1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
//===- ParallelLoopTiling.cpp - Tiles scf.parallel ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop tiling on parallel loops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
namespace mlir {
#define GEN_PASS_DEF_SCFPARALLELLOOPTILING
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::scf;
/// Tile a parallel loop of the form
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
/// step (%arg4, %arg5)
///
/// into
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
/// step (%arg4*tileSize[0],
/// %arg5*tileSize[1])
/// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0)
/// min(%arg5*tileSize[1], %arg3-%i1))
/// step (%arg4, %arg5)
///
/// or, when no-min-max-bounds is true, into
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
/// step (%arg4*tileSize[0],
/// %arg5*tileSize[1])
/// scf.parallel (%j0, %j1) = (0, 0) to (%arg4*tileSize[0],
/// %arg5*tileSize[1])
/// step (%arg4, %arg5)
/// %inbound = (%j0 * %arg4 + %i0 < %arg2) &&
/// (%j1 * %arg5 + %i1 < %arg3)
/// scf.if (%inbound)
/// ....
///
/// where the uses of %i0 and %i1 in the loop body are replaced by
/// %i0 + j0 and %i1 + %j1.
///
/// The old loop is replaced with the new one.
std::pair<ParallelOp, ParallelOp>
mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef<int64_t> tileSizes,
bool noMinMaxBounds) {
OpBuilder b(op);
auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0);
SmallVector<Value, 2> tileSizeConstants;
tileSizeConstants.reserve(op.getUpperBound().size());
for (size_t i = 0, end = op.getUpperBound().size(); i != end; ++i) {
if (i < tileSizes.size())
tileSizeConstants.push_back(
b.create<arith::ConstantIndexOp>(op.getLoc(), tileSizes[i]));
else
// Just pick 1 for the remaining dimensions.
tileSizeConstants.push_back(
b.create<arith::ConstantIndexOp>(op.getLoc(), 1));
}
// Create the outer loop with adjusted steps.
SmallVector<Value, 2> newSteps;
newSteps.reserve(op.getStep().size());
for (auto step : llvm::zip(op.getStep(), tileSizeConstants)) {
newSteps.push_back(b.create<arith::MulIOp>(op.getLoc(), std::get<0>(step),
std::get<1>(step)));
}
auto outerLoop = b.create<ParallelOp>(op.getLoc(), op.getLowerBound(),
op.getUpperBound(), newSteps);
b.setInsertionPointToStart(outerLoop.getBody());
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
auto minMap = AffineMap::get(
/*dimCount=*/3, /*symbolCount=*/0,
{getAffineDimExpr(/*position=*/0, b.getContext()),
getAffineDimExpr(/*position=*/1, b.getContext()) -
getAffineDimExpr(/*position=*/2, b.getContext())},
b.getContext());
// Create the inner loop with adjusted bounds.
SmallVector<Value, 2> newBounds;
newBounds.reserve(op.getUpperBound().size());
bool needInboundCheck = false;
for (auto [lowerBound, upperBound, newStep, iv, step, tileSizeConstant] :
llvm::zip(outerLoop.getLowerBound(), outerLoop.getUpperBound(),
outerLoop.getStep(), outerLoop.getInductionVars(),
op.getStep(), tileSizeConstants)) {
// Collect the statically known loop bounds
auto lowerBoundConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(lowerBound.getDefiningOp());
auto upperBoundConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(upperBound.getDefiningOp());
auto stepConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(step.getDefiningOp());
auto tileSize =
cast<arith::ConstantIndexOp>(tileSizeConstant.getDefiningOp()).value();
// If the loop bounds and the loop step are constant and if the number of
// loop iterations is an integer multiple of the tile size, we use a static
// bound for the inner loop.
if (lowerBoundConstant && upperBoundConstant && stepConstant) {
auto numIterations = llvm::divideCeil(upperBoundConstant.value() -
lowerBoundConstant.value(),
stepConstant.value());
if (numIterations % tileSize == 0) {
newBounds.push_back(newStep);
continue;
}
}
// For InboundCheck mode, just use the variable outer step
if (noMinMaxBounds) {
newBounds.push_back(newStep);
needInboundCheck = true;
continue;
}
// Otherwise, we dynamically compute the bound for
// each iteration of the outer loop.
newBounds.push_back(
b.create<affine::AffineMinOp>(op.getLoc(), b.getIndexType(), minMap,
ValueRange{newStep, upperBound, iv}));
}
auto innerLoop = b.create<ParallelOp>(
op.getLoc(), SmallVector<Value, 2>(newBounds.size(), zero), newBounds,
op.getStep());
if (noMinMaxBounds && needInboundCheck) {
b.setInsertionPointToStart(innerLoop.getBody());
// Insert in-bound check
Value inbound =
b.create<arith::ConstantIntOp>(op.getLoc(), 1, b.getIntegerType(1));
for (auto [outerUpperBound, outerIV, innerIV, innerStep] :
llvm::zip(outerLoop.getUpperBound(), outerLoop.getInductionVars(),
innerLoop.getInductionVars(), innerLoop.getStep())) {
// %in_bound = %in_bound &&
// (%inner_iv * %inner_step + %outer_iv < %outer_upper_bound)
Value index = b.create<arith::AddIOp>(
op.getLoc(), b.create<arith::MulIOp>(op.getLoc(), innerIV, innerStep),
outerIV);
Value dimInbound = b.create<arith::CmpIOp>(
op.getLoc(), arith::CmpIPredicate::ult, index, outerUpperBound);
inbound = b.create<arith::AndIOp>(op.getLoc(), inbound, dimInbound);
}
auto ifInbound = b.create<IfOp>(op.getLoc(),
/*resultTypes*/ ArrayRef<Type>{}, inbound,
/*hasElseRegion*/ false);
ifInbound.getThenRegion().takeBody(op.getRegion());
Block &thenBlock = ifInbound.getThenRegion().front();
b.setInsertionPointToStart(innerLoop.getBody());
for (const auto &ivs : llvm::enumerate(llvm::zip(
innerLoop.getInductionVars(), outerLoop.getInductionVars()))) {
auto newIndex = b.create<arith::AddIOp>(
op.getLoc(), std::get<0>(ivs.value()), std::get<1>(ivs.value()));
thenBlock.getArgument(ivs.index())
.replaceAllUsesExcept(newIndex, newIndex);
}
thenBlock.eraseArguments(0, thenBlock.getNumArguments());
} else {
innerLoop.getRegion().takeBody(op.getRegion());
b.setInsertionPointToStart(innerLoop.getBody());
for (auto ivs : llvm::zip(innerLoop.getInductionVars(),
outerLoop.getInductionVars())) {
Value innerIndex = std::get<0>(ivs);
auto newIndex = b.create<arith::AddIOp>(op.getLoc(), std::get<0>(ivs),
std::get<1>(ivs));
innerIndex.replaceAllUsesExcept(newIndex, newIndex);
}
}
op.erase();
return std::make_pair(outerLoop, innerLoop);
}
namespace {
struct ParallelLoopTiling
: public impl::SCFParallelLoopTilingBase<ParallelLoopTiling> {
ParallelLoopTiling() = default;
explicit ParallelLoopTiling(ArrayRef<int64_t> tileSizes,
bool noMinMaxBounds = false) {
this->tileSizes = tileSizes;
this->noMinMaxBounds = noMinMaxBounds;
}
void runOnOperation() override {
auto *parentOp = getOperation();
SmallVector<ParallelOp, 2> innermostPloops;
getInnermostParallelLoops(parentOp, innermostPloops);
for (ParallelOp ploop : innermostPloops) {
// FIXME: Add reduction support.
if (ploop.getNumReductions() == 0)
tileParallelLoop(ploop, tileSizes, noMinMaxBounds);
}
}
};
} // namespace
std::unique_ptr<Pass>
mlir::createParallelLoopTilingPass(ArrayRef<int64_t> tileSizes,
bool noMinMaxBounds) {
return std::make_unique<ParallelLoopTiling>(tileSizes, noMinMaxBounds);
}
|