File: LoopPipelining.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (575 lines) | stat: -rw-r--r-- 23,703 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
//===- LoopPipelining.cpp - Code to perform loop software pipelining-------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop software pipelining
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "scf-loop-pipelining"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")

using namespace mlir;
using namespace mlir::scf;

namespace {

/// Helper to keep internal information during pipelining transformation.
struct LoopPipelinerInternal {
  /// Coarse liverange information for ops used across stages.
  struct LiverangeInfo {
    unsigned lastUseStage = 0;
    unsigned defStage = 0;
  };

protected:
  ForOp forOp;
  unsigned maxStage = 0;
  DenseMap<Operation *, unsigned> stages;
  std::vector<Operation *> opOrder;
  int64_t ub;
  int64_t lb;
  int64_t step;
  PipeliningOption::AnnotationlFnType annotateFn = nullptr;
  bool peelEpilogue;
  PipeliningOption::PredicateOpFn predicateFn = nullptr;

  // When peeling the kernel we generate several version of each value for
  // different stage of the prologue. This map tracks the mapping between
  // original Values in the loop and the different versions
  // peeled from the loop.
  DenseMap<Value, llvm::SmallVector<Value>> valueMapping;

  /// Assign a value to `valueMapping`, this means `val` represents the version
  /// `idx` of `key` in the epilogue.
  void setValueMapping(Value key, Value el, int64_t idx);

public:
  /// Initalize the information for the given `op`, return true if it
  /// satisfies the pre-condition to apply pipelining.
  bool initializeLoopInfo(ForOp op, const PipeliningOption &options);
  /// Emits the prologue, this creates `maxStage - 1` part which will contain
  /// operations from stages [0; i], where i is the part index.
  void emitPrologue(RewriterBase &rewriter);
  /// Gather liverange information for Values that are used in a different stage
  /// than its definition.
  llvm::MapVector<Value, LiverangeInfo> analyzeCrossStageValues();
  scf::ForOp createKernelLoop(
      const llvm::MapVector<Value, LiverangeInfo> &crossStageValues,
      RewriterBase &rewriter,
      llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap);
  /// Emits the pipelined kernel. This clones loop operations following user
  /// order and remaps operands defined in a different stage as their use.
  LogicalResult createKernel(
      scf::ForOp newForOp,
      const llvm::MapVector<Value, LiverangeInfo> &crossStageValues,
      const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap,
      RewriterBase &rewriter);
  /// Emits the epilogue, this creates `maxStage - 1` part which will contain
  /// operations from stages [i; maxStage], where i is the part index.
  llvm::SmallVector<Value> emitEpilogue(RewriterBase &rewriter);
};

bool LoopPipelinerInternal::initializeLoopInfo(
    ForOp op, const PipeliningOption &options) {
  LDBG("Start initializeLoopInfo");
  forOp = op;
  auto upperBoundCst =
      forOp.getUpperBound().getDefiningOp<arith::ConstantIndexOp>();
  auto lowerBoundCst =
      forOp.getLowerBound().getDefiningOp<arith::ConstantIndexOp>();
  auto stepCst = forOp.getStep().getDefiningOp<arith::ConstantIndexOp>();
  if (!upperBoundCst || !lowerBoundCst || !stepCst) {
    LDBG("--no constant bounds or step -> BAIL");
    return false;
  }
  ub = upperBoundCst.value();
  lb = lowerBoundCst.value();
  step = stepCst.value();
  peelEpilogue = options.peelEpilogue;
  predicateFn = options.predicateFn;
  if (!peelEpilogue && predicateFn == nullptr) {
    LDBG("--no epilogue or predicate set -> BAIL");
    return false;
  }
  int64_t numIteration = ceilDiv(ub - lb, step);
  std::vector<std::pair<Operation *, unsigned>> schedule;
  options.getScheduleFn(forOp, schedule);
  if (schedule.empty()) {
    LDBG("--empty schedule -> BAIL");
    return false;
  }

  opOrder.reserve(schedule.size());
  for (auto &opSchedule : schedule) {
    maxStage = std::max(maxStage, opSchedule.second);
    stages[opSchedule.first] = opSchedule.second;
    opOrder.push_back(opSchedule.first);
  }
  if (numIteration <= maxStage) {
    LDBG("--fewer loop iterations than pipeline stages -> BAIL");
    return false;
  }

  // All operations need to have a stage.
  for (Operation &op : forOp.getBody()->without_terminator()) {
    if (!stages.contains(&op)) {
      op.emitOpError("not assigned a pipeline stage");
      LDBG("--op not assigned a pipeline stage: " << op << " -> BAIL");
      return false;
    }
  }

  // Currently, we do not support assigning stages to ops in nested regions. The
  // block of all operations assigned a stage should be the single `scf.for`
  // body block.
  for (const auto &[op, stageNum] : stages) {
    (void)stageNum;
    if (op == forOp.getBody()->getTerminator()) {
      op->emitError("terminator should not be assigned a stage");
      LDBG("--terminator should not be assigned stage: " << *op << " -> BAIL");
      return false;
    }
    if (op->getBlock() != forOp.getBody()) {
      op->emitOpError("the owning Block of all operations assigned a stage "
                      "should be the loop body block");
      LDBG("--the owning Block of all operations assigned a stage "
           "should be the loop body block: "
           << *op << " -> BAIL");
      return false;
    }
  }

  // Only support loop carried dependency with a distance of 1. This means the
  // source of all the scf.yield operands needs to be defined by operations in
  // the loop.
  if (llvm::any_of(forOp.getBody()->getTerminator()->getOperands(),
                   [this](Value operand) {
                     Operation *def = operand.getDefiningOp();
                     return !def || !stages.contains(def);
                   })) {
    LDBG("--only support loop carried dependency with a distance of 1 -> BAIL");
    return false;
  }
  annotateFn = options.annotateFn;
  return true;
}

/// Clone `op` and call `callback` on the cloned op's oeprands as well as any
/// operands of nested ops that:
/// 1) aren't defined within the new op or
/// 2) are block arguments.
static Operation *
cloneAndUpdateOperands(RewriterBase &rewriter, Operation *op,
                       function_ref<void(OpOperand *newOperand)> callback) {
  Operation *clone = rewriter.clone(*op);
  for (OpOperand &operand : clone->getOpOperands())
    callback(&operand);
  clone->walk([&](Operation *nested) {
    for (OpOperand &operand : nested->getOpOperands()) {
      Operation *def = operand.get().getDefiningOp();
      if ((def && !clone->isAncestor(def)) || isa<BlockArgument>(operand.get()))
        callback(&operand);
    }
  });
  return clone;
}

void LoopPipelinerInternal::emitPrologue(RewriterBase &rewriter) {
  // Initialize the iteration argument to the loop initiale values.
  for (BlockArgument &arg : forOp.getRegionIterArgs()) {
    OpOperand &operand = forOp.getOpOperandForRegionIterArg(arg);
    setValueMapping(arg, operand.get(), 0);
  }
  auto yield = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
  for (int64_t i = 0; i < maxStage; i++) {
    // special handling for induction variable as the increment is implicit.
    Value iv =
        rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(), lb + i * step);
    setValueMapping(forOp.getInductionVar(), iv, i);
    for (Operation *op : opOrder) {
      if (stages[op] > i)
        continue;
      Operation *newOp =
          cloneAndUpdateOperands(rewriter, op, [&](OpOperand *newOperand) {
            auto it = valueMapping.find(newOperand->get());
            if (it != valueMapping.end()) {
              Value replacement = it->second[i - stages[op]];
              newOperand->set(replacement);
            }
          });
      if (annotateFn)
        annotateFn(newOp, PipeliningOption::PipelinerPart::Prologue, i);
      for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) {
        setValueMapping(op->getResult(destId), newOp->getResult(destId),
                        i - stages[op]);
        // If the value is a loop carried dependency update the loop argument
        // mapping.
        for (OpOperand &operand : yield->getOpOperands()) {
          if (operand.get() != op->getResult(destId))
            continue;
          setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()],
                          newOp->getResult(destId), i - stages[op] + 1);
        }
      }
    }
  }
}

llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
LoopPipelinerInternal::analyzeCrossStageValues() {
  llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> crossStageValues;
  for (Operation *op : opOrder) {
    unsigned stage = stages[op];

    auto analyzeOperand = [&](OpOperand &operand) {
      Operation *def = operand.get().getDefiningOp();
      if (!def)
        return;
      auto defStage = stages.find(def);
      if (defStage == stages.end() || defStage->second == stage)
        return;
      assert(stage > defStage->second);
      LiverangeInfo &info = crossStageValues[operand.get()];
      info.defStage = defStage->second;
      info.lastUseStage = std::max(info.lastUseStage, stage);
    };

    for (OpOperand &operand : op->getOpOperands())
      analyzeOperand(operand);
    visitUsedValuesDefinedAbove(op->getRegions(), [&](OpOperand *operand) {
      analyzeOperand(*operand);
    });
  }
  return crossStageValues;
}

scf::ForOp LoopPipelinerInternal::createKernelLoop(
    const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
        &crossStageValues,
    RewriterBase &rewriter,
    llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap) {
  // Creates the list of initial values associated to values used across
  // stages. The initial values come from the prologue created above.
  // Keep track of the kernel argument associated to each version of the
  // values passed to the kernel.
  llvm::SmallVector<Value> newLoopArg;
  // For existing loop argument initialize them with the right version from the
  // prologue.
  for (const auto &retVal :
       llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) {
    Operation *def = retVal.value().getDefiningOp();
    assert(def && "Only support loop carried dependencies of distance 1");
    unsigned defStage = stages[def];
    Value valueVersion = valueMapping[forOp.getRegionIterArgs()[retVal.index()]]
                                     [maxStage - defStage];
    assert(valueVersion);
    newLoopArg.push_back(valueVersion);
  }
  for (auto escape : crossStageValues) {
    LiverangeInfo &info = escape.second;
    Value value = escape.first;
    for (unsigned stageIdx = 0; stageIdx < info.lastUseStage - info.defStage;
         stageIdx++) {
      Value valueVersion =
          valueMapping[value][maxStage - info.lastUseStage + stageIdx];
      assert(valueVersion);
      newLoopArg.push_back(valueVersion);
      loopArgMap[std::make_pair(value, info.lastUseStage - info.defStage -
                                           stageIdx)] = newLoopArg.size() - 1;
    }
  }

  // Create the new kernel loop. When we peel the epilgue we need to peel
  // `numStages - 1` iterations. Then we adjust the upper bound to remove those
  // iterations.
  Value newUb = forOp.getUpperBound();
  if (peelEpilogue)
    newUb = rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(),
                                                    ub - maxStage * step);
  auto newForOp =
      rewriter.create<scf::ForOp>(forOp.getLoc(), forOp.getLowerBound(), newUb,
                                  forOp.getStep(), newLoopArg);
  // When there are no iter args, the loop body terminator will be created.
  // Since we always create it below, remove the terminator if it was created.
  if (!newForOp.getBody()->empty())
    rewriter.eraseOp(newForOp.getBody()->getTerminator());
  return newForOp;
}

LogicalResult LoopPipelinerInternal::createKernel(
    scf::ForOp newForOp,
    const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
        &crossStageValues,
    const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap,
    RewriterBase &rewriter) {
  valueMapping.clear();

  // Create the kernel, we clone instruction based on the order given by
  // user and remap operands coming from a previous stages.
  rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin());
  IRMapping mapping;
  mapping.map(forOp.getInductionVar(), newForOp.getInductionVar());
  for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs())) {
    mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
  }
  SmallVector<Value> predicates(maxStage + 1, nullptr);
  if (!peelEpilogue) {
    // Create a predicate for each stage except the last stage.
    for (unsigned i = 0; i < maxStage; i++) {
      Value c = rewriter.create<arith::ConstantIndexOp>(
          newForOp.getLoc(), ub - (maxStage - i) * step);
      Value pred = rewriter.create<arith::CmpIOp>(
          newForOp.getLoc(), arith::CmpIPredicate::slt,
          newForOp.getInductionVar(), c);
      predicates[i] = pred;
    }
  }
  for (Operation *op : opOrder) {
    int64_t useStage = stages[op];
    auto *newOp = rewriter.clone(*op, mapping);
    SmallVector<OpOperand *> operands;
    // Collect all the operands for the cloned op and its nested ops.
    op->walk([&operands](Operation *nestedOp) {
      for (OpOperand &operand : nestedOp->getOpOperands()) {
        operands.push_back(&operand);
      }
    });
    for (OpOperand *operand : operands) {
      Operation *nestedNewOp = mapping.lookup(operand->getOwner());
      // Special case for the induction variable uses. We replace it with a
      // version incremented based on the stage where it is used.
      if (operand->get() == forOp.getInductionVar()) {
        rewriter.setInsertionPoint(newOp);
        Value offset = rewriter.create<arith::ConstantIndexOp>(
            forOp.getLoc(), (maxStage - stages[op]) * step);
        Value iv = rewriter.create<arith::AddIOp>(
            forOp.getLoc(), newForOp.getInductionVar(), offset);
        nestedNewOp->setOperand(operand->getOperandNumber(), iv);
        rewriter.setInsertionPointAfter(newOp);
        continue;
      }
      auto arg = dyn_cast<BlockArgument>(operand->get());
      if (arg && arg.getOwner() == forOp.getBody()) {
        // If the value is a loop carried value coming from stage N + 1 remap,
        // it will become a direct use.
        Value ret = forOp.getBody()->getTerminator()->getOperand(
            arg.getArgNumber() - 1);
        Operation *dep = ret.getDefiningOp();
        if (!dep)
          continue;
        auto stageDep = stages.find(dep);
        if (stageDep == stages.end() || stageDep->second == useStage)
          continue;
        assert(stageDep->second == useStage + 1);
        nestedNewOp->setOperand(operand->getOperandNumber(),
                                mapping.lookupOrDefault(ret));
        continue;
      }
      // For operands defined in a previous stage we need to remap it to use
      // the correct region argument. We look for the right version of the
      // Value based on the stage where it is used.
      Operation *def = operand->get().getDefiningOp();
      if (!def)
        continue;
      auto stageDef = stages.find(def);
      if (stageDef == stages.end() || stageDef->second == useStage)
        continue;
      auto remap = loopArgMap.find(
          std::make_pair(operand->get(), useStage - stageDef->second));
      assert(remap != loopArgMap.end());
      nestedNewOp->setOperand(operand->getOperandNumber(),
                              newForOp.getRegionIterArgs()[remap->second]);
    }

    if (predicates[useStage]) {
      newOp = predicateFn(rewriter, newOp, predicates[useStage]);
      if (!newOp)
        return failure();
      // Remap the results to the new predicated one.
      for (auto values : llvm::zip(op->getResults(), newOp->getResults()))
        mapping.map(std::get<0>(values), std::get<1>(values));
    }
    rewriter.setInsertionPointAfter(newOp);
    if (annotateFn)
      annotateFn(newOp, PipeliningOption::PipelinerPart::Kernel, 0);
  }

  // Collect the Values that need to be returned by the forOp. For each
  // value we need to have `LastUseStage - DefStage` number of versions
  // returned.
  // We create a mapping between original values and the associated loop
  // returned values that will be needed by the epilogue.
  llvm::SmallVector<Value> yieldOperands;
  for (Value retVal : forOp.getBody()->getTerminator()->getOperands()) {
    yieldOperands.push_back(mapping.lookupOrDefault(retVal));
  }
  for (auto &it : crossStageValues) {
    int64_t version = maxStage - it.second.lastUseStage + 1;
    unsigned numVersionReturned = it.second.lastUseStage - it.second.defStage;
    // add the original version to yield ops.
    // If there is a live range spanning across more than 2 stages we need to
    // add extra arg.
    for (unsigned i = 1; i < numVersionReturned; i++) {
      setValueMapping(it.first, newForOp->getResult(yieldOperands.size()),
                      version++);
      yieldOperands.push_back(
          newForOp.getBody()->getArguments()[yieldOperands.size() + 1 +
                                             newForOp.getNumInductionVars()]);
    }
    setValueMapping(it.first, newForOp->getResult(yieldOperands.size()),
                    version++);
    yieldOperands.push_back(mapping.lookupOrDefault(it.first));
  }
  // Map the yield operand to the forOp returned value.
  for (const auto &retVal :
       llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) {
    Operation *def = retVal.value().getDefiningOp();
    assert(def && "Only support loop carried dependencies of distance 1");
    unsigned defStage = stages[def];
    setValueMapping(forOp.getRegionIterArgs()[retVal.index()],
                    newForOp->getResult(retVal.index()),
                    maxStage - defStage + 1);
  }
  rewriter.create<scf::YieldOp>(forOp.getLoc(), yieldOperands);
  return success();
}

llvm::SmallVector<Value>
LoopPipelinerInternal::emitEpilogue(RewriterBase &rewriter) {
  llvm::SmallVector<Value> returnValues(forOp->getNumResults());
  // Emit different versions of the induction variable. They will be
  // removed by dead code if not used.
  for (int64_t i = 0; i < maxStage; i++) {
    Value newlastIter = rewriter.create<arith::ConstantIndexOp>(
        forOp.getLoc(), lb + step * ((((ub - 1) - lb) / step) - i));
    setValueMapping(forOp.getInductionVar(), newlastIter, maxStage - i);
  }
  // Emit `maxStage - 1` epilogue part that includes operations from stages
  // [i; maxStage].
  for (int64_t i = 1; i <= maxStage; i++) {
    for (Operation *op : opOrder) {
      if (stages[op] < i)
        continue;
      Operation *newOp =
          cloneAndUpdateOperands(rewriter, op, [&](OpOperand *newOperand) {
            auto it = valueMapping.find(newOperand->get());
            if (it != valueMapping.end()) {
              Value replacement = it->second[maxStage - stages[op] + i];
              newOperand->set(replacement);
            }
          });
      if (annotateFn)
        annotateFn(newOp, PipeliningOption::PipelinerPart::Epilogue, i - 1);
      for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) {
        setValueMapping(op->getResult(destId), newOp->getResult(destId),
                        maxStage - stages[op] + i);
        // If the value is a loop carried dependency update the loop argument
        // mapping and keep track of the last version to replace the original
        // forOp uses.
        for (OpOperand &operand :
             forOp.getBody()->getTerminator()->getOpOperands()) {
          if (operand.get() != op->getResult(destId))
            continue;
          unsigned version = maxStage - stages[op] + i + 1;
          // If the version is greater than maxStage it means it maps to the
          // original forOp returned value.
          if (version > maxStage) {
            returnValues[operand.getOperandNumber()] = newOp->getResult(destId);
            continue;
          }
          setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()],
                          newOp->getResult(destId), version);
        }
      }
    }
  }
  return returnValues;
}

void LoopPipelinerInternal::setValueMapping(Value key, Value el, int64_t idx) {
  auto it = valueMapping.find(key);
  // If the value is not in the map yet add a vector big enough to store all
  // versions.
  if (it == valueMapping.end())
    it =
        valueMapping
            .insert(std::make_pair(key, llvm::SmallVector<Value>(maxStage + 1)))
            .first;
  it->second[idx] = el;
}

} // namespace

FailureOr<ForOp> mlir::scf::pipelineForLoop(RewriterBase &rewriter, ForOp forOp,
                                            const PipeliningOption &options,
                                            bool *modifiedIR) {
  if (modifiedIR)
    *modifiedIR = false;
  LoopPipelinerInternal pipeliner;
  if (!pipeliner.initializeLoopInfo(forOp, options))
    return failure();

  if (modifiedIR)
    *modifiedIR = true;

  // 1. Emit prologue.
  pipeliner.emitPrologue(rewriter);

  // 2. Track values used across stages. When a value cross stages it will
  // need to be passed as loop iteration arguments.
  // We first collect the values that are used in a different stage than where
  // they are defined.
  llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
      crossStageValues = pipeliner.analyzeCrossStageValues();

  // Mapping between original loop values used cross stage and the block
  // arguments associated after pipelining. A Value may map to several
  // arguments if its liverange spans across more than 2 stages.
  llvm::DenseMap<std::pair<Value, unsigned>, unsigned> loopArgMap;
  // 3. Create the new kernel loop and return the block arguments mapping.
  ForOp newForOp =
      pipeliner.createKernelLoop(crossStageValues, rewriter, loopArgMap);
  // Create the kernel block, order ops based on user choice and remap
  // operands.
  if (failed(pipeliner.createKernel(newForOp, crossStageValues, loopArgMap,
                                    rewriter)))
    return failure();

  llvm::SmallVector<Value> returnValues =
      newForOp.getResults().take_front(forOp->getNumResults());
  if (options.peelEpilogue) {
    // 4. Emit the epilogue after the new forOp.
    rewriter.setInsertionPointAfter(newForOp);
    returnValues = pipeliner.emitEpilogue(rewriter);
  }
  // 5. Erase the original loop and replace the uses with the epilogue output.
  if (forOp->getNumResults() > 0)
    rewriter.replaceOp(forOp, returnValues);
  else
    rewriter.eraseOp(forOp);

  return newForOp;
}

void mlir::scf::populateSCFLoopPipeliningPatterns(
    RewritePatternSet &patterns, const PipeliningOption &options) {
  patterns.add<ForLoopPipeliningPattern>(options, patterns.getContext());
}