1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
//===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Specializes parallel loops and for loops for easier unrolling and
// vectorization.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/DenseMap.h"
namespace mlir {
#define GEN_PASS_DEF_SCFFORLOOPPEELING
#define GEN_PASS_DEF_SCFFORLOOPSPECIALIZATION
#define GEN_PASS_DEF_SCFPARALLELLOOPSPECIALIZATION
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::affine;
using scf::ForOp;
using scf::ParallelOp;
/// Rewrite a parallel loop with bounds defined by an affine.min with a constant
/// into 2 loops after checking if the bounds are equal to that constant. This
/// is beneficial if the loop will almost always have the constant bound and
/// that version can be fully unrolled and vectorized.
static void specializeParallelLoopForUnrolling(ParallelOp op) {
SmallVector<int64_t, 2> constantIndices;
constantIndices.reserve(op.getUpperBound().size());
for (auto bound : op.getUpperBound()) {
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
constantIndices.push_back(minConstant);
}
OpBuilder b(op);
IRMapping map;
Value cond;
for (auto bound : llvm::zip(op.getUpperBound(), constantIndices)) {
Value constant =
b.create<arith::ConstantIndexOp>(op.getLoc(), std::get<1>(bound));
Value cmp = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
std::get<0>(bound), constant);
cond = cond ? b.create<arith::AndIOp>(op.getLoc(), cond, cmp) : cmp;
map.map(std::get<0>(bound), constant);
}
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds defined by an affine.min with a constant into
/// 2 loops after checking if the bounds are equal to that constant. This is
/// beneficial if the loop will almost always have the constant bound and that
/// version can be fully unrolled and vectorized.
static void specializeForLoopForUnrolling(ForOp op) {
auto bound = op.getUpperBound();
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
OpBuilder b(op);
IRMapping map;
Value constant = b.create<arith::ConstantIndexOp>(op.getLoc(), minConstant);
Value cond = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
bound, constant);
map.map(bound, constant);
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds/step that potentially do not divide evenly
/// into a for loop where the step divides the iteration space evenly, followed
/// by an scf.if for the last (partial) iteration (if any).
///
/// This function rewrites the given scf.for loop in-place and creates a new
/// scf.if operation for the last iteration. It replaces all uses of the
/// unpeeled loop with the results of the newly generated scf.if.
///
/// The newly generated scf.if operation is returned via `ifOp`. The boundary
/// at which the loop is split (new upper bound) is returned via `splitBound`.
/// The return value indicates whether the loop was rewritten or not.
static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp,
ForOp &partialIteration, Value &splitBound) {
RewriterBase::InsertionGuard guard(b);
auto lbInt = getConstantIntValue(forOp.getLowerBound());
auto ubInt = getConstantIntValue(forOp.getUpperBound());
auto stepInt = getConstantIntValue(forOp.getStep());
// No specialization necessary if step already divides upper bound evenly.
if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0)
return failure();
// No specialization necessary if step size is 1.
if (stepInt == static_cast<int64_t>(1))
return failure();
auto loc = forOp.getLoc();
AffineExpr sym0, sym1, sym2;
bindSymbols(b.getContext(), sym0, sym1, sym2);
// New upper bound: %ub - (%ub - %lb) mod %step
auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)});
b.setInsertionPoint(forOp);
splitBound = b.createOrFold<AffineApplyOp>(loc, modMap,
ValueRange{forOp.getLowerBound(),
forOp.getUpperBound(),
forOp.getStep()});
// Create ForOp for partial iteration.
b.setInsertionPointAfter(forOp);
partialIteration = cast<ForOp>(b.clone(*forOp.getOperation()));
partialIteration.getLowerBoundMutable().assign(splitBound);
b.replaceAllUsesWith(forOp.getResults(), partialIteration->getResults());
partialIteration.getInitArgsMutable().assign(forOp->getResults());
// Set new upper loop bound.
b.updateRootInPlace(
forOp, [&]() { forOp.getUpperBoundMutable().assign(splitBound); });
return success();
}
static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp,
ForOp partialIteration,
Value previousUb) {
Value mainIv = forOp.getInductionVar();
Value partialIv = partialIteration.getInductionVar();
assert(forOp.getStep() == partialIteration.getStep() &&
"expected same step in main and partial loop");
Value step = forOp.getStep();
forOp.walk([&](Operation *affineOp) {
if (!isa<AffineMinOp, AffineMaxOp>(affineOp))
return WalkResult::advance();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, mainIv, previousUb,
step,
/*insideLoop=*/true);
return WalkResult::advance();
});
partialIteration.walk([&](Operation *affineOp) {
if (!isa<AffineMinOp, AffineMaxOp>(affineOp))
return WalkResult::advance();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, partialIv, previousUb,
step, /*insideLoop=*/false);
return WalkResult::advance();
});
}
LogicalResult mlir::scf::peelForLoopAndSimplifyBounds(RewriterBase &rewriter,
ForOp forOp,
ForOp &partialIteration) {
Value previousUb = forOp.getUpperBound();
Value splitBound;
if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound)))
return failure();
// Rewrite affine.min and affine.max ops.
rewriteAffineOpAfterPeeling(rewriter, forOp, partialIteration, previousUb);
return success();
}
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
namespace {
struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
ForLoopPeelingPattern(MLIRContext *ctx, bool skipPartial)
: OpRewritePattern<ForOp>(ctx), skipPartial(skipPartial) {}
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override {
// Do not peel already peeled loops.
if (forOp->hasAttr(kPeeledLoopLabel))
return failure();
if (skipPartial) {
// No peeling of loops inside the partial iteration of another peeled
// loop.
Operation *op = forOp.getOperation();
while ((op = op->getParentOfType<scf::ForOp>())) {
if (op->hasAttr(kPartialIterationLabel))
return failure();
}
}
// Apply loop peeling.
scf::ForOp partialIteration;
if (failed(peelForLoopAndSimplifyBounds(rewriter, forOp, partialIteration)))
return failure();
// Apply label, so that the same loop is not rewritten a second time.
rewriter.updateRootInPlace(partialIteration, [&]() {
partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr());
});
rewriter.updateRootInPlace(forOp, [&]() {
forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
});
return success();
}
/// If set to true, loops inside partial iterations of another peeled loop
/// are not peeled. This reduces the size of the generated code. Partial
/// iterations are not usually performance critical.
/// Note: Takes into account the entire chain of parent operations, not just
/// the direct parent.
bool skipPartial;
};
} // namespace
namespace {
struct ParallelLoopSpecialization
: public impl::SCFParallelLoopSpecializationBase<
ParallelLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk(
[](ParallelOp op) { specializeParallelLoopForUnrolling(op); });
}
};
struct ForLoopSpecialization
: public impl::SCFForLoopSpecializationBase<ForLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk([](ForOp op) { specializeForLoopForUnrolling(op); });
}
};
struct ForLoopPeeling : public impl::SCFForLoopPeelingBase<ForLoopPeeling> {
void runOnOperation() override {
auto *parentOp = getOperation();
MLIRContext *ctx = parentOp->getContext();
RewritePatternSet patterns(ctx);
patterns.add<ForLoopPeelingPattern>(ctx, skipPartial);
(void)applyPatternsAndFoldGreedily(parentOp, std::move(patterns));
// Drop the markers.
parentOp->walk([](Operation *op) {
op->removeAttr(kPeeledLoopLabel);
op->removeAttr(kPartialIterationLabel);
});
}
};
} // namespace
std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
return std::make_unique<ParallelLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() {
return std::make_unique<ForLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
return std::make_unique<ForLoopPeeling>();
}
|