1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
//===- FakeQuantSupport.cpp - Support utilities for FakeQuant ops ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Quant/FakeQuantSupport.h"
#include "mlir/Dialect/Quant/QuantTypes.h"
using namespace mlir;
using namespace mlir::quant;
static bool getDefaultStorageParams(unsigned numBits, bool narrowRange,
bool isSigned, MLIRContext *ctx,
Type &storageType, int64_t &qmin,
int64_t &qmax) {
// Hard-coded type mapping from TFLite.
if (numBits <= 8) {
storageType = IntegerType::get(ctx, 8);
if (isSigned) {
qmin = -128;
qmax = 127;
} else {
qmin = 0;
qmax = 255;
}
} else if (numBits <= 16) {
storageType = IntegerType::get(ctx, 16);
if (isSigned) {
qmin = -32768;
qmax = 32767;
} else {
qmin = 0;
qmax = 65535;
}
} else if (numBits <= 32) {
storageType = IntegerType::get(ctx, 32);
if (isSigned) {
qmin = std::numeric_limits<int32_t>::min();
qmax = std::numeric_limits<int32_t>::max();
} else {
qmin = std::numeric_limits<uint32_t>::min();
qmax = std::numeric_limits<uint32_t>::max();
}
} else {
return true;
}
// Handle narrowRange.
if (narrowRange) {
qmin += 1;
}
return false;
}
// This is a specific implementation of nudging:
// If 0.0 < rmin < rmax or rmin < rmax < 0.0, the range will be shifted
// to include 0.0, but the range width size (rmax-rmin) isn't changed. The zero
// point is derived from the shifted range, and the scale isn't changed. As
// a consequence some values, which are supposed in the original [rmin, rmax]
// range will be outside the shifted range and be clamped during quantization.
// TODO: we should nudge the scale as well, but that requires the
// fake quant op used in the training to use the nudged scale as well.
static void getNudgedScaleAndZeroPoint(int64_t qmin, int64_t qmax, double rmin,
double rmax, double &scale,
int64_t &nudgedZeroPoint) {
// Determine the scale.
const double qminDouble = qmin;
const double qmaxDouble = qmax;
scale = (rmax - rmin) / (qmaxDouble - qminDouble);
// Zero point computation.
// In float, solve the affine equation for any known pair
// (real value, corresponding quantized value), of which, two such pairs
// are known: (rmin, qmin), (rmax, qmax).
// The arithmetic error on the zero point computed from either pair will be
// roughly machine_epsilon * (sum of absolute values of terms).
// Use the variant that adds the smaller error.
const double zeroPointFromMin = qminDouble - rmin / scale;
const double zeroPointFromMinError =
std::abs(qminDouble) + std::abs(rmin / scale);
const double zeroPointFromMax = qmaxDouble - rmax / scale;
const double zeroPointFromMaxError =
std::abs(qmaxDouble) + std::abs(rmax / scale);
const double zeroPointDouble = (zeroPointFromMinError < zeroPointFromMaxError)
? zeroPointFromMin
: zeroPointFromMax;
// Now nudge the zero point to be an integer.
nudgedZeroPoint = 0;
if (zeroPointDouble < qminDouble) {
nudgedZeroPoint = qmin;
} else if (zeroPointDouble > qmaxDouble) {
nudgedZeroPoint = qmax;
} else {
nudgedZeroPoint = round(zeroPointDouble);
}
// By construction, the nudged zero point should always be in range.
assert(nudgedZeroPoint >= qmin);
assert(nudgedZeroPoint <= qmax);
}
UniformQuantizedType
mlir::quant::fakeQuantAttrsToType(Location loc, unsigned numBits, double rmin,
double rmax, bool narrowRange,
Type expressedType, bool isSigned) {
MLIRContext *ctx = expressedType.getContext();
unsigned flags = isSigned ? QuantizationFlags::Signed : 0;
Type storageType;
int64_t qmin;
int64_t qmax;
if (getDefaultStorageParams(numBits, narrowRange, isSigned, ctx, storageType,
qmin, qmax)) {
return (emitError(loc, "unsupported FakeQuant number of bits: ") << numBits,
nullptr);
}
// Special case where min/max is close enough. The tensor contents are all
// 0.0s, so the scale is set to 1.0 and the tensor can be quantized to zero
// points and dequantized to 0.0.
if (std::fabs(rmax - rmin) < std::numeric_limits<double>::epsilon()) {
return UniformQuantizedType::getChecked(
loc, flags, storageType, expressedType, 1.0, qmin, qmin, qmax);
}
double scale;
int64_t nudgedZeroPoint;
getNudgedScaleAndZeroPoint(qmin, qmax, rmin, rmax, scale, nudgedZeroPoint);
return UniformQuantizedType::getChecked(loc, flags, storageType,
expressedType, scale, nudgedZeroPoint,
qmin, qmax);
}
UniformQuantizedPerAxisType mlir::quant::fakeQuantAttrsToType(
Location loc, unsigned numBits, int32_t quantizedDimension,
ArrayRef<double> rmins, ArrayRef<double> rmaxs, bool narrowRange,
Type expressedType, bool isSigned) {
size_t axisSize = rmins.size();
if (axisSize != rmaxs.size()) {
return (emitError(loc, "mismatched per-axis min and max size: ")
<< axisSize << " vs. " << rmaxs.size(),
nullptr);
}
MLIRContext *ctx = expressedType.getContext();
Type storageType;
int64_t qmin;
int64_t qmax;
if (getDefaultStorageParams(numBits, narrowRange, isSigned, ctx, storageType,
qmin, qmax)) {
return (emitError(loc, "unsupported FakeQuant number of bits: ") << numBits,
nullptr);
}
SmallVector<double, 4> scales;
SmallVector<int64_t, 4> zeroPoints;
scales.reserve(axisSize);
zeroPoints.reserve(axisSize);
for (size_t axis = 0; axis != axisSize; ++axis) {
double rmin = rmins[axis];
double rmax = rmaxs[axis];
if (std::fabs(rmax - rmin) < std::numeric_limits<double>::epsilon()) {
scales.push_back(1.0);
zeroPoints.push_back(qmin);
continue;
}
double scale;
int64_t nudgedZeroPoint;
getNudgedScaleAndZeroPoint(qmin, qmax, rmin, rmax, scale, nudgedZeroPoint);
scales.push_back(scale);
zeroPoints.push_back(nudgedZeroPoint);
}
unsigned flags = isSigned ? QuantizationFlags::Signed : 0;
return UniformQuantizedPerAxisType::getChecked(
loc, flags, storageType, expressedType, scales, zeroPoints,
quantizedDimension, qmin, qmax);
}
|