File: LoopCanonicalization.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (191 lines) | stat: -rw-r--r-- 6,777 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//===- LoopCanonicalization.cpp - Cross-dialect canonicalization patterns -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains cross-dialect canonicalization patterns that cannot be
// actual canonicalization patterns due to undesired additional dependencies.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SCF/Transforms/Passes.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"

namespace mlir {
#define GEN_PASS_DEF_SCFFORLOOPCANONICALIZATION
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir

using namespace mlir;
using namespace mlir::scf;

/// A simple, conservative analysis to determine if the loop is shape
/// conserving. I.e., the type of the arg-th yielded value is the same as the
/// type of the corresponding basic block argument of the loop.
/// Note: This function handles only simple cases. Expand as needed.
static bool isShapePreserving(ForOp forOp, int64_t arg) {
  auto yieldOp = cast<YieldOp>(forOp.getBody()->getTerminator());
  assert(arg < static_cast<int64_t>(yieldOp.getResults().size()) &&
         "arg is out of bounds");
  Value value = yieldOp.getResults()[arg];
  while (value) {
    if (value == forOp.getRegionIterArgs()[arg])
      return true;
    OpResult opResult = dyn_cast<OpResult>(value);
    if (!opResult)
      return false;

    using tensor::InsertSliceOp;
    value =
        llvm::TypeSwitch<Operation *, Value>(opResult.getOwner())
            .template Case<InsertSliceOp>(
                [&](InsertSliceOp op) { return op.getDest(); })
            .template Case<ForOp>([&](ForOp forOp) {
              return isShapePreserving(forOp, opResult.getResultNumber())
                         ? forOp.getIterOperands()[opResult.getResultNumber()]
                         : Value();
            })
            .Default([&](auto op) { return Value(); });
  }
  return false;
}

namespace {
/// Fold dim ops of iter_args to dim ops of their respective init args. E.g.:
///
/// ```
/// %0 = ... : tensor<?x?xf32>
/// scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
///   %1 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
///   ...
/// }
/// ```
///
/// is folded to:
///
/// ```
/// %0 = ... : tensor<?x?xf32>
/// scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
///   %1 = tensor.dim %0, %c0 : tensor<?x?xf32>
///   ...
/// }
/// ```
///
/// Note: Dim ops are folded only if it can be proven that the runtime type of
/// the iter arg does not change with loop iterations.
template <typename OpTy>
struct DimOfIterArgFolder : public OpRewritePattern<OpTy> {
  using OpRewritePattern<OpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(OpTy dimOp,
                                PatternRewriter &rewriter) const override {
    auto blockArg = dyn_cast<BlockArgument>(dimOp.getSource());
    if (!blockArg)
      return failure();
    auto forOp = dyn_cast<ForOp>(blockArg.getParentBlock()->getParentOp());
    if (!forOp)
      return failure();
    if (!isShapePreserving(forOp, blockArg.getArgNumber() - 1))
      return failure();

    Value initArg = forOp.getOpOperandForRegionIterArg(blockArg).get();
    rewriter.updateRootInPlace(
        dimOp, [&]() { dimOp.getSourceMutable().assign(initArg); });

    return success();
  };
};

/// Fold dim ops of loop results to dim ops of their respective init args. E.g.:
///
/// ```
/// %0 = ... : tensor<?x?xf32>
/// %r = scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
///   ...
/// }
/// %1 = tensor.dim %r, %c0 : tensor<?x?xf32>
/// ```
///
/// is folded to:
///
/// ```
/// %0 = ... : tensor<?x?xf32>
/// %r = scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
///   ...
/// }
/// %1 = tensor.dim %0, %c0 : tensor<?x?xf32>
/// ```
///
/// Note: Dim ops are folded only if it can be proven that the runtime type of
/// the iter arg does not change with loop iterations.
template <typename OpTy>
struct DimOfLoopResultFolder : public OpRewritePattern<OpTy> {
  using OpRewritePattern<OpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(OpTy dimOp,
                                PatternRewriter &rewriter) const override {
    auto forOp = dimOp.getSource().template getDefiningOp<scf::ForOp>();
    if (!forOp)
      return failure();
    auto opResult = cast<OpResult>(dimOp.getSource());
    unsigned resultNumber = opResult.getResultNumber();
    if (!isShapePreserving(forOp, resultNumber))
      return failure();
    rewriter.updateRootInPlace(dimOp, [&]() {
      dimOp.getSourceMutable().assign(forOp.getIterOperands()[resultNumber]);
    });
    return success();
  }
};

/// Canonicalize AffineMinOp/AffineMaxOp operations in the context of scf.for
/// and scf.parallel loops with a known range.
template <typename OpTy>
struct AffineOpSCFCanonicalizationPattern : public OpRewritePattern<OpTy> {
  using OpRewritePattern<OpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(OpTy op,
                                PatternRewriter &rewriter) const override {
    return scf::canonicalizeMinMaxOpInLoop(rewriter, op, scf::matchForLikeLoop);
  }
};

struct SCFForLoopCanonicalization
    : public impl::SCFForLoopCanonicalizationBase<SCFForLoopCanonicalization> {
  void runOnOperation() override {
    auto *parentOp = getOperation();
    MLIRContext *ctx = parentOp->getContext();
    RewritePatternSet patterns(ctx);
    scf::populateSCFForLoopCanonicalizationPatterns(patterns);
    if (failed(applyPatternsAndFoldGreedily(parentOp, std::move(patterns))))
      signalPassFailure();
  }
};
} // namespace

void mlir::scf::populateSCFForLoopCanonicalizationPatterns(
    RewritePatternSet &patterns) {
  MLIRContext *ctx = patterns.getContext();
  patterns
      .add<AffineOpSCFCanonicalizationPattern<affine::AffineMinOp>,
           AffineOpSCFCanonicalizationPattern<affine::AffineMaxOp>,
           DimOfIterArgFolder<tensor::DimOp>, DimOfIterArgFolder<memref::DimOp>,
           DimOfLoopResultFolder<tensor::DimOp>,
           DimOfLoopResultFolder<memref::DimOp>>(ctx);
}

std::unique_ptr<Pass> mlir::createSCFForLoopCanonicalizationPass() {
  return std::make_unique<SCFForLoopCanonicalization>();
}