// RewriteMatmulAsMmaSyncOp
//===----------------------------------------------------------------------===//
/// Helper struct to encode a pair of row/column indexings in the form of
/// affine expressions.
struct RowColIndexing : private std::pair<AffineExpr, AffineExpr> {
RowColIndexing(AffineExpr row, AffineExpr col)
: std::pair<AffineExpr, AffineExpr>(row, col) {}
AffineExpr row() const { return first; };
AffineExpr col() const { return second; };
void print(llvm::raw_ostream &os) const {
os << "- indexing: " << first << ", " << second;
}
};
/// Helper struct to provide a simple mapping from matmul operations to the
/// corresponding mma.sync operation. This is constrained to the case where the
/// matmul matches the mma.sync operation 1-1.
struct MmaSyncBuilder {
MmaSyncBuilder(OpBuilder &b, Location loc, OpFoldResult laneId)
: b(b), loc(loc), laneId(laneId) {}
using IndexCalculator =
std::function<SmallVector<RowColIndexing>(MLIRContext *)>;
/// Create the mma.sync operation corresponding to `linalgOp` along with all
/// the supporting load/store and vector operations.
FailureOr<Operation *> buildMmaSync(LinalgOp linalgOp);
private:
struct MmaSyncInfo {
std::tuple<IndexCalculator, IndexCalculator, IndexCalculator> indexFns;
std::tuple<SmallVector<int64_t>, SmallVector<int64_t>, SmallVector<int64_t>>
vectorShapes;
SmallVector<int64_t> mmaShape;
bool tf32Enabled;
};
/// Return the specific index calculator for the given `linalgOp` or failure
/// if the op is not supported. This is the toplevel switch that should just
/// be Tablegen'd in the future.
FailureOr<MmaSyncInfo> getIndexCalculators(ArrayRef<int64_t> opShape,
TypeRange elementalTypes);
//===--------------------------------------------------------------------===//
// Instruction-specific row, column indexing expression builders.
// These should all be declaratively specified via Tablegen in the future.
// The Tablegen specification should be as straightforward as possible to
// only model the existing size and type combinations.
//===--------------------------------------------------------------------===//
//
// TODO: Tablegen all this.
//===--------------------------------------------------------------------===//
// m16n8k4 tf32 case.
//===--------------------------------------------------------------------===//
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
/// row = groupID for a0
/// groupID + 8 for a1
/// col = threadIDInGroup
static SmallVector<RowColIndexing> m16n8k4tf32Lhs(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
return {RowColIndexing{groupID, threadIDInGroup},
RowColIndexing{groupID + 8, threadIDInGroup}};
}
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
/// row = threadIDInGroup
/// col = groupID
static SmallVector<RowColIndexing> m16n8k4tf32Rhs(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
return {RowColIndexing{threadIDInGroup, groupID}};
}
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
/// row = groupID for c0 and c1
/// groupID + 8 for c2 and c3
/// col = (threadIDInGroup * 2) + (i & 0x1) for ci where i = {0,..,3}
static SmallVector<RowColIndexing> m16n8k4tf32Res(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
return {RowColIndexing{groupID, threadIDInGroup * 2 + 0},
RowColIndexing{groupID, threadIDInGroup * 2 + 1},
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 0},
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 1}};
}
//===--------------------------------------------------------------------===//
// m16n8k16 f16 case.
//===--------------------------------------------------------------------===//
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
///
/// row = groupID for ai where 0 <= i < 2 || 4 <= i < 6
/// groupID + 8 Otherwise
///
/// col = (threadIDInGroup * 2) + (i & 0x1) for ai where i < 4
/// (threadIDInGroup * 2) + (i & 0x1) + 8 for ai where i >= 4
static SmallVector<RowColIndexing> m16n8k16f16Lhs(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
// clang-format off
return {
RowColIndexing{groupID, threadIDInGroup * 2 + 0}, // i == 0
RowColIndexing{groupID, threadIDInGroup * 2 + 1}, // i == 1
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 0}, // i == 2
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 1}, // i == 3
RowColIndexing{groupID, threadIDInGroup * 2 + 0 + 8}, // i == 4
RowColIndexing{groupID, threadIDInGroup * 2 + 1 + 8}, // i == 5
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 0 + 8}, // i == 6
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 1 + 8} // i == 7
};
// clang-format on
}
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
///
/// row = (threadIDInGroup * 2) + (i & 0x1) for bi where i < 2
/// (threadIDInGroup * 2) + (i & 0x1) + 8 for bi where i >= 2
///
/// col = groupID
static SmallVector<RowColIndexing> m16n8k16f16Rhs(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
// clang-format off
return {
RowColIndexing{threadIDInGroup * 2 + 0, groupID}, // i == 0
RowColIndexing{threadIDInGroup * 2 + 1, groupID}, // i == 1
RowColIndexing{threadIDInGroup * 2 + 0 + 8, groupID}, // i == 2
RowColIndexing{threadIDInGroup * 2 + 1 + 8, groupID} // i == 3
};
// clang-format on
}
/// From the NVIDIA doc:
/// groupID = %laneid >> 2
/// threadIDInGroup = %laneid % 4
///
/// row = groupID for ci where i < 2
/// groupID + 8 for ci where i >= 2
///
/// col = (threadIDInGroup * 2) + (i & 0x1) for ci where i = {0,..,3}
static SmallVector<RowColIndexing> m16n8k16f16Res(MLIRContext *ctx) {
auto dim = getAffineDimExpr(0, ctx);
AffineExpr groupID = dim.floorDiv(4);
AffineExpr threadIDInGroup = dim % 4;
// clang-format off
return {
RowColIndexing{groupID, threadIDInGroup * 2 + 0}, // i == 0
RowColIndexing{groupID, threadIDInGroup * 2 + 1}, // i == 1
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 0}, // i == 2
RowColIndexing{groupID + 8, threadIDInGroup * 2 + 1} // i == 3
};
// clang-format on
}
//===--------------------------------------------------------------------===//
/// Helper functions to create customizable load and stores operations. The
/// specific shapes of each MMA instruction are passed via the
/// IndexCalculator callback.
//===--------------------------------------------------------------------===//
/// Build a list of memref.load operations indexed at `(row, col)` indices
/// that make sense for a particular MMA instruction and specified via the
/// IndexCalculator callback.
SmallVector<Value> buildMemrefLoads(OpBuilder &b, Location loc,
OpFoldResult laneId, Value memref,
IndexCalculator indexFn);
/// Perform a distributed load of a vector operand of `vectorShape` for a
/// particular MMA instruction whose `(row, col)` indices are specified via
/// the IndexCalculator callback. Each `laneId` loads the subportion of the
/// data that makes sense for the particular MMA operation.
/// The `vectorShape` matches existing NVGPU dialect op specification but
/// could also be flattened in the future if needed for simplification.
Value buildMmaSyncMemrefLoadOperand(OpBuilder &b, Location loc,
OpFoldResult laneId, Value memref,
IndexCalculator indexFn,
ArrayRef<int64_t> vectorShape);
/// Build a list of memref.store operations indexed at `(row, col)` indices
/// that make sense for a particular MMA instruction and specified via the
/// IndexCalculator callback.
SmallVector<Operation *> buildMemrefStores(OpBuilder &b, Location loc,
ValueRange toStore,
OpFoldResult laneId, Value memref,
IndexCalculator indexFn);
/// Perform a distributed store of a vector operand of `vectorShape` for a
/// particular MMA instruction whose `(row, col)` indices are specified via
/// the IndexCalculator callback. Each `laneId` loads the subportion of the
/// data that makes sense for the particular MMA operation.
/// The `vectorShape` matches existing NVGPU dialect op specification but
/// could also be flattened in the future if needed for simplification.
SmallVector<Operation *> buildMmaSyncMemrefStoreOperand(
OpBuilder &b, Location loc, Value vectorToStore, OpFoldResult laneId,
Value memref, IndexCalculator indexFn, ArrayRef<int64_t> vectorShape);
OpBuilder &b;
Location loc;
OpFoldResult laneId;
};
//===--------------------------------------------------------------------===//
/// Helper functions to create customizable load and stores operations. The
/// specific shapes of each MMA instruction are passed via the
/// IndexCalculator callback.
//===--------------------------------------------------------------------===//
template <typename ApplyFn, typename ReduceFn>
static void foreachIndividualVectorElement(Value vector, ApplyFn applyFn,
ReduceFn reduceFn) {
VectorType vectorType = vector.getType().cast<VectorType>();
auto vectorShape = vectorType.getShape();
auto strides = computeStrides(vectorShape);
for (int64_t idx = 0, e = vectorShape[0] * strides[0]; idx < e; ++idx) {
auto indices = delinearize(idx, strides);
reduceFn(applyFn(vector, idx, indices), idx, indices);
}
}
SmallVector<Value> MmaSyncBuilder::buildMemrefLoads(OpBuilder &b, Location loc,
OpFoldResult laneId,
Value memref,
IndexCalculator indexFn) {
auto aff = [&](AffineExpr e) {
return affine::makeComposedFoldedAffineApply(b, loc, e, laneId);
};
SmallVector<Value> res;
SmallVector<RowColIndexing> indexings = indexFn(b.getContext());
for (auto indexing : indexings) {
Value row = getValueOrCreateConstantIndexOp(b, loc, aff(indexing.row()));
Value col = getValueOrCreateConstantIndexOp(b, loc, aff(indexing.col()));
auto load = b.create<memref::LoadOp>(loc, memref, ValueRange{row, col});
res.push_back(load);
}
return res;
}
Value MmaSyncBuilder::buildMmaSyncMemrefLoadOperand(
OpBuilder &b, Location loc, OpFoldResult laneId, Value memref,
IndexCalculator indexFn, ArrayRef<int64_t> vectorShape) {
auto loads = buildMemrefLoads(b, loc, laneId, memref, indexFn);
Type elementType = getElementTypeOrSelf(memref.getType());
auto vt = VectorType::get(vectorShape, elementType);
Value res = b.create<vector::SplatOp>(loc, vt, loads[0]);
foreachIndividualVectorElement(
res,
/*applyFn=*/
[&](Value v, int64_t linearIdx, ArrayRef<int64_t> indices) {
return loads[linearIdx];
},
/*reduceFn=*/
[&](Value v, int64_t linearIdx, ArrayRef<int64_t> indices) {
res = b.create<vector::InsertOp>(loc, v, res, indices);
});
return res;
}
SmallVector<Operation *>
MmaSyncBuilder::buildMemrefStores(OpBuilder &b, Location loc,
ValueRange toStore, OpFoldResult laneId,
Value memref, IndexCalculator indexFn) {
auto aff = [&](AffineExpr e) {
return affine::makeComposedFoldedAffineApply(b, loc, e, laneId);
};
SmallVector<Operation *> res;
for (auto [indexing, val] :
llvm::zip_equal(indexFn(b.getContext()), toStore)) {
Value row = getValueOrCreateConstantIndexOp(b, loc, aff(indexing.row()));
Value col = getValueOrCreateConstantIndexOp(b, loc, aff(indexing.col()));
Operation *store =
b.create<memref::StoreOp>(loc, val, memref, ValueRange{row, col});
res.push_back(store);
}
return res;
}
SmallVector<Operation *> MmaSyncBuilder::buildMmaSyncMemrefStoreOperand(
OpBuilder &b, Location loc, Value vectorToStore, OpFoldResult laneId,
Value memref, IndexCalculator indexFn, ArrayRef<int64_t> vectorShape) {
SmallVector<Value> toStore;
toStore.reserve(32);
foreachIndividualVectorElement(
vectorToStore,
/*applyFn=*/
[&](Value v, int64_t linearIdx, ArrayRef<int64_t> indices) {
return b.create<vector::ExtractOp>(loc, vectorToStore, indices);
},
/*reduceFn=*/
[&](Value v, int64_t linearIdx, ArrayRef<int64_t> indices) {
toStore.push_back(v);
});
return buildMemrefStores(b, loc, toStore, laneId, memref, indexFn);
}
static std::tuple<SmallVector<int64_t>, SmallVector<int64_t>,
SmallVector<int64_t>>
makeVectorShapes(ArrayRef<int64_t> lhs, ArrayRef<int64_t> rhs,
ArrayRef<int64_t> res) {
SmallVector<int64_t> vlhs{lhs.begin(), lhs.end()};
SmallVector<int64_t> vrhs{rhs.begin(), rhs.end()};
SmallVector<int64_t> vres{res.begin(), res.end()};
return std::make_tuple(vlhs, vrhs, vres);
}
FailureOr<MmaSyncBuilder::MmaSyncInfo>
MmaSyncBuilder::getIndexCalculators(ArrayRef<int64_t> opShape,
TypeRange elementalTypes) {
// TODO: Tablegen all this.
Type f16 = b.getF16Type();
Type f32 = b.getF32Type();
if (opShape == ArrayRef<int64_t>{16, 8, 4} &&
elementalTypes == TypeRange{f32, f32, f32}) {
return MmaSyncInfo{std::make_tuple(&MmaSyncBuilder::m16n8k4tf32Lhs,
&MmaSyncBuilder::m16n8k4tf32Rhs,
&MmaSyncBuilder::m16n8k4tf32Res),
makeVectorShapes({2, 1}, {1, 1}, {2, 2}),
SmallVector<int64_t>{opShape.begin(), opShape.end()},
/*tf32Enabled=*/true};
}
// This is the version with f16 accumulation.
// TODO: version with f32 accumulation.
if (opShape == ArrayRef<int64_t>{16, 8, 16} &&
elementalTypes == TypeRange{f16, f16, f16}) {
return MmaSyncInfo{std::make_tuple(&MmaSyncBuilder::m16n8k16f16Lhs,
&MmaSyncBuilder::m16n8k16f16Rhs,
&MmaSyncBuilder::m16n8k16f16Res),
makeVectorShapes({4, 2}, {2, 2}, {2, 2}),
SmallVector<int64_t>{opShape.begin(), opShape.end()},
/*tf32Enabled=*/false};
}
return failure();
}
FailureOr<Operation *> MmaSyncBuilder::buildMmaSync(LinalgOp linalgOp) {
Value lhsMemref = linalgOp.getDpsInputOperand(0)->get();
Value rhsMemref = linalgOp.getDpsInputOperand(1)->get();
Value resMemref = linalgOp.getDpsInitOperand(0)->get();
assert(lhsMemref.getType().cast<MemRefType>().getRank() == 2 &&
"expected lhs to be a 2D memref");
assert(rhsMemref.getType().cast<MemRefType>().getRank() == 2 &&
"expected rhs to be a 2D memref");
assert(resMemref.getType().cast<MemRefType>().getRank() == 2 &&
"expected res to be a 2D memref");
int64_t m = cast<MemRefType>(lhsMemref.getType()).getShape()[0];
int64_t n = cast<MemRefType>(rhsMemref.getType()).getShape()[1];
int64_t k = cast<MemRefType>(lhsMemref.getType()).getShape()[1];
Type lhsType = getElementTypeOrSelf(lhsMemref.getType());
Type rhsType = getElementTypeOrSelf(rhsMemref.getType());
Type resType = getElementTypeOrSelf(resMemref.getType());
FailureOr<MmaSyncInfo> maybeInfo =
getIndexCalculators({m, n, k}, {lhsType, rhsType, resType});
if (failed(maybeInfo))
return failure();
MmaSyncInfo info = *maybeInfo;
auto [lhsIndexFn, rhsIndexFn, resIndexFn] = info.indexFns;
auto [lhsShape, rhsShape, resShape] = info.vectorShapes;
Value lhs = buildMmaSyncMemrefLoadOperand(b, loc, laneId, lhsMemref,
lhsIndexFn, lhsShape);
Value rhs = buildMmaSyncMemrefLoadOperand(b, loc, laneId, rhsMemref,
rhsIndexFn, rhsShape);
Value res = buildMmaSyncMemrefLoadOperand(b, loc, laneId, resMemref,
resIndexFn, resShape);
res = b.create<nvgpu::MmaSyncOp>(loc, lhs, rhs, res, info.mmaShape,
info.tf32Enabled);
buildMmaSyncMemrefStoreOperand(b, loc, res, laneId, resMemref, resIndexFn,
resShape);
return res.getDefiningOp();
}
DiagnosedSilenceableFailure transform::RewriteMatmulAsMmaSyncOp::applyToOne(
transform::TransformRewriter &rewriter, LinalgOp linalgOp,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
bool fail = true;
// TODO: more robust detection of matmulOp, with transposes etc.
if (isa_and_nonnull<linalg::MatmulOp>(linalgOp.getOperation())) {
Location loc = linalgOp.getLoc();
// TODO: more robust computation of laneId, for now assume a single warp.
Value laneId = rewriter.create<gpu::ThreadIdOp>(
loc, rewriter.getIndexType(), gpu::Dimension::x);
if (succeeded(MmaSyncBuilder(rewriter, loc, laneId).buildMmaSync(linalgOp)))
fail = false;
}
if (fail) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "unsupported target op: " << linalgOp;
diag.attachNote(linalgOp->getLoc()) << "target op";
return diag;
}
rewriter.eraseOp(linalgOp);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//
namespace {
class NVGPUTransformDialectExtension
: public transform::TransformDialectExtension<
NVGPUTransformDialectExtension> {
public:
NVGPUTransformDialectExtension() {
declareGeneratedDialect<arith::ArithDialect>();
declareGeneratedDialect<affine::AffineDialect>();
declareGeneratedDialect<nvgpu::NVGPUDialect>();
declareGeneratedDialect<vector::VectorDialect>();
registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp.inc"
>();
}
};
} // namespace
#define GET_OP_CLASSES
#include "mlir/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp.inc"
void mlir::nvgpu::registerTransformDialectExtension(DialectRegistry ®istry) {
registry.addExtensions<NVGPUTransformDialectExtension>();
}
|