1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
//===- OptimizeSharedMemory.cpp - MLIR NVGPU pass implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements transforms to optimize accesses to shared memory.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/NVGPU/Transforms/Passes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/NVGPU/Transforms/Transforms.h"
#include "mlir/Dialect/NVGPU/Transforms/Utils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
namespace mlir {
namespace nvgpu {
#define GEN_PASS_DEF_OPTIMIZESHAREDMEMORY
#include "mlir/Dialect/NVGPU/Transforms/Passes.h.inc"
} // namespace nvgpu
} // namespace mlir
using namespace mlir;
using namespace mlir::nvgpu;
/// The size of a shared memory line according to NV documentation.
constexpr int64_t kSharedMemoryLineSizeBytes = 128;
/// We optimize for 128bit accesses, but this can be made an argument in the
/// future.
constexpr int64_t kDefaultVectorSizeBits = 128;
/// Uses `srcIndexValue` to permute `tgtIndexValue` via
/// `result = xor(floordiv(srcIdxVal,permuteEveryN),
/// floordiv(tgtIdxVal,vectorSize)))
/// + tgtIdxVal % vectorSize`
/// This is done using an optimized sequence of `arith` operations.
static Value permuteVectorOffset(OpBuilder &b, Location loc,
ArrayRef<Value> indices, MemRefType memrefTy,
int64_t srcDim, int64_t tgtDim) {
// Adjust the src index to change how often the permutation changes
// if necessary.
Value src = indices[srcDim];
// We only want to permute every N iterations of the target dim where N is
// ceil(sharedMemoryLineSizeBytes / dimSizeBytes(tgtDim)).
const int64_t permuteEveryN = std::max<int64_t>(
1, kSharedMemoryLineSizeBytes / ((memrefTy.getDimSize(tgtDim) *
memrefTy.getElementTypeBitWidth()) /
8));
// clang-format off
// Index bit representation (b0 = least significant bit) for dim(1)
// of a `memref<?x?xDT>` is as follows:
// N := log2(128/elementSizeBits)
// M := log2(dimSize(1))
// then
// bits[0:N] = sub-vector element offset
// bits[N:M] = vector index
// clang-format on
int64_t n =
llvm::Log2_64(kDefaultVectorSizeBits / memrefTy.getElementTypeBitWidth());
int64_t m = llvm::Log2_64(memrefTy.getDimSize(tgtDim));
// Capture bits[0:(M-N)] of src by first creating a (M-N) mask.
int64_t mask = (1LL << (m - n)) - 1;
if (permuteEveryN > 1)
mask = mask << llvm::Log2_64(permuteEveryN);
Value srcBits = b.create<arith::ConstantIndexOp>(loc, mask);
srcBits = b.create<arith::AndIOp>(loc, src, srcBits);
// Use the src bits to permute the target bits b[N:M] containing the
// vector offset.
if (permuteEveryN > 1) {
int64_t shlBits = n - llvm::Log2_64(permuteEveryN);
if (shlBits > 0) {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, shlBits);
srcBits = b.createOrFold<arith::ShLIOp>(loc, srcBits, finalShiftVal);
} else if (shlBits < 0) {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, -1 * shlBits);
srcBits = b.createOrFold<arith::ShRUIOp>(loc, srcBits, finalShiftVal);
}
} else {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, n);
srcBits = b.createOrFold<arith::ShLIOp>(loc, srcBits, finalShiftVal);
}
Value permutedVectorIdx =
b.create<arith::XOrIOp>(loc, indices[tgtDim], srcBits);
return permutedVectorIdx;
}
static void transformIndices(OpBuilder &builder, Location loc,
SmallVector<Value, 4> &indices,
MemRefType memrefTy, int64_t srcDim,
int64_t tgtDim) {
indices[tgtDim] =
permuteVectorOffset(builder, loc, indices, memrefTy, srcDim, tgtDim);
}
/// Return all operations within `parentOp` that read from or write to
/// `shmMemRef`.
static LogicalResult
getShmReadAndWriteOps(Operation *parentOp, Value shmMemRef,
SmallVector<Operation *, 16> &readOps,
SmallVector<Operation *, 16> &writeOps) {
parentOp->walk([&](Operation *op) {
MemoryEffectOpInterface iface = dyn_cast<MemoryEffectOpInterface>(op);
if (!iface)
return;
std::optional<MemoryEffects::EffectInstance> effect =
iface.getEffectOnValue<MemoryEffects::Read>(shmMemRef);
if (effect) {
readOps.push_back(op);
return;
}
effect = iface.getEffectOnValue<MemoryEffects::Write>(shmMemRef);
if (effect)
writeOps.push_back(op);
});
// Restrict to a supported set of ops. We also require at least 2D access,
// although this could be relaxed.
if (llvm::any_of(readOps, [](Operation *op) {
return !isa<memref::LoadOp, vector::LoadOp, nvgpu::LdMatrixOp>(op) ||
getIndices(op).size() < 2;
}))
return failure();
if (llvm::any_of(writeOps, [](Operation *op) {
return !isa<memref::StoreOp, vector::StoreOp, nvgpu::DeviceAsyncCopyOp>(
op) ||
getIndices(op).size() < 2;
}))
return failure();
return success();
}
mlir::LogicalResult
mlir::nvgpu::optimizeSharedMemoryReadsAndWrites(Operation *parentOp,
Value memrefValue) {
auto memRefType = dyn_cast<MemRefType>(memrefValue.getType());
if (!memRefType || !NVGPUDialect::hasSharedMemoryAddressSpace(memRefType))
return failure();
// Abort if the given value has any sub-views; we do not do any alias
// analysis.
bool hasSubView = false;
parentOp->walk([&](memref::SubViewOp subView) { hasSubView = true; });
if (hasSubView)
return failure();
// Check if this is necessary given the assumption of 128b accesses:
// If dim[rank-1] is small enough to fit 8 rows in a 128B line.
const int64_t rowSize = memRefType.getDimSize(memRefType.getRank() - 1);
const int64_t rowsPerLine =
(8 * kSharedMemoryLineSizeBytes / memRefType.getElementTypeBitWidth()) /
rowSize;
const int64_t threadGroupSize =
1LL << (7 - llvm::Log2_64(kDefaultVectorSizeBits / 8));
if (rowsPerLine >= threadGroupSize)
return failure();
// Get sets of operations within the function that read/write to shared
// memory.
SmallVector<Operation *, 16> shmReadOps;
SmallVector<Operation *, 16> shmWriteOps;
if (failed(getShmReadAndWriteOps(parentOp, memrefValue, shmReadOps,
shmWriteOps)))
return failure();
if (shmReadOps.empty() || shmWriteOps.empty())
return failure();
OpBuilder builder(parentOp->getContext());
int64_t tgtDim = memRefType.getRank() - 1;
int64_t srcDim = memRefType.getRank() - 2;
// Transform indices for the ops writing to shared memory.
while (!shmWriteOps.empty()) {
Operation *shmWriteOp = shmWriteOps.back();
shmWriteOps.pop_back();
builder.setInsertionPoint(shmWriteOp);
auto indices = getIndices(shmWriteOp);
SmallVector<Value, 4> transformedIndices(indices.begin(), indices.end());
transformIndices(builder, shmWriteOp->getLoc(), transformedIndices,
memRefType, srcDim, tgtDim);
setIndices(shmWriteOp, transformedIndices);
}
// Transform indices for the ops reading from shared memory.
while (!shmReadOps.empty()) {
Operation *shmReadOp = shmReadOps.back();
shmReadOps.pop_back();
builder.setInsertionPoint(shmReadOp);
auto indices = getIndices(shmReadOp);
SmallVector<Value, 4> transformedIndices(indices.begin(), indices.end());
transformIndices(builder, shmReadOp->getLoc(), transformedIndices,
memRefType, srcDim, tgtDim);
setIndices(shmReadOp, transformedIndices);
}
return success();
}
namespace {
class OptimizeSharedMemoryPass
: public nvgpu::impl::OptimizeSharedMemoryBase<OptimizeSharedMemoryPass> {
public:
OptimizeSharedMemoryPass() = default;
void runOnOperation() override {
Operation *op = getOperation();
SmallVector<memref::AllocOp> shmAllocOps;
op->walk([&](memref::AllocOp allocOp) {
if (!NVGPUDialect::hasSharedMemoryAddressSpace(allocOp.getType()))
return;
shmAllocOps.push_back(allocOp);
});
for (auto allocOp : shmAllocOps) {
if (failed(optimizeSharedMemoryReadsAndWrites(getOperation(),
allocOp.getMemref())))
return;
}
}
};
} // namespace
std::unique_ptr<Pass> mlir::nvgpu::createOptimizeSharedMemoryPass() {
return std::make_unique<OptimizeSharedMemoryPass>();
}
|