1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
//===- LoopPipelining.cpp - Code to perform loop software pipelining-------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop software pipelining
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "scf-loop-pipelining"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
using namespace mlir;
using namespace mlir::scf;
namespace {
/// Helper to keep internal information during pipelining transformation.
struct LoopPipelinerInternal {
/// Coarse liverange information for ops used across stages.
struct LiverangeInfo {
unsigned lastUseStage = 0;
unsigned defStage = 0;
};
protected:
ForOp forOp;
unsigned maxStage = 0;
DenseMap<Operation *, unsigned> stages;
std::vector<Operation *> opOrder;
int64_t ub;
int64_t lb;
int64_t step;
PipeliningOption::AnnotationlFnType annotateFn = nullptr;
bool peelEpilogue;
PipeliningOption::PredicateOpFn predicateFn = nullptr;
// When peeling the kernel we generate several version of each value for
// different stage of the prologue. This map tracks the mapping between
// original Values in the loop and the different versions
// peeled from the loop.
DenseMap<Value, llvm::SmallVector<Value>> valueMapping;
/// Assign a value to `valueMapping`, this means `val` represents the version
/// `idx` of `key` in the epilogue.
void setValueMapping(Value key, Value el, int64_t idx);
public:
/// Initalize the information for the given `op`, return true if it
/// satisfies the pre-condition to apply pipelining.
bool initializeLoopInfo(ForOp op, const PipeliningOption &options);
/// Emits the prologue, this creates `maxStage - 1` part which will contain
/// operations from stages [0; i], where i is the part index.
void emitPrologue(RewriterBase &rewriter);
/// Gather liverange information for Values that are used in a different stage
/// than its definition.
llvm::MapVector<Value, LiverangeInfo> analyzeCrossStageValues();
scf::ForOp createKernelLoop(
const llvm::MapVector<Value, LiverangeInfo> &crossStageValues,
RewriterBase &rewriter,
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap);
/// Emits the pipelined kernel. This clones loop operations following user
/// order and remaps operands defined in a different stage as their use.
LogicalResult createKernel(
scf::ForOp newForOp,
const llvm::MapVector<Value, LiverangeInfo> &crossStageValues,
const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap,
RewriterBase &rewriter);
/// Emits the epilogue, this creates `maxStage - 1` part which will contain
/// operations from stages [i; maxStage], where i is the part index.
llvm::SmallVector<Value> emitEpilogue(RewriterBase &rewriter);
};
bool LoopPipelinerInternal::initializeLoopInfo(
ForOp op, const PipeliningOption &options) {
LDBG("Start initializeLoopInfo");
forOp = op;
auto upperBoundCst =
forOp.getUpperBound().getDefiningOp<arith::ConstantIndexOp>();
auto lowerBoundCst =
forOp.getLowerBound().getDefiningOp<arith::ConstantIndexOp>();
auto stepCst = forOp.getStep().getDefiningOp<arith::ConstantIndexOp>();
if (!upperBoundCst || !lowerBoundCst || !stepCst) {
LDBG("--no constant bounds or step -> BAIL");
return false;
}
ub = upperBoundCst.value();
lb = lowerBoundCst.value();
step = stepCst.value();
peelEpilogue = options.peelEpilogue;
predicateFn = options.predicateFn;
if (!peelEpilogue && predicateFn == nullptr) {
LDBG("--no epilogue or predicate set -> BAIL");
return false;
}
int64_t numIteration = ceilDiv(ub - lb, step);
std::vector<std::pair<Operation *, unsigned>> schedule;
options.getScheduleFn(forOp, schedule);
if (schedule.empty()) {
LDBG("--empty schedule -> BAIL");
return false;
}
opOrder.reserve(schedule.size());
for (auto &opSchedule : schedule) {
maxStage = std::max(maxStage, opSchedule.second);
stages[opSchedule.first] = opSchedule.second;
opOrder.push_back(opSchedule.first);
}
if (numIteration <= maxStage) {
LDBG("--fewer loop iterations than pipeline stages -> BAIL");
return false;
}
// All operations need to have a stage.
for (Operation &op : forOp.getBody()->without_terminator()) {
if (!stages.contains(&op)) {
op.emitOpError("not assigned a pipeline stage");
LDBG("--op not assigned a pipeline stage: " << op << " -> BAIL");
return false;
}
}
// Currently, we do not support assigning stages to ops in nested regions. The
// block of all operations assigned a stage should be the single `scf.for`
// body block.
for (const auto &[op, stageNum] : stages) {
(void)stageNum;
if (op == forOp.getBody()->getTerminator()) {
op->emitError("terminator should not be assigned a stage");
LDBG("--terminator should not be assigned stage: " << *op << " -> BAIL");
return false;
}
if (op->getBlock() != forOp.getBody()) {
op->emitOpError("the owning Block of all operations assigned a stage "
"should be the loop body block");
LDBG("--the owning Block of all operations assigned a stage "
"should be the loop body block: "
<< *op << " -> BAIL");
return false;
}
}
// Only support loop carried dependency with a distance of 1. This means the
// source of all the scf.yield operands needs to be defined by operations in
// the loop.
if (llvm::any_of(forOp.getBody()->getTerminator()->getOperands(),
[this](Value operand) {
Operation *def = operand.getDefiningOp();
return !def || !stages.contains(def);
})) {
LDBG("--only support loop carried dependency with a distance of 1 -> BAIL");
return false;
}
annotateFn = options.annotateFn;
return true;
}
/// Clone `op` and call `callback` on the cloned op's oeprands as well as any
/// operands of nested ops that:
/// 1) aren't defined within the new op or
/// 2) are block arguments.
static Operation *
cloneAndUpdateOperands(RewriterBase &rewriter, Operation *op,
function_ref<void(OpOperand *newOperand)> callback) {
Operation *clone = rewriter.clone(*op);
for (OpOperand &operand : clone->getOpOperands())
callback(&operand);
clone->walk([&](Operation *nested) {
for (OpOperand &operand : nested->getOpOperands()) {
Operation *def = operand.get().getDefiningOp();
if ((def && !clone->isAncestor(def)) || isa<BlockArgument>(operand.get()))
callback(&operand);
}
});
return clone;
}
void LoopPipelinerInternal::emitPrologue(RewriterBase &rewriter) {
// Initialize the iteration argument to the loop initiale values.
for (BlockArgument &arg : forOp.getRegionIterArgs()) {
OpOperand &operand = forOp.getOpOperandForRegionIterArg(arg);
setValueMapping(arg, operand.get(), 0);
}
auto yield = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
for (int64_t i = 0; i < maxStage; i++) {
// special handling for induction variable as the increment is implicit.
Value iv =
rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(), lb + i * step);
setValueMapping(forOp.getInductionVar(), iv, i);
for (Operation *op : opOrder) {
if (stages[op] > i)
continue;
Operation *newOp =
cloneAndUpdateOperands(rewriter, op, [&](OpOperand *newOperand) {
auto it = valueMapping.find(newOperand->get());
if (it != valueMapping.end()) {
Value replacement = it->second[i - stages[op]];
newOperand->set(replacement);
}
});
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Prologue, i);
for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) {
setValueMapping(op->getResult(destId), newOp->getResult(destId),
i - stages[op]);
// If the value is a loop carried dependency update the loop argument
// mapping.
for (OpOperand &operand : yield->getOpOperands()) {
if (operand.get() != op->getResult(destId))
continue;
setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()],
newOp->getResult(destId), i - stages[op] + 1);
}
}
}
}
}
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
LoopPipelinerInternal::analyzeCrossStageValues() {
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> crossStageValues;
for (Operation *op : opOrder) {
unsigned stage = stages[op];
auto analyzeOperand = [&](OpOperand &operand) {
Operation *def = operand.get().getDefiningOp();
if (!def)
return;
auto defStage = stages.find(def);
if (defStage == stages.end() || defStage->second == stage)
return;
assert(stage > defStage->second);
LiverangeInfo &info = crossStageValues[operand.get()];
info.defStage = defStage->second;
info.lastUseStage = std::max(info.lastUseStage, stage);
};
for (OpOperand &operand : op->getOpOperands())
analyzeOperand(operand);
visitUsedValuesDefinedAbove(op->getRegions(), [&](OpOperand *operand) {
analyzeOperand(*operand);
});
}
return crossStageValues;
}
scf::ForOp LoopPipelinerInternal::createKernelLoop(
const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
&crossStageValues,
RewriterBase &rewriter,
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap) {
// Creates the list of initial values associated to values used across
// stages. The initial values come from the prologue created above.
// Keep track of the kernel argument associated to each version of the
// values passed to the kernel.
llvm::SmallVector<Value> newLoopArg;
// For existing loop argument initialize them with the right version from the
// prologue.
for (const auto &retVal :
llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) {
Operation *def = retVal.value().getDefiningOp();
assert(def && "Only support loop carried dependencies of distance 1");
unsigned defStage = stages[def];
Value valueVersion = valueMapping[forOp.getRegionIterArgs()[retVal.index()]]
[maxStage - defStage];
assert(valueVersion);
newLoopArg.push_back(valueVersion);
}
for (auto escape : crossStageValues) {
LiverangeInfo &info = escape.second;
Value value = escape.first;
for (unsigned stageIdx = 0; stageIdx < info.lastUseStage - info.defStage;
stageIdx++) {
Value valueVersion =
valueMapping[value][maxStage - info.lastUseStage + stageIdx];
assert(valueVersion);
newLoopArg.push_back(valueVersion);
loopArgMap[std::make_pair(value, info.lastUseStage - info.defStage -
stageIdx)] = newLoopArg.size() - 1;
}
}
// Create the new kernel loop. When we peel the epilgue we need to peel
// `numStages - 1` iterations. Then we adjust the upper bound to remove those
// iterations.
Value newUb = forOp.getUpperBound();
if (peelEpilogue)
newUb = rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(),
ub - maxStage * step);
auto newForOp =
rewriter.create<scf::ForOp>(forOp.getLoc(), forOp.getLowerBound(), newUb,
forOp.getStep(), newLoopArg);
// When there are no iter args, the loop body terminator will be created.
// Since we always create it below, remove the terminator if it was created.
if (!newForOp.getBody()->empty())
rewriter.eraseOp(newForOp.getBody()->getTerminator());
return newForOp;
}
LogicalResult LoopPipelinerInternal::createKernel(
scf::ForOp newForOp,
const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
&crossStageValues,
const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap,
RewriterBase &rewriter) {
valueMapping.clear();
// Create the kernel, we clone instruction based on the order given by
// user and remap operands coming from a previous stages.
rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin());
IRMapping mapping;
mapping.map(forOp.getInductionVar(), newForOp.getInductionVar());
for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs())) {
mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
}
SmallVector<Value> predicates(maxStage + 1, nullptr);
if (!peelEpilogue) {
// Create a predicate for each stage except the last stage.
for (unsigned i = 0; i < maxStage; i++) {
Value c = rewriter.create<arith::ConstantIndexOp>(
newForOp.getLoc(), ub - (maxStage - i) * step);
Value pred = rewriter.create<arith::CmpIOp>(
newForOp.getLoc(), arith::CmpIPredicate::slt,
newForOp.getInductionVar(), c);
predicates[i] = pred;
}
}
for (Operation *op : opOrder) {
int64_t useStage = stages[op];
auto *newOp = rewriter.clone(*op, mapping);
SmallVector<OpOperand *> operands;
// Collect all the operands for the cloned op and its nested ops.
op->walk([&operands](Operation *nestedOp) {
for (OpOperand &operand : nestedOp->getOpOperands()) {
operands.push_back(&operand);
}
});
for (OpOperand *operand : operands) {
Operation *nestedNewOp = mapping.lookup(operand->getOwner());
// Special case for the induction variable uses. We replace it with a
// version incremented based on the stage where it is used.
if (operand->get() == forOp.getInductionVar()) {
rewriter.setInsertionPoint(newOp);
Value offset = rewriter.create<arith::ConstantIndexOp>(
forOp.getLoc(), (maxStage - stages[op]) * step);
Value iv = rewriter.create<arith::AddIOp>(
forOp.getLoc(), newForOp.getInductionVar(), offset);
nestedNewOp->setOperand(operand->getOperandNumber(), iv);
rewriter.setInsertionPointAfter(newOp);
continue;
}
auto arg = dyn_cast<BlockArgument>(operand->get());
if (arg && arg.getOwner() == forOp.getBody()) {
// If the value is a loop carried value coming from stage N + 1 remap,
// it will become a direct use.
Value ret = forOp.getBody()->getTerminator()->getOperand(
arg.getArgNumber() - 1);
Operation *dep = ret.getDefiningOp();
if (!dep)
continue;
auto stageDep = stages.find(dep);
if (stageDep == stages.end() || stageDep->second == useStage)
continue;
assert(stageDep->second == useStage + 1);
nestedNewOp->setOperand(operand->getOperandNumber(),
mapping.lookupOrDefault(ret));
continue;
}
// For operands defined in a previous stage we need to remap it to use
// the correct region argument. We look for the right version of the
// Value based on the stage where it is used.
Operation *def = operand->get().getDefiningOp();
if (!def)
continue;
auto stageDef = stages.find(def);
if (stageDef == stages.end() || stageDef->second == useStage)
continue;
auto remap = loopArgMap.find(
std::make_pair(operand->get(), useStage - stageDef->second));
assert(remap != loopArgMap.end());
nestedNewOp->setOperand(operand->getOperandNumber(),
newForOp.getRegionIterArgs()[remap->second]);
}
if (predicates[useStage]) {
newOp = predicateFn(rewriter, newOp, predicates[useStage]);
if (!newOp)
return failure();
// Remap the results to the new predicated one.
for (auto values : llvm::zip(op->getResults(), newOp->getResults()))
mapping.map(std::get<0>(values), std::get<1>(values));
}
rewriter.setInsertionPointAfter(newOp);
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Kernel, 0);
}
// Collect the Values that need to be returned by the forOp. For each
// value we need to have `LastUseStage - DefStage` number of versions
// returned.
// We create a mapping between original values and the associated loop
// returned values that will be needed by the epilogue.
llvm::SmallVector<Value> yieldOperands;
for (Value retVal : forOp.getBody()->getTerminator()->getOperands()) {
yieldOperands.push_back(mapping.lookupOrDefault(retVal));
}
for (auto &it : crossStageValues) {
int64_t version = maxStage - it.second.lastUseStage + 1;
unsigned numVersionReturned = it.second.lastUseStage - it.second.defStage;
// add the original version to yield ops.
// If there is a live range spanning across more than 2 stages we need to
// add extra arg.
for (unsigned i = 1; i < numVersionReturned; i++) {
setValueMapping(it.first, newForOp->getResult(yieldOperands.size()),
version++);
yieldOperands.push_back(
newForOp.getBody()->getArguments()[yieldOperands.size() + 1 +
newForOp.getNumInductionVars()]);
}
setValueMapping(it.first, newForOp->getResult(yieldOperands.size()),
version++);
yieldOperands.push_back(mapping.lookupOrDefault(it.first));
}
// Map the yield operand to the forOp returned value.
for (const auto &retVal :
llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) {
Operation *def = retVal.value().getDefiningOp();
assert(def && "Only support loop carried dependencies of distance 1");
unsigned defStage = stages[def];
setValueMapping(forOp.getRegionIterArgs()[retVal.index()],
newForOp->getResult(retVal.index()),
maxStage - defStage + 1);
}
rewriter.create<scf::YieldOp>(forOp.getLoc(), yieldOperands);
return success();
}
llvm::SmallVector<Value>
LoopPipelinerInternal::emitEpilogue(RewriterBase &rewriter) {
llvm::SmallVector<Value> returnValues(forOp->getNumResults());
// Emit different versions of the induction variable. They will be
// removed by dead code if not used.
for (int64_t i = 0; i < maxStage; i++) {
Value newlastIter = rewriter.create<arith::ConstantIndexOp>(
forOp.getLoc(), lb + step * ((((ub - 1) - lb) / step) - i));
setValueMapping(forOp.getInductionVar(), newlastIter, maxStage - i);
}
// Emit `maxStage - 1` epilogue part that includes operations from stages
// [i; maxStage].
for (int64_t i = 1; i <= maxStage; i++) {
for (Operation *op : opOrder) {
if (stages[op] < i)
continue;
Operation *newOp =
cloneAndUpdateOperands(rewriter, op, [&](OpOperand *newOperand) {
auto it = valueMapping.find(newOperand->get());
if (it != valueMapping.end()) {
Value replacement = it->second[maxStage - stages[op] + i];
newOperand->set(replacement);
}
});
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Epilogue, i - 1);
for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) {
setValueMapping(op->getResult(destId), newOp->getResult(destId),
maxStage - stages[op] + i);
// If the value is a loop carried dependency update the loop argument
// mapping and keep track of the last version to replace the original
// forOp uses.
for (OpOperand &operand :
forOp.getBody()->getTerminator()->getOpOperands()) {
if (operand.get() != op->getResult(destId))
continue;
unsigned version = maxStage - stages[op] + i + 1;
// If the version is greater than maxStage it means it maps to the
// original forOp returned value.
if (version > maxStage) {
returnValues[operand.getOperandNumber()] = newOp->getResult(destId);
continue;
}
setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()],
newOp->getResult(destId), version);
}
}
}
}
return returnValues;
}
void LoopPipelinerInternal::setValueMapping(Value key, Value el, int64_t idx) {
auto it = valueMapping.find(key);
// If the value is not in the map yet add a vector big enough to store all
// versions.
if (it == valueMapping.end())
it =
valueMapping
.insert(std::make_pair(key, llvm::SmallVector<Value>(maxStage + 1)))
.first;
it->second[idx] = el;
}
} // namespace
FailureOr<ForOp> mlir::scf::pipelineForLoop(RewriterBase &rewriter, ForOp forOp,
const PipeliningOption &options,
bool *modifiedIR) {
if (modifiedIR)
*modifiedIR = false;
LoopPipelinerInternal pipeliner;
if (!pipeliner.initializeLoopInfo(forOp, options))
return failure();
if (modifiedIR)
*modifiedIR = true;
// 1. Emit prologue.
pipeliner.emitPrologue(rewriter);
// 2. Track values used across stages. When a value cross stages it will
// need to be passed as loop iteration arguments.
// We first collect the values that are used in a different stage than where
// they are defined.
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
crossStageValues = pipeliner.analyzeCrossStageValues();
// Mapping between original loop values used cross stage and the block
// arguments associated after pipelining. A Value may map to several
// arguments if its liverange spans across more than 2 stages.
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> loopArgMap;
// 3. Create the new kernel loop and return the block arguments mapping.
ForOp newForOp =
pipeliner.createKernelLoop(crossStageValues, rewriter, loopArgMap);
// Create the kernel block, order ops based on user choice and remap
// operands.
if (failed(pipeliner.createKernel(newForOp, crossStageValues, loopArgMap,
rewriter)))
return failure();
llvm::SmallVector<Value> returnValues =
newForOp.getResults().take_front(forOp->getNumResults());
if (options.peelEpilogue) {
// 4. Emit the epilogue after the new forOp.
rewriter.setInsertionPointAfter(newForOp);
returnValues = pipeliner.emitEpilogue(rewriter);
}
// 5. Erase the original loop and replace the uses with the epilogue output.
if (forOp->getNumResults() > 0)
rewriter.replaceOp(forOp, returnValues);
else
rewriter.eraseOp(forOp);
return newForOp;
}
void mlir::scf::populateSCFLoopPipeliningPatterns(
RewritePatternSet &patterns, const PipeliningOption &options) {
patterns.add<ForLoopPipeliningPattern>(options, patterns.getContext());
}
|