1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
//===- MMAUtils.cpp - MLIR NVGPU dialect utils for MMA operations----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/NVGPU/Utils/MMAUtils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
using namespace mlir;
using namespace mlir::nvgpu;
/// There are always 4 threads per [128|256|512] bit row.
static constexpr int64_t kThreadsPerRow = 4;
static constexpr int64_t kNumRowsPerTile = 8;
static bool isAccumulatorOrResult(MatMulOperandRole operandType) {
return operandType == MatMulOperandRole::C;
}
/// Returns the number of registers which compose a matrix fragment held by a
/// single thread.
static int64_t inferNumRegistersPerMatrixFragment(const WarpMatrixInfo &type) {
int64_t lineSize = inferTileWidthInBits(type);
auto shape = type.vectorType.getShape();
return (shape[0] / kNumRowsPerTile) *
(shape[1] * type.vectorType.getElementType().getIntOrFloatBitWidth()) /
lineSize;
}
/// Returns the number of 8 x [128|256|512] bit tiles that compose the given
/// operand shape.
static std::array<int64_t, 2> getTileShape(ArrayRef<int64_t> operandShape,
Type elementType,
int64_t lineSizeBits) {
// For each 8x128bit square, a thread is responsible for one 32bit register.
return {operandShape[0] / kNumRowsPerTile,
(operandShape[1] * elementType.getIntOrFloatBitWidth()) /
lineSizeBits};
}
/// Returns the first user of the `op` that is vector.contract. If no
/// vector.contract user exists, return failure.
FailureOr<vector::ContractionOp> nvgpu::getUserContract(Operation *op) {
for (Operation *user : op->getUsers()) {
if (auto contractOp = dyn_cast<vector::ContractionOp>(user))
return contractOp;
}
return failure();
}
FailureOr<WarpMatrixInfo> nvgpu::getWarpMatrixInfo(Operation *op) {
WarpMatrixInfo info;
// Determine the vector type at warp-level.
if (vector::TransferWriteOp writeOp = dyn_cast<vector::TransferWriteOp>(op)) {
info.vectorType = writeOp.getVectorType();
} else if (isa<vector::TransferReadOp, vector::ContractionOp,
vector::ExtractStridedSliceOp, arith::ConstantOp>(op)) {
info.vectorType = cast<VectorType>(op->getResult(0).getType());
} else {
return op->emitError()
<< "unhandled operation type in nvgpu.mma.sync conversion path";
}
// Determine the operand role. We assume it is an accumulator/result unless it
// is directly consumed by a `vector.contract` op.
info.operandRole = MatMulOperandRole::C;
FailureOr<vector::ContractionOp> contractOp = getUserContract(op);
if (failed(contractOp))
return info;
if ((*contractOp).getLhs() == op->getResult(0))
info.operandRole = MatMulOperandRole::A;
else if ((*contractOp).getRhs() == op->getResult(0))
info.operandRole = MatMulOperandRole::B;
return info;
}
int64_t nvgpu::inferTileWidthInBits(const WarpMatrixInfo &type) {
bool isAcc = isAccumulatorOrResult(type.operandRole);
Type elType = type.vectorType.getElementType();
if (isAcc && elType.getIntOrFloatBitWidth() == 32) {
return 256;
}
if (elType.getIntOrFloatBitWidth() == 64) {
return isAcc ? 512 : 256;
}
return 128;
}
FailureOr<FragmentElementInfo>
nvgpu::getMmaSyncRegisterType(const WarpMatrixInfo &type) {
MLIRContext *ctx = type.vectorType.getContext();
const bool isAccum = isAccumulatorOrResult(type.operandRole);
Type elType = type.vectorType.getElementType();
if (elType.isF16()) {
return FragmentElementInfo{
LLVM::getFixedVectorType(Float16Type::get(ctx), 2), 2, 32,
inferNumRegistersPerMatrixFragment(type)};
}
// f64 operand
Type f64Ty = Float64Type::get(ctx);
if (elType.isF64()) {
return isAccum
? FragmentElementInfo{LLVM::getFixedVectorType(f64Ty, 2), 2, 128,
inferNumRegistersPerMatrixFragment(type)}
: FragmentElementInfo{f64Ty, 1, 64,
inferNumRegistersPerMatrixFragment(type)};
}
// int8 operand
if (elType.isInteger(8)) {
return FragmentElementInfo{
LLVM::getFixedVectorType(IntegerType::get(ctx, 8), 4), 4, 32,
inferNumRegistersPerMatrixFragment(type)};
}
// int4 operand
if (elType.isInteger(4)) {
return FragmentElementInfo{
LLVM::getFixedVectorType(IntegerType::get(ctx, 4), 8), 8, 32,
inferNumRegistersPerMatrixFragment(type)};
}
// Integer 32bit acc operands
if (elType.isInteger(32)) {
return FragmentElementInfo{
LLVM::getFixedVectorType(IntegerType::get(ctx, 32), 2), 2, 64,
inferNumRegistersPerMatrixFragment(type)};
}
// Floating point 32bit operands
if (elType.isF32()) {
Type f32Ty = Float32Type::get(ctx);
return isAccum
? FragmentElementInfo{LLVM::getFixedVectorType(f32Ty, 2), 2, 64,
inferNumRegistersPerMatrixFragment(type)}
: FragmentElementInfo{f32Ty, 1, 32,
inferNumRegistersPerMatrixFragment(type)};
}
return failure();
}
static AffineMap getRegisterIndexToTileOffsetMap(int64_t lineSize,
Type elementType,
ArrayRef<int64_t> operandShape,
bool isAccumulator,
int64_t elementsPerRegister,
AffineExpr logicalValueId) {
const int64_t elementsPerLine =
lineSize / elementType.getIntOrFloatBitWidth();
const std::array<int64_t, 2> num8x128bTiles =
getTileShape(operandShape, elementType, lineSize);
AffineExpr registerIdx = logicalValueId.floorDiv(elementsPerRegister);
return AffineMap::get(
2, 0,
{(registerIdx % num8x128bTiles[0]) * 8,
(registerIdx.floorDiv(num8x128bTiles[0])) * elementsPerLine},
elementType.getContext());
}
FailureOr<AffineMap>
nvgpu::getLaneIdAndValueIdToOperandCoord(OpBuilder &builder, Location loc,
const WarpMatrixInfo &fragmentType) {
Type elementType = fragmentType.vectorType.getElementType();
ArrayRef<int64_t> operandShape = fragmentType.vectorType.getShape();
FailureOr<nvgpu::FragmentElementInfo> regInfo =
getMmaSyncRegisterType(fragmentType);
if (failed(regInfo))
return failure();
const int64_t elementBitWidth = elementType.getIntOrFloatBitWidth();
const int64_t elementsPerRegister =
regInfo->registerWidthBits / elementBitWidth;
const int64_t lineSize = inferTileWidthInBits(fragmentType);
AffineExpr laneId, logicalValueIdDim;
bindDims(builder.getContext(), laneId, logicalValueIdDim);
// Determine what register logicalValueId corresponds to. Use that as a
// linear index into the coordinate mapping `index -> (tile row, tile col)`.
AffineMap registerIndexToTileCoord = getRegisterIndexToTileOffsetMap(
lineSize, elementType, operandShape,
isAccumulatorOrResult(fragmentType.operandRole), elementsPerRegister,
logicalValueIdDim);
auto makeMap = [&](ArrayRef<AffineExpr> dimExprs) -> AffineMap {
return AffineMap::get(2, 0, dimExprs, builder.getContext());
};
auto tileRow = registerIndexToTileCoord.getResult(0);
auto tileCol = registerIndexToTileCoord.getResult(1);
return makeMap({tileRow + laneId.floorDiv(kThreadsPerRow),
tileCol + (laneId % kThreadsPerRow) * elementsPerRegister +
(logicalValueIdDim % elementsPerRegister)});
}
FailureOr<nvgpu::LdMatrixParams>
nvgpu::getLdMatrixParams(const WarpMatrixInfo &type, bool transpose) {
LdMatrixParams params;
Type elType = type.vectorType.getElementType();
params.fragmentType = type.vectorType;
if (type.operandRole == MatMulOperandRole::A ||
type.operandRole == MatMulOperandRole::C) {
params.targetLayout = NVVM::MMALayout::row;
} else {
params.targetLayout = NVVM::MMALayout::col;
}
ArrayRef<int64_t> shape = type.vectorType.getShape();
params.contiguousDimType = transpose ? vector::IteratorType::parallel
: vector::IteratorType::reduction;
if (params.contiguousDimType == vector::IteratorType::reduction) {
params.numTiles = (shape[0] / kNumRowsPerTile) *
((shape[1] * elType.getIntOrFloatBitWidth()) / 128);
} else {
params.numTiles = (shape[1] / kNumRowsPerTile) *
((shape[0] * elType.getIntOrFloatBitWidth()) / 128);
}
if (params.numTiles == 0)
return failure();
return params;
}
FailureOr<AffineMap>
nvgpu::getLaneIdToLdMatrixMatrixCoord(OpBuilder &builder, Location loc,
const LdMatrixParams ¶ms) {
// One thread per 128b row.
const int bitsPerElement = static_cast<int>(
params.fragmentType.getElementType().getIntOrFloatBitWidth());
const int kElementsPer128b = (128 / bitsPerElement);
ArrayRef<int64_t> operandShape = params.fragmentType.getShape();
AffineExpr d0 = getAffineDimExpr(0, builder.getContext());
auto makeMap = [&](ArrayRef<AffineExpr> dimExprs) -> AffineMap {
return AffineMap::get(1, 0, dimExprs, builder.getContext());
};
// Index `idx` in vectorType `operandShape` maps to the strided dimension of
// the `srcMemref` memory of the LdMatrixOp.
int idx =
(params.contiguousDimType == vector::IteratorType::reduction) ? 0 : 1;
// Affine expr in strided and contiguous dimension encodes the coordinate
// mapping for the element a thread points to for warp-wide LdMatrixOp.
AffineExpr strided = d0 % (operandShape[idx]);
AffineExpr contiguous = d0.floorDiv(operandShape[idx]) * (kElementsPer128b);
// This case corresponds to row-major matrixA or col-major matrixB or
// row-major matrixC. This is when the memory layout in `srcMemref`
// match mma.sync hardware vector register operand layout.
if (params.contiguousDimType == vector::IteratorType::reduction)
return makeMap({strided, contiguous});
// This case corresponds to col-major matrixA or row-major matrixB or
// col-major matrixC. This is when the memory layout in `srcMemref` does not
// match mma.sync hardware vector register operand layout.
if (params.contiguousDimType == vector::IteratorType::parallel)
return makeMap({contiguous, strided});
return failure();
}
|